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Chapter 7: Distributed Training

(中文版)

 Note

Distributed training is only available for PyTorch backend.

DGL adopts a fully distributed approach that distributes both data and computa�on across a
collec�on of computa�on resources. In the context of this sec�on, we will assume a cluster se�ng
(i.e., a group of machines). DGL par��ons a graph into subgraphs and each machine in a cluster is
responsible for one subgraph (par��on). DGL runs an iden�cal training script on all machines in the
cluster to parallelize the computa�on and runs servers on the same machines to serve par��oned
data to the trainers.

For the training script, DGL provides distributed APIs that are similar to the ones for mini-batch
training. This makes distributed training require only small code modifica�ons from mini-batch
training on a single machine. Below shows an example of training GraphSage in a distributed
fashion. The notable code modifica�ons are: 1) ini�aliza�on of DGL’s distributed module, 2) create a
distributed graph object, and 3) split the training set and calculate the nodes for the local process.
The rest of the code, including sampler crea�on, model defini�on, training loops are the same as
mini-batch training.

https://docs.dgl.ai/index.html
https://docs.dgl.ai/guide/index.html
https://docs.dgl.ai/guide_cn/distributed.html#guide-cn-distributed
https://docs.dgl.ai/guide/minibatch.html#guide-minibatch


import dgl
from dgl.dataloading import NeighborSampler
from dgl.distributed import DistGraph, DistDataLoader, node_split
import torch as th

# initialize distributed contexts
dgl.distributed.initialize('ip_config.txt')
th.distributed.init_process_group(backend='gloo')
# load distributed graph
g = DistGraph('graph_name', 'part_config.json')
pb = g.get_partition_book()
# get training workload, i.e., training node IDs
train_nid = node_split(g.ndata['train_mask'], pb, force_even=True)

# Create sampler
sampler = NeighborSampler(g, [10,25],
                          dgl.distributed.sample_neighbors,
                          device)

dataloader = DistDataLoader(
    dataset=train_nid.numpy(),
    batch_size=batch_size,
    collate_fn=sampler.sample_blocks,
    shuffle=True,
    drop_last=False)

# Define model and optimizer
model = SAGE(in_feats, num_hidden, n_classes, num_layers, F.relu, dropout)
model = th.nn.parallel.DistributedDataParallel(model)
loss_fcn = nn.CrossEntropyLoss()
optimizer = optim.Adam(model.parameters(), lr=args.lr)

# training loop
for epoch in range(args.num_epochs):
    with model.join():
        for step, blocks in enumerate(dataloader):
            batch_inputs, batch_labels = load_subtensor(g, blocks[0].srcdata[dgl.NID],
                                                        blocks[-1].dstdata[dgl.NID])
            batch_pred = model(blocks, batch_inputs)
            loss = loss_fcn(batch_pred, batch_labels)
            optimizer.zero_grad()

     

    



DGL implements a few distributed components to support distributed training. The figure below
shows the components and their interac�ons.

Specifically, DGL’s distributed training has three types of interac�ng processes: server, sampler and
trainer.

Servers store graph par��ons which includes both structure data and node/edge features. They
provide services such as sampling, ge�ng or upda�ng node/edge features. Note that each
machine may run mul�ple server processes simultaneously to increase service throughput. One
of them is main server in charge of data loading and sharing data via shared memory with backup
servers that provide services.

            loss.backward()
            optimizer.step()



Sampler processes interact with the servers and sample nodes and edges to generate mini-
batches for training.
Trainers are in charge of training networks on mini-batches. They u�lize APIs such as DistGraph

to access par��oned graph data, DistEmbedding  and DistTensor  to access node/edge
features/embeddings and DistDataLoader  to interact with samplers to get mini-batches. Trainers
communicate gradients among each other using PyTorch’s na�ve DistributedDataParallel

paradigm.

Besides Python APIs, DGL also provides tools for provisioning graph data and processes to the
en�re cluster.

Having the distributed components in mind, the rest of the sec�on will cover the following
distributed components:

7.1 Data Preprocessing
7.2 Tools for launching distributed training/inference
7.3 Programming APIs

For more advanced users who are interested in more details:

7.4 Advanced Graph Par��oning
7.5 Heterogeneous Graph Under The Hood

https://docs.dgl.ai/api/python/dgl.distributed.html#dgl.distributed.DistGraph
https://docs.dgl.ai/api/python/dgl.distributed.html#dgl.distributed.DistEmbedding
https://docs.dgl.ai/api/python/dgl.distributed.html#dgl.distributed.DistTensor
https://docs.dgl.ai/api/python/dgl.distributed.html#dgl.distributed.DistDataLoader
https://github.com/dmlc/dgl/tree/master/tools
https://docs.dgl.ai/guide/distributed-preprocessing.html#guide-distributed-preprocessing
https://docs.dgl.ai/guide/distributed-tools.html#guide-distributed-tools
https://docs.dgl.ai/guide/distributed-apis.html#guide-distributed-apis
https://docs.dgl.ai/guide/distributed-partition.html#guide-distributed-partition
https://docs.dgl.ai/guide/distributed-hetero.html#guide-distributed-hetero

