A / User Guide / Chapter 7: Distributed Training

Chapter 7: Distributed Training
(RZHR)

O Note

DGL adopts a fully distributed approach that distributes both data and computation across a
collection of computation resources. In the context of this section, we will assume a cluster setting
(i.e., a group of machines). DGLpartitions a graph'into subgraphs and each'machinein‘a clusteris
responsible for one subgraph (partition). DGL runs an identical training script on all machines in the
cluster to parallelize the computation and runs servers on the same machines to serve partitioned
data to the trainers.

EFAIRIAE. This makes distributed training require only small code modifications from mini-batch
training on a single machine. Below shows an example of training GraphSage in a distributed

fashion. The notable code modifications are: 1) ifitialization'of DGLs distributed module, 2) createa
distributed graph object, and 3) split the training set and calculate the nodes for the local process.

The rest of the code, including sampler creation, model definition, training loops are the same as
mini-batch training.


https://docs.dgl.ai/index.html
https://docs.dgl.ai/guide/index.html
https://docs.dgl.ai/guide_cn/distributed.html#guide-cn-distributed
https://docs.dgl.ai/guide/minibatch.html#guide-minibatch

e —
import dgl

from dgl.dataloading import NeighborSampler
from dgl.distributed import DistGraph, DistDataloader, node_split
import torch as th

# initialize distributed contexts
dgl.distributed.initialize('ip_config.txt")
th.distributed.init_process_group(backend="gloo")

# Lload distributed graph

g = DistGraph('graph_name', 'part_config.json")

pb = g.get_partition_book()

# get training workload, 1i.e., training node IDs

train_nid = node_split(g.ndata['train_mask'], pb, force_even=True)

# Create sampler

sampler = NeighborSampler(g, [10,25],
dgl.distributed.sample_neighbors,
device)

dataloader = DistDatalLoader(
dataset=train_nid.numpy(),
batch_size=batch_size,
collate_fn=sampler.sample_blocks,
shuffle=True,
drop_last=False)

# Define model and optimizer

model = SAGE(in_feats, num_hidden, n_classes, num_layers, F.relu, dropout)
model = th.nn.parallel.DistributedDataParallel(model)

loss_fcn = nn.CrossEntropylLoss()

optimizer = optim.Adam(model.parameters(), lr=args.lr)

# training Lloop
for epoch in range(args.num_epochs):
with model.join():
for step, blocks in enumerate(dataloader):
batch_inputs, batch_labels = load_subtensor(g, blocks[@].srcdata[dgl.NID],
blocks[-1].dstdata[dgl.NID])

batch_pred = model(blocks, batch_inputs)
loss = loss_fcn(batch_pred, batch_labels)
optimizer.zero_grad()




loss.backward()
optimizer.step()

DGL implements a few distributed components to support distributed training. The figure below

shows the components and their interactions.

E

DistGraphServer

./\: Graph Structure & node/edge features

D)

Sampler

f

DistDatalLoader

~
DistEmbedding

L DistTensor
-

DistGraph

N

Trainer

/

Machine-0

s

e

raph Structure & node/edge features

DistGraphServer \]

Sampler

/

DistDatalLoader

(DistEm beddingﬂ
J DistGraph

L DistTensor

N

Trainer j

Machine-1

Specifically, DGL's distributed training has three types of interacting processes: server, sampler and

trainer.

. They

provide services such as sampling, getting or updating node/edge features. Note that each

machine may run multiple server processes simultaneously to increase service throughput. ORé




.

Sampler processes interact with the servers and sample nodes and edges to generate mini-
batches for training.

. . They utilize APIs such as bpistGraph
to access partitioned graph data, pistembedding and bpistTensor to access node/edge
features/embeddings and pistpataLoader to interact with samplers to get mini-batches. Trainers
communicate gradients among each other using PyTorch’s native bpistributedbataparallel
paradigm.

Besides Python APIs, DGL also provides tools for provisioning graph data and processes to the
entire cluster.

Having the distributed components in mind, the rest of the section will cover the following
distributed components:

o 7.1 Data Preprocessing
« 7.2 Tools for launching distributed training/inference
o 7.3 Programming APlIs

For more advanced users who are interested in more details:

o 7.4 Advanced Graph Partitioning
» 7.5 Heterogeneous Graph Under The Hood


https://docs.dgl.ai/api/python/dgl.distributed.html#dgl.distributed.DistGraph
https://docs.dgl.ai/api/python/dgl.distributed.html#dgl.distributed.DistEmbedding
https://docs.dgl.ai/api/python/dgl.distributed.html#dgl.distributed.DistTensor
https://docs.dgl.ai/api/python/dgl.distributed.html#dgl.distributed.DistDataLoader
https://github.com/dmlc/dgl/tree/master/tools
https://docs.dgl.ai/guide/distributed-preprocessing.html#guide-distributed-preprocessing
https://docs.dgl.ai/guide/distributed-tools.html#guide-distributed-tools
https://docs.dgl.ai/guide/distributed-apis.html#guide-distributed-apis
https://docs.dgl.ai/guide/distributed-partition.html#guide-distributed-partition
https://docs.dgl.ai/guide/distributed-hetero.html#guide-distributed-hetero

