
 / User Guide / Chapter 6: Stochas�c Training on Large Graphs / 6.8 Feature Prefetching

6.8 Feature Prefetching

In minibatch training of GNNs, especially with neighbor sampling approaches, we o�en see that a
large amount of node features need to be copied to the device for compu�ng GNNs. To mi�gate
this bo�leneck of data movement, DGL supports feature prefetching so that the model computa�on
and data movement can happen in parallel.

Enabling Prefetching with DGL’s Builtin Samplers

All the DGL samplers in dgl.dataloading allows users to specify which node and edge data to
prefetch via arguments like prefetch_node_feats . For example, the following code asks
dgl.dataloading.NeighborSampler to prefetch the node data named feat and save it to the srcdata

of the first message flow graph. It also asks the sampler to prefetch and save the node data named
label to the dstdata of the last message flow graph:

https://docs.dgl.ai/index.html
https://docs.dgl.ai/guide/index.html
https://docs.dgl.ai/guide/minibatch.html
https://docs.dgl.ai/api/python/dgl.dataloading.html#api-dataloading
https://docs.dgl.ai/generated/dgl.dataloading.NeighborSampler.html#dgl.dataloading.NeighborSampler

 Note

Even without specifying the the prefetch arguments, users can s�ll access
subgs[0].srcdata['feat'] and subgs[-1].dstdata['label'] because DGL internally keeps a

reference to the node/edge data of the original graph when a subgraph is created. Accessing
subgraph features will incur data fetching from the original graph immediately while prefetching
ensures data to be available before ge�ng from data loader.

Enabling Prefetching in Custom Samplers

Users can implement their own rules of prefetching when wri�ng custom samplers. Here is the
code of NeighborSampler with prefetching:

graph = ... # the graph to sample from
graph.ndata['feat'] = ... # node feature
graph.ndata['label'] = ... # node label
train_nids = ... # an 1-D integer tensor of training node IDs
create a sample and specify what data to prefetch
sampler = dgl.dataloading.NeighborSampler(
 [15, 10, 5], prefetch_node_feats=['feat'], prefetch_labels=['label'])
create a dataloader
dataloader = dgl.dataloading.DataLoader(
 graph, train_nids, sampler,
 batch_size=32,
 ... # other arguments
)
for mini_batch in dataloader:
 # unpack mini batch
 input_nodes, output_nodes, subgs = mini_batch
 # the following data has been pre-fetched
 feat = subgs[0].srcdata['feat']
 label = subgs[-1].dstdata['label']
 train(subgs, feat, label)

Using the set_src_lazy_features() , set_dst_lazy_features() and set_edge_lazy_features() , users can
tell DataLoader which features to prefetch and where to save them (srcdata , dstdata or edata).
See 6.4 Implemen�ng Custom Graph Samplers for more explana�ons on how to write a custom
graph sampler.

class NeighborSampler(dgl.dataloading.Sampler):
 def __init__(self,
 fanouts : list[int],
 prefetch_node_feats: list[str] = None,
 prefetch_edge_feats: list[str] = None,
 prefetch_labels: list[str] = None):
 super().__init__()
 self.fanouts = fanouts
 self.prefetch_node_feats = prefetch_node_feats
 self.prefetch_edge_feats = prefetch_edge_feats
 self.prefetch_labels = prefetch_labels

 def sample(self, g, seed_nodes):
 output_nodes = seed_nodes
 subgs = []
 for fanout in reversed(self.fanouts):
 # Sample a fixed number of neighbors of the current seed nodes.
 sg = g.sample_neighbors(seed_nodes, fanout)
 # Convert this subgraph to a message flow graph.
 sg = dgl.to_block(sg, seed_nodes)
 seed_nodes = sg.srcdata[NID]
 subgs.insert(0, sg)
 input_nodes = seed_nodes

 # handle prefetching
 dgl.set_src_lazy_features(subgs[0], self.prefetch_node_feats)
 dgl.set_dst_lazy_features(subgs[-1], self.prefetch_labels)
 for subg in subgs:
 dgl.set_edge_lazy_features(subg, self.prefetch_edge_feats)

 return input_nodes, output_nodes, subgs

https://docs.dgl.ai/guide/minibatch-custom-sampler.html#guide-minibatch-customizing-neighborhood-sampler

