
 / User Guide / Chapter 6: Stochas�c Training on Large Graphs
/ 6.7 Using GPU for Neighborhood Sampling

6.7 Using GPU for Neighborhood Sampling

DGL since 0.7 has been suppor�ng GPU-based neighborhood sampling, which has a
significant speed advantage over CPU-based neighborhood sampling. If you es�mate that
your graph can fit onto GPU and your model does not take a lot of GPU memory, then it is
best to put the graph onto GPU memory and use GPU-based neighbor sampling.

For example, OGB Products has 2.4M nodes and 61M edges. The graph takes less than 1GB
since the memory consump�on of a graph depends on the number of edges. Therefore it is
en�rely possible to fit the whole graph onto GPU.

Using GPU-based neighborhood sampling in DGL data
loaders

One can use GPU-based neighborhood sampling with DGL data loaders via:

Put the graph onto GPU.
Put the train_nid  onto GPU.
Set device  argument to a GPU device.
Set num_workers  argument to 0, because CUDA does not allow mul�ple processes
accessing the same context.

All the other arguments for the DataLoader  can be the same as the other user guides and
tutorials.

 Note

g = g.to('cuda:0')
train_nid = train_nid.to('cuda:0')
dataloader = dgl.dataloading.DataLoader(
    g,                                # The graph must be on GPU.
    train_nid,                        # train_nid must be on GPU.
    sampler,
    device=torch.device('cuda:0'),    # The device argument must be GPU.
    num_workers=0,                    # Number of workers must be 0.
    batch_size=1000,
    drop_last=False,
    shuffle=True)

     

    

https://docs.dgl.ai/index.html
https://docs.dgl.ai/guide/index.html
https://docs.dgl.ai/guide/minibatch.html
https://ogb.stanford.edu/docs/nodeprop/#ogbn-products
https://docs.dgl.ai/generated/dgl.dataloading.DataLoader.html#dgl.dataloading.DataLoader


GPU-based neighbor sampling also works for custom neighborhood samplers as long as
(1) your sampler is subclassed from BlockSampler , and (2) your sampler en�rely works on
GPU.

Using CUDA UVA-based neighborhood sampling in DGL
data loaders

 Note

New feature introduced in DGL 0.8.

For the case where the graph is too large to fit onto the GPU memory, we introduce the
CUDA UVA (Unified Virtual Addressing)-based sampling, in which GPUs perform the sampling
on the graph pinned in CPU memory via zero-copy access. You can enable UVA-based
neighborhood sampling in DGL data loaders via:

Put the train_nid  onto GPU.
Set device  argument to a GPU device.
Set num_workers  argument to 0, because CUDA does not allow mul�ple processes
accessing the same context.
Set use_uva=True .

All the other arguments for the DataLoader  can be the same as the other user guides and
tutorials.

UVA-based sampling is the recommended solu�on for mini-batch training on large graphs,
especially for mul�-GPU training.

 Note

To use UVA-based sampling in mul�-GPU training, you should first materialize all the
necessary sparse formats of the graph before spawning training processes. Refer to our
GraphSAGE example for more details.

train_nid = train_nid.to('cuda:0')
dataloader = dgl.dataloading.DataLoader(
    g,
    train_nid,                        # train_nid must be on GPU.
    sampler,
    device=torch.device('cuda:0'),    # The device argument must be GPU.
    num_workers=0,                    # Number of workers must be 0.
    batch_size=1000,
    drop_last=False,
    shuffle=True,
    use_uva=True)                     # Set use_uva=True

     

    

https://docs.dgl.ai/generated/dgl.dataloading.BlockSampler.html#dgl.dataloading.BlockSampler
https://docs.dgl.ai/generated/dgl.dataloading.DataLoader.html#dgl.dataloading.DataLoader
https://github.com/dmlc/dgl/blob/master/examples/pytorch/graphsage/multi_gpu_node_classification.py


UVA and GPU support for
PinSAGESampler/RandomWalkNeighborSampler

PinSAGESampler and RandomWalkNeighborSampler support UVA and GPU sampling. You
can enable them via:

Pin the graph (for UVA sampling) or put the graph onto GPU (for GPU sampling).
Put the train_nid  onto GPU.

Using GPU-based neighbor sampling with DGL functions

You can build your own GPU sampling pipelines with the following func�ons that support
opera�ng on GPU:

dgl.sampling.sample_neighbors()

dgl.sampling.random_walk()

Subgraph extrac�on ops:

dgl.node_subgraph()

dgl.edge_subgraph()

dgl.in_subgraph()

dgl.out_subgraph()

Graph transform ops for subgraph construc�on:

dgl.to_block()

g = dgl.heterograph({
    ('item', 'bought-by', 'user'): ([0, 0, 1, 1, 2, 2, 3, 3], [0, 1, 0, 1, 2, 3, 2, 3]),
    ('user', 'bought', 'item'): ([0, 1, 0, 1, 2, 3, 2, 3], [0, 0, 1, 1, 2, 2, 3, 3])})

# UVA setup
# g.create_formats_()
# g.pin_memory_()

# GPU setup
device = torch.device('cuda:0')
g = g.to(device)

sampler1 = dgl.sampling.PinSAGESampler(g, 'item', 'user', 4, 0.5, 3, 2)
sampler2 = dgl.sampling.RandomWalkNeighborSampler(g, 4, 0.5, 3, 2, ['bought-by', 'bought'])

train_nid = torch.tensor([0, 2], dtype=g.idtype, device=device)
sampler1(train_nid)
sampler2(train_nid)

     

    

https://docs.dgl.ai/generated/dgl.sampling.sample_neighbors.html#dgl.sampling.sample_neighbors
https://docs.dgl.ai/generated/dgl.sampling.random_walk.html#dgl.sampling.random_walk
https://docs.dgl.ai/generated/dgl.node_subgraph.html#dgl.node_subgraph
https://docs.dgl.ai/generated/dgl.edge_subgraph.html#dgl.edge_subgraph
https://docs.dgl.ai/generated/dgl.in_subgraph.html#dgl.in_subgraph
https://docs.dgl.ai/generated/dgl.out_subgraph.html#dgl.out_subgraph
https://docs.dgl.ai/generated/dgl.to_block.html#dgl.to_block


dgl.compact_graph()


