
 / User Guide / Chapter 6: Stochas�c Training on Large Graphs
/ 6.7 Using GPU for Neighborhood Sampling

6.7 Using GPU for Neighborhood Sampling

DGL since 0.7 has been suppor�ng GPU-based neighborhood sampling, which has a
significant speed advantage over CPU-based neighborhood sampling. If you es�mate that
your graph can fit onto GPU and your model does not take a lot of GPU memory, then it is
best to put the graph onto GPU memory and use GPU-based neighbor sampling.

For example, OGB Products has 2.4M nodes and 61M edges. The graph takes less than 1GB
since the memory consump�on of a graph depends on the number of edges. Therefore it is
en�rely possible to fit the whole graph onto GPU.

Using GPU-based neighborhood sampling in DGL data
loaders

One can use GPU-based neighborhood sampling with DGL data loaders via:

Put the graph onto GPU.
Put the train_nid onto GPU.
Set device argument to a GPU device.
Set num_workers argument to 0, because CUDA does not allow mul�ple processes
accessing the same context.

All the other arguments for the DataLoader can be the same as the other user guides and
tutorials.

 Note

g = g.to('cuda:0')
train_nid = train_nid.to('cuda:0')
dataloader = dgl.dataloading.DataLoader(
 g, # The graph must be on GPU.
 train_nid, # train_nid must be on GPU.
 sampler,
 device=torch.device('cuda:0'), # The device argument must be GPU.
 num_workers=0, # Number of workers must be 0.
 batch_size=1000,
 drop_last=False,
 shuffle=True)

https://docs.dgl.ai/index.html
https://docs.dgl.ai/guide/index.html
https://docs.dgl.ai/guide/minibatch.html
https://ogb.stanford.edu/docs/nodeprop/#ogbn-products
https://docs.dgl.ai/generated/dgl.dataloading.DataLoader.html#dgl.dataloading.DataLoader

GPU-based neighbor sampling also works for custom neighborhood samplers as long as
(1) your sampler is subclassed from BlockSampler , and (2) your sampler en�rely works on
GPU.

Using CUDA UVA-based neighborhood sampling in DGL
data loaders

 Note

New feature introduced in DGL 0.8.

For the case where the graph is too large to fit onto the GPU memory, we introduce the
CUDA UVA (Unified Virtual Addressing)-based sampling, in which GPUs perform the sampling
on the graph pinned in CPU memory via zero-copy access. You can enable UVA-based
neighborhood sampling in DGL data loaders via:

Put the train_nid onto GPU.
Set device argument to a GPU device.
Set num_workers argument to 0, because CUDA does not allow mul�ple processes
accessing the same context.
Set use_uva=True .

All the other arguments for the DataLoader can be the same as the other user guides and
tutorials.

UVA-based sampling is the recommended solu�on for mini-batch training on large graphs,
especially for mul�-GPU training.

 Note

To use UVA-based sampling in mul�-GPU training, you should first materialize all the
necessary sparse formats of the graph before spawning training processes. Refer to our
GraphSAGE example for more details.

train_nid = train_nid.to('cuda:0')
dataloader = dgl.dataloading.DataLoader(
 g,
 train_nid, # train_nid must be on GPU.
 sampler,
 device=torch.device('cuda:0'), # The device argument must be GPU.
 num_workers=0, # Number of workers must be 0.
 batch_size=1000,
 drop_last=False,
 shuffle=True,
 use_uva=True) # Set use_uva=True

https://docs.dgl.ai/generated/dgl.dataloading.BlockSampler.html#dgl.dataloading.BlockSampler
https://docs.dgl.ai/generated/dgl.dataloading.DataLoader.html#dgl.dataloading.DataLoader
https://github.com/dmlc/dgl/blob/master/examples/pytorch/graphsage/multi_gpu_node_classification.py

UVA and GPU support for
PinSAGESampler/RandomWalkNeighborSampler

PinSAGESampler and RandomWalkNeighborSampler support UVA and GPU sampling. You
can enable them via:

Pin the graph (for UVA sampling) or put the graph onto GPU (for GPU sampling).
Put the train_nid onto GPU.

Using GPU-based neighbor sampling with DGL functions

You can build your own GPU sampling pipelines with the following func�ons that support
opera�ng on GPU:

dgl.sampling.sample_neighbors()

dgl.sampling.random_walk()

Subgraph extrac�on ops:

dgl.node_subgraph()

dgl.edge_subgraph()

dgl.in_subgraph()

dgl.out_subgraph()

Graph transform ops for subgraph construc�on:

dgl.to_block()

g = dgl.heterograph({
 ('item', 'bought-by', 'user'): ([0, 0, 1, 1, 2, 2, 3, 3], [0, 1, 0, 1, 2, 3, 2, 3]),
 ('user', 'bought', 'item'): ([0, 1, 0, 1, 2, 3, 2, 3], [0, 0, 1, 1, 2, 2, 3, 3])})

UVA setup
g.create_formats_()
g.pin_memory_()

GPU setup
device = torch.device('cuda:0')
g = g.to(device)

sampler1 = dgl.sampling.PinSAGESampler(g, 'item', 'user', 4, 0.5, 3, 2)
sampler2 = dgl.sampling.RandomWalkNeighborSampler(g, 4, 0.5, 3, 2, ['bought-by', 'bought'])

train_nid = torch.tensor([0, 2], dtype=g.idtype, device=device)
sampler1(train_nid)
sampler2(train_nid)

https://docs.dgl.ai/generated/dgl.sampling.sample_neighbors.html#dgl.sampling.sample_neighbors
https://docs.dgl.ai/generated/dgl.sampling.random_walk.html#dgl.sampling.random_walk
https://docs.dgl.ai/generated/dgl.node_subgraph.html#dgl.node_subgraph
https://docs.dgl.ai/generated/dgl.edge_subgraph.html#dgl.edge_subgraph
https://docs.dgl.ai/generated/dgl.in_subgraph.html#dgl.in_subgraph
https://docs.dgl.ai/generated/dgl.out_subgraph.html#dgl.out_subgraph
https://docs.dgl.ai/generated/dgl.to_block.html#dgl.to_block

dgl.compact_graph()

