
 / User Guide / Chapter 6: Stochas�c Training on Large Graphs
/ 6.6 Exact Offline Inference on Large Graphs

6.6 Exact Offline Inference on Large Graphs

(中文版)

Both subgraph sampling and neighborhood sampling are to reduce the memory and �me
consump�on for training GNNs with GPUs. When performing inference it is usually be�er to
truly aggregate over all neighbors instead to get rid of the randomness introduced by
sampling. However, full-graph forward propaga�on is usually infeasible on GPU due to limited
memory, and slow on CPU due to slow computa�on. This sec�on introduces the
methodology of full-graph forward propaga�on with limited GPU memory via minibatch and
neighborhood sampling.

The inference algorithm is different from the training algorithm, as the representa�ons of all
nodes should be computed layer by layer, star�ng from the first layer. Specifically, for a
par�cular layer, we need to compute the output representa�ons of all nodes from this GNN
layer in minibatches. The consequence is that the inference algorithm will have an outer loop
itera�ng over the layers, and an inner loop itera�ng over the minibatches of nodes. In
contrast, the training algorithm has an outer loop itera�ng over the minibatches of nodes, and
an inner loop itera�ng over the layers for both neighborhood sampling and message passing.

The following anima�on shows how the computa�on would look like (note that for every
layer only the first three minibatches are drawn).

https://docs.dgl.ai/index.html
https://docs.dgl.ai/guide/index.html
https://docs.dgl.ai/guide/minibatch.html
https://docs.dgl.ai/guide_cn/minibatch-inference.html#guide-cn-minibatch-inference

Implementing Offline Inference

Consider the two-layer GCN we have men�oned in Sec�on 6.1 Adapt your model for
minibatch training. The way to implement offline inference s�ll involves using
MultiLayerFullNeighborSampler , but sampling for only one layer at a �me. Note that offline

inference is implemented as a method of the GNN module because the computa�on on one
layer depends on how messages are aggregated and combined as well.

https://docs.dgl.ai/guide/minibatch-node.html#guide-minibatch-node-classification-model
https://docs.dgl.ai/guide/minibatch-node.html#guide-minibatch-node-classification-model

Note that for the purpose of compu�ng evalua�on metric on the valida�on set for model
selec�on we usually don’t have to compute exact offline inference. The reason is that we
need to compute the representa�on for every single node on every single layer, which is
usually very costly especially in the semi-supervised regime with a lot of unlabeled data.
Neighborhood sampling will work fine for model selec�on and valida�on.

One can see GraphSAGE and RGCN for examples of offline inference.

class StochasticTwoLayerGCN(nn.Module):
 def __init__(self, in_features, hidden_features, out_features):
 super().__init__()
 self.hidden_features = hidden_features
 self.out_features = out_features
 self.conv1 = dgl.nn.GraphConv(in_features, hidden_features)
 self.conv2 = dgl.nn.GraphConv(hidden_features, out_features)
 self.n_layers = 2

 def forward(self, blocks, x):
 x_dst = x[:blocks[0].number_of_dst_nodes()]
 x = F.relu(self.conv1(blocks[0], (x, x_dst)))
 x_dst = x[:blocks[1].number_of_dst_nodes()]
 x = F.relu(self.conv2(blocks[1], (x, x_dst)))
 return x

 def inference(self, g, x, batch_size, device):
 """
 Offline inference with this module
 """
 # Compute representations layer by layer
 for l, layer in enumerate([self.conv1, self.conv2]):
 y = torch.zeros(g.num_nodes(),
 self.hidden_features
 if l != self.n_layers - 1
 else self.out_features)
 sampler = dgl.dataloading.MultiLayerFullNeighborSampler(1)
 dataloader = dgl.dataloading.NodeDataLoader(
 g, torch.arange(g.num_nodes()), sampler,
 batch_size=batch_size,
 shuffle=True,
 drop_last=False)

 # Within a layer, iterate over nodes in batches
 for input_nodes, output_nodes, blocks in dataloader:
 block = blocks[0]

 # Copy the features of necessary input nodes to GPU
 h = x[input_nodes].to(device)
 # Compute output. Note that this computation is the same
 # but only for a single layer.
 h_dst = h[:block.number_of_dst_nodes()]
 h = F.relu(layer(block, (h, h_dst)))
 # Copy to output back to CPU.
 y[output_nodes] = h.cpu()

 x = y

 return y

https://github.com/dmlc/dgl/blob/master/examples/pytorch/graphsage/train_sampling.py
https://github.com/dmlc/dgl/blob/master/examples/pytorch/rgcn-hetero/entity_classify_mb.py

