
 / User Guide / Chapter 6: Stochas�c Training on Large Graphs
/ 6.4 Implemen�ng Custom Graph Samplers

6.4 Implementing Custom Graph Samplers

Implemen�ng custom samplers involves subclassing the dgl.dataloading.Sampler base class
and implemen�ng its abstract sample method. The sample method should take in two
arguments:

The first argument g is the original graph to sample from while the second argument
indices is the indices of the current mini-batch – it generally could be anything depending

on what indices are given to the accompanied DataLoader but are typically seed node or seed
edge IDs. The func�on returns the mini-batch of samples for the current itera�on.

 Note

The design here is similar to PyTorch’s torch.utils.data.DataLoader , which is an iterator of
dataset. Users can customize how to batch samples using its collate_fn argument. Here
in DGL, dgl.dataloading.DataLoader is an iterator of indices (e.g., training node IDs) while
Sampler converts a batch of indices into a batch of graph- or tensor-type samples.

The code below implements a classical neighbor sampler:

def sample(self, g, indices):
 pass

class NeighborSampler(dgl.dataloading.Sampler):
 def __init__(self, fanouts : list[int]):
 super().__init__()
 self.fanouts = fanouts

 def sample(self, g, seed_nodes):
 output_nodes = seed_nodes
 subgs = []
 for fanout in reversed(self.fanouts):
 # Sample a fixed number of neighbors of the current seed nodes.
 sg = g.sample_neighbors(seed_nodes, fanout)
 # Convert this subgraph to a message flow graph.
 sg = dgl.to_block(sg, seed_nodes)
 seed_nodes = sg.srcdata[NID]
 subgs.insert(0, sg)
 input_nodes = seed_nodes
 return input_nodes, output_nodes, subgs

https://docs.dgl.ai/index.html
https://docs.dgl.ai/guide/index.html
https://docs.dgl.ai/guide/minibatch.html
https://docs.dgl.ai/generated/dgl.dataloading.Sampler.html#dgl.dataloading.Sampler
https://docs.dgl.ai/generated/dgl.dataloading.DataLoader.html#dgl.dataloading.DataLoader

To use this sampler with DataLoader :

Sampler for Heterogeneous Graphs

To write a sampler for heterogeneous graphs, one needs to be aware that the argument g

will be a heterogeneous graph while indices could be a dic�onary of ID tensors. Most of
DGL’s graph sampling operators (e.g., the sample_neighbors and to_block func�ons in the
above example) can work on heterogeneous graph na�vely, so many samplers are
automa�cally ready for heterogeneous graph. For example, the above NeighborSampler can be
used on heterogeneous graphs:

graph = ... # the graph to be sampled from
train_nids = ... # an 1-D tensor of training node IDs
sampler = NeighborSampler([10, 15]) # create a sampler
dataloader = dgl.dataloading.DataLoader(
 graph,
 train_nids,
 sampler,
 batch_size=32, # batch_size decides how many IDs are passed to sampler at once
 ... # other arguments
)
for i, mini_batch in enumerate(dataloader):
 # unpack the mini batch
 input_nodes, output_nodes, subgs = mini_batch
 train(input_nodes, output_nodes, subgs)

hg = dgl.heterograph({
 ('user', 'like', 'movie') : ...,
 ('user', 'follow', 'user') : ...,
 ('movie', 'liked-by', 'user') : ...,
})
train_nids = {'user' : ..., 'movie' : ...} # training IDs of 'user' and 'movie' nodes
sampler = NeighborSampler([10, 15]) # create a sampler
dataloader = dgl.dataloading.DataLoader(
 hg,
 train_nids,
 sampler,
 batch_size=32, # batch_size decides how many IDs are passed to sampler at once
 ... # other arguments
)
for i, mini_batch in enumerate(dataloader):
 # unpack the mini batch
 # input_nodes and output_nodes are dictionary while subgs are a list of
 # heterogeneous graphs
 input_nodes, output_nodes, subgs = mini_batch
 train(input_nodes, output_nodes, subgs)

Exclude Edges During Sampling

The examples above all belong to node-wise sampler because the indices argument to the
sample method represents a batch of seed node IDs. Another common type of samplers is

edge-wise sampler which, as name suggested, takes in a batch of seed edge IDs to construct
mini-batch data. DGL provides a u�lity dgl.dataloading.as_edge_prediction_sampler() to turn a
node-wise sampler to an edge-wise sampler. To prevent informa�on leakge, it requires the
node-wise sampler to have an addi�onal third argument exclude_eids . The code below
modifies the NeighborSampler we just defined to properly exclude edges from the sampled
subgraph:

Further Readings

See 6.8 Feature Prefetching for how to write a custom graph sampler with feature
prefetching.

class NeighborSampler(Sampler):
 def __init__(self, fanouts):
 super().__init__()
 self.fanouts = fanouts

 # NOTE: There is an additional third argument. For homogeneous graphs,
 # it is an 1-D tensor of integer IDs. For heterogeneous graphs, it
 # is a dictionary of ID tensors. We usually set its default value to be None.
 def sample(self, g, seed_nodes, exclude_eids=None):
 output_nodes = seed_nodes
 subgs = []
 for fanout in reversed(self.fanouts):
 # Sample a fixed number of neighbors of the current seed nodes.
 sg = g.sample_neighbors(seed_nodes, fanout, exclude_edges=exclude_eids)
 # Convert this subgraph to a message flow graph.
 sg = dgl.to_block(sg, seed_nodes)
 seed_nodes = sg.srcdata[NID]
 subgs.insert(0, sg)
 input_nodes = seed_nodes
 return input_nodes, output_nodes, subgs

https://docs.dgl.ai/generated/dgl.dataloading.as_edge_prediction_sampler.html#dgl.dataloading.as_edge_prediction_sampler
https://docs.dgl.ai/guide/minibatch-prefetching.html#guide-minibatch-prefetching

