A / User Guide / Chapter 6: Stochastic Training on Large Graphs
/ 6.4 Implementing Custom Graph Samplers

6.4 Implementing Custom Graph Samplers

Implementing custom samplers involves subclassing the dgl.dataloading.sampler base class
and implementing its abstract sampie method. The sampie method should take in two
arguments:

def sample(self, g, indices):
pass

The first argument g is the original graph to sample from while the second argument

indices is the indices of the current mini-batch - it generally could be anything depending
on what indices are given to the accompanied pataLoader but are typically seed node or seed
edge IDs. The function returns the mini-batch of samples for the current iteration.

O Note

The design here is similar to PyTorch’s torch.utils.data.DataLoader , Which is an iterator of
dataset. Users can customize how to batch samples using its collate fn argument. Here
in DGL, dgl.dataloading.DataLoader is an iterator of indices (e.g., training node IDs) while
sampler converts a batch of indices into a batch of graph- or tensor-type samples.

The code below implements a classical neighbor sampler:

class NeighborSampler(dgl.dataloading.Sampler):
def __init_ (self, fanouts : list[int]):
super().__init_ ()
self.fanouts = fanouts

def sample(self, g, seed_nodes):

output_nodes = seed_nodes

subgs = []

for fanout in reversed(self.fanouts):
Sample a fixed number of neighbors of the current seed nodes.
sg = g.sample_neighbors(seed_nodes, fanout)
Convert this subgraph to a message flow graph.
sg = dgl.to_block(sg, seed_nodes)
seed_nodes = sg.srcdata[NID]
subgs.insert(0, sg)
input_nodes = seed_nodes

return input_nodes, output_nodes, subgs

https://docs.dgl.ai/index.html
https://docs.dgl.ai/guide/index.html
https://docs.dgl.ai/guide/minibatch.html
https://docs.dgl.ai/generated/dgl.dataloading.Sampler.html#dgl.dataloading.Sampler
https://docs.dgl.ai/generated/dgl.dataloading.DataLoader.html#dgl.dataloading.DataLoader

To use this sampler with pataLoader :

graph = ... # the graph to be sampled from

train_nids = ... # an 1-D tensor of training node IDs

sampler = NeighborSampler([10, 15]) # create a sampler

dataloader = dgl.dataloading.DatalLoader(

graph,

train_nids,

sampler,

batch_size=32, # batch_size decides how many IDs are passed to sampler at once
other arguments

for i, mini_batch in enumerate(dataloader):

unpack the mini batch

input_nodes, output_nodes, subgs = mini_batch
train(input_nodes, output_nodes, subgs)

Sampler for Heterogeneous Graphs

To write a sampler for heterogeneous graphs, one needs to be aware that the argument ¢
will be a heterogeneous graph while indices could be a dictionary of ID tensors. Most of
DGL's graph sampling operators (e.g., the sample neighbors and to block functions in the
above example) can work on heterogeneous graph natively, so many samplers are

l"-
automatically ready for heterogeneous graph. For example, the above nNeighborsampler can be
used on heterogeneous graphs:

_————'—'___-_—-—___—___““~———________¥

hg = dgl.heterograph({
('user', 'like', 'movie') : ..

)

('user', 'follow', ‘'user') : ...,
('movie', 'liked-by', ‘'user') : ...,
)
train_nids = {‘user' : ..., 'movie' : ...} # training IDs of 'user' and 'movie’' nodes

sampler = NeighborSampler([10, 15]) # create a sampler
dataloader = dgl.dataloading.DatalLoader(
hg,
train_nids,
sampler,
batch_size=32, # batch_size decides how many IDs are passed to sampler at once
other arguments

for i, mini_batch in enumerate(dataloader):
unpack the mini batch
input_nodes and output_nodes are dictionary while subgs are a List of
heterogeneous graphs
input_nodes, output_nodes, subgs = mini_batch
train(input_nodes, output_nodes, subgs)

Exclude Edges During Sampling

The examples above all belong to node-wise sampler because the indices argument to the
sample method represents a batch of seed node IDs. Another common type of samplers is
edge-wise sampler which, as name suggested, takes in a batch of seed edge IDs to construct

mini-batch data. DGL provides a utility dgl.dataloading.as_edge_prediction_sampler() to turna
— e ~~-
node-wise sampler to an edge-wise sampler. To prevent information leakge, it requires the

node-wise sampler to have an additional third argument exciude eids . The code below
modifies the neighborsampler we just defined to properly exclude edges from the sampled
subgraph:

{””::;;;—;eighborSampler(Sampler):

def __init_ (self, fanouts):
super().__init_ ()
self.fanouts = fanouts

NOTE: There is an additional third argument. For homogeneous graphs,
it is an 1-D tensor of integer IDs. For heterogeneous graphs, it
1s a dictionary of ID tensors. We usually set 1its default value to be None.
def sample(self, g, seed_nodes, exclude_eids=None):
output_nodes = seed_nodes
subgs = []
for fanout in reversed(self.fanouts):
Sample a fixed number of neighbors of the current seed nodes.
sg = g.sample_neighbors(seed_nodes, fanout, exclude_edges=exclude_eids)
Convert this subgraph to a message flow graph.
sg = dgl.to_block(sg, seed_nodes)
seed_nodes = sg.srcdata[NID]
subgs.insert(0, sg)
input_nodes = seed_nodes

return input_nodes, output_nodes, subgs

Further Readings

See 6.8 Feature Prefetching for how to write a custom graph sampler with feature
prefetching.

https://docs.dgl.ai/generated/dgl.dataloading.as_edge_prediction_sampler.html#dgl.dataloading.as_edge_prediction_sampler
https://docs.dgl.ai/guide/minibatch-prefetching.html#guide-minibatch-prefetching

