A / User Guide / Chapter 6: Stochastic Training on Large Graphs
/ 6.3 Training GNN for Link Prediction with Neighborhood Sampling

6.3 Training GNN for Link Prediction with
Neighborhood Sampling

(FR3ZhR)

Define a neighborhood sampler and data loader with
negative sampling

You can still use the same neighborhood sampler as the one in node/edge classification.

sampler = dgl.dataloading.MultilLayerFullNeighborSampler(2)

as_edge_prediction_sampler() in DGL also supports generating negative samples for link
prediction. To do so, you need to provide the negative sampling function. uniform is a
function that does uniform sampling. For each source node of an edge, it samples k negative
destination nodes.

The following data loader will pick 5 negative destination nodes uniformly for each source

By

—’_\
node of an edge.

sampler = dgl.dataloading.as_edge_prediction_sampler(
sampler, negative_sampler=dgl.dataloading.negative_sampler.Uniform(5))

dataloader = dgl.dataloading.DatalLoader(
g, train_seeds, sampler,
batch_size=args.batch_size,
shuffle=True,
drop_last=False,
pin_memory=True,
num_workers=args.num_workers)

For the builtin negative samplers please see Negative Samplers for Link Prediction.

You can also give your own negative sampler function, as long as it takes in the original graph
g and the minibatch edge ID array eid , and returns a pair of source ID arrays and
destination ID arrays.

The following gives an example of custom negative sampler that samples negative

j’_____,_'
destination nodes according to a probability distribution proportional to a power of degrees.

S

—_—
class NegativeSampler(object):
def __init_ (self, g, k):
caches the probability distribution
self.weights = g.in_degrees().float() ** 0.75
self.k = k

def _ call (self, g, eids):
src, _ = g.find_edges(eids)
src = src.repeat_interleave(self.k)
dst = self.weights.multinomial(len(src), replacement=True)
return src, dst

sampler = dgl.dataloading.as_edge prediction_sampler(
sampler, negative_sampler=NegativeSampler(g, 5))
dataloader = dgl.dataloading.DatalLoader(
g, train_seeds, sampler,
batch_size=args.batch_size,
shuffle=True,
drop_last=False,
pin_memory=True,

num_workers=args.num_workers) #__——_—_____,_-—_—/)

Adapt your model for minibatch training

—_—

As explained in 5.3 Link Prediction, link prediction is trained via comparing the score of an
edge (positive example) against a non-existent edge (negative example). To compute the
scores of edges you can reuse the node representation computation model you have seen in
edge classification/regression.

class StochasticTwoLayerGCN(nn.Module):
def __init_ (self, in_features, hidden_features, out_features):
super().__init_ ()
self.convl = dgl.nn.GraphConv(in_features, hidden_features)
self.conv2 = dgl.nn.GraphConv(hidden_features, out_features)

def forward(self, blocks, x):
x = F.relu(self.convl(blocks[@], x))
x = F.relu(self.conv2(blocks[1], x))
return x

For score prediction, since you only need to predict a scalar score for each edge instead of a
probability distribution, this example shows how to compute a score with a dot product of
incident node representations.

class ScorePredictor(nn.Module):

def forward(self, edge_subgraph, x):

with edge_subgraph.local_scope():
edge_subgraph.ndata['x'] = x

edge_subgraph.apply edges(dgl.function.u_dot_v('x"', 'x', 'score'))

return edge_subgraph.edata['score']

When a negative sampler is provided, DGL's data loader will generate three items per

minibatch:

« A positive graph containing all the edges sampled in the minibatch.
« A negative graph containing all the non-existent edges generated by the negative sampler.
« Alist of message flow graphs (MFGs) generated by the neighborhood sampler.

e

So one can define the link prediction model as follows that takes in the three items as well as
the input features.

class Model(nn.Module):
def __init__ (self, in_features, hidden_features, out_features):
super().__init_ ()
self.gcn = StochasticTwolLayerGCN(
in_features, hidden_features, out_features)

def forward(self, positive_graph, negative_graph, blocks, x):
x = self.gcn(blocks, x)
pos_score = self.predictor(positive_graph, x)

neg_score = self.predictor(negative_graph, x)
return pos_score, neg_score

Training loop

The training loop simply involves iterating over the data loader and feeding in the graphs as
well as the input features to the model defined above.

def compute_loss(pos_score, neg_score):
an example hinge loss
n = pos_score.shape[0]
return (neg_score.view(n, -1) - pos_score.view(n, -1) + 1).clamp(min=0).mean()

model = Model(in_features, hidden_features, out_features)
model = model.cuda()
opt = torch.optim.Adam(model.parameters())

for input_nodes, positive_graph, negative_graph, blocks in dataloader:
blocks = [b.to(torch.device('cuda')) for b in blocks]
positive_graph = positive_graph.to(torch.device('cuda'))
negative_graph = negative_graph.to(torch.device('cuda'))
input_features = blocks[@].srcdata['features’]
pos_score, neg_score = model(positive graph, negative_graph, blocks, input_features)
loss = compute_loss(pos_score, neg_score)
opt.zero_grad()
loss.backward()
opt.step()

DGL provides the unsupervised learning GraphSAGE that shows an example of link prediction
on homogeneous graphs.

For heterogeneous graphs

The models computing the node representations on heterogeneous graphs can also be used
for computing incident node representations for edge classification/regression.

class StochasticTwoLayerRGCN(nn.Module):
def __init_ (self, in_feat, hidden_feat, out_feat, rel_names):
super().__init_ ()
self.convl = dglnn.HeteroGraphConv({
rel : dglnn.GraphConv(in_feat, hidden_feat, norm='right")
for rel in rel_names
)
self.conv2 = dglnn.HeteroGraphConv({
rel : dglnn.GraphConv(hidden_feat, out_feat, norm='right")
for rel in rel_names

}

def forward(self, blocks, x):
x = self.convl(blocks[@], x)
x = self.conv2(blocks[1], x)
return x

/_/

For score prediction, the only implementation difference between the homogeneous graph
and the heterogeneous graph is that we are looping over the edge types for

dgl.DGLGraph.apply_edges() .

class ScorePredictor(nn.Module):
def forward(self, edge_subgraph, x):
with edge_subgraph.local_scope():
edge_subgraph.ndata['x'] = x
for etype in edge_subgraph.canonical_etypes:
edge_subgraph.apply_edges(
dgl.function.u_dot_v('x', 'x', 'score'), etype=etype)
return edge_subgraph.edata['score’']

class Model(nn.Module):
def __init_ (self, in_features, hidden_features, out_features, num_classes,
etypes):
super().__init_ ()
self.rgcn = StochasticTwolLayerRGCN(
in_features, hidden_features, out_features, etypes)
self.pred = ScorePredictor()

def forward(self, positive_graph, negative_graph, blocks, x):
x = self.rgcn(blocks, x)
pos_score = self.pred(positive_graph, x)
neg_score = self.pred(negative_graph, x)
return pos_score, neg_score

Data loader definition is also very similar to that of edge classification/regression. The only
difference is that you need to give the negative sampler and you will be supplying a dictionary
of edge types and edge ID tensors instead of a dictionary of node types and node ID tensors.

sampler = dgl.dataloading.MultilLayerFullNeighborSampler(2)
sampler = dgl.dataloading.as_edge_prediction_sampler(
sampler, negative_sampler=dgl.dataloading.negative_sampler.Uniform(5))
dataloader = dgl.dataloading.Dataloader(
g, train_eid_dict, sampler,
batch_size=1024,
shuffle=True,
drop_last=False,
num_workers=4)

—_—

If you want to give your own negative sampling function, the function should take in the
original graph and the dictionary of edge types and edge ID tensors. It should return a
dictionary of edge types and source-destination array pairs. An example is given as follows:

_—
class NegativeSampler(object):
def __init_ (self, g, k):
caches the probability distribution
self.weights = {
etype: g.in_degrees(etype=etype).float() ** 0.75
for etype in g.canonical_etypes}
self.k = k

def _ call_ (self, g, eids_dict):

result_dict = {}

for etype, eids in eids_dict.items():
src, _ = g.find_edges(eids, etype=etype)
src = src.repeat_interleave(self.k)
dst = self.weights[etype].multinomial(len(src), replacement=True)
result_dict[etype] = (src, dst)

return result_dict

Then you can give the dataloader a dictionary of edge types and edge IDs as well as the
negative sampler. For instance, the following iterates over all edges of the heterogeneous
graph.

train_eid_dict = {
etype: g.edges(etype=etype, form='eid")
for etype in g.canonical_etypes}
sampler = dgl.dataloading.as_edge_prediction_sampler(
sampler, negative_sampler=NegativeSampler(g, 5))
dataloader = dgl.dataloading.DatalLoader(
g, train_eid_dict, sampler,
batch_size=1024,
shuffle=True,
drop_last=False,
num_workers=4)

The training loop is again almost the same as that on homogeneous graph, except for the
implementation of compute 1oss that will take in two dictionaries of node types and
predictions here.

~

model = Model(in_features, hidden_features, out_features, num_classes, etypes)
model = model.cuda()
opt = torch.optim.Adam(model.parameters())

for input_nodes, positive_graph, negative_graph, blocks in dataloader:
blocks = [b.to(torch.device('cuda')) for b in blocks]
positive_graph = positive_graph.to(torch.device('cuda'))
negative_graph = negative_graph.to(torch.device('cuda'))
input_features = blocks[@].srcdata['features’]
pos_score, neg_score = model(positive_graph, negative_graph, blocks, input_features)
loss = compute_loss(pos_score, neg_score)
opt.zero_grad()
loss.backward()
opt.step()

