
 / User Guide / Chapter 6: Stochas�c Training on Large Graphs
/ 6.2 Training GNN for Edge Classifica�on with Neighborhood Sampling

6.2 Training GNN for Edge Classification with
Neighborhood Sampling

(中文版)

Training for edge classifica�on/regression is somewhat similar to that of node
classifica�on/regression with several notable differences.

Define a neighborhood sampler and data loader

You can use the same neighborhood samplers as node classifica�on.

To use the neighborhood sampler provided by DGL for edge classifica�on, one need to
instead combine it with as_edge_prediction_sampler() , which iterates over a set of edges in
minibatches, yielding the subgraph induced by the edge minibatch and message flow graphs
(MFGs) to be consumed by the module below.

For example, the following code creates a PyTorch DataLoader that iterates over the training
edge ID array train_eids in batches, pu�ng the list of generated MFGs onto GPU.

 Note

See the Stochas�c Training Tutorial for the concept of message flow graph.

For a complete list of supported buil�n samplers, please refer to the neighborhood
sampler API reference.

sampler = dgl.dataloading.MultiLayerFullNeighborSampler(2)

sampler = dgl.dataloading.as_edge_prediction_sampler(sampler)
dataloader = dgl.dataloading.DataLoader(
 g, train_eid_dict, sampler,
 batch_size=1024,
 shuffle=True,
 drop_last=False,
 num_workers=4)

https://docs.dgl.ai/index.html
https://docs.dgl.ai/guide/index.html
https://docs.dgl.ai/guide/minibatch.html
https://docs.dgl.ai/guide_cn/minibatch-edge.html#guide-cn-minibatch-edge-classification-sampler
https://docs.dgl.ai/guide/minibatch-node.html#guide-minibatch-node-classification-sampler
https://docs.dgl.ai/generated/dgl.dataloading.as_edge_prediction_sampler.html#dgl.dataloading.as_edge_prediction_sampler
https://docs.dgl.ai/api/python/dgl.dataloading.html#api-dataloading-neighbor-sampling
https://docs.dgl.ai/api/python/dgl.dataloading.html#api-dataloading-neighbor-sampling

If you wish to develop your own neighborhood sampler or you want a more detailed
explana�on of the concept of MFGs, please refer to 6.4 Implemen�ng Custom Graph
Samplers.

Removing edges in the minibatch from the original graph for
neighbor sampling

When training edge classifica�on models, some�mes you wish to remove the edges
appearing in the training data from the computa�on dependency as if they never existed.
Otherwise, the model will “know” the fact that an edge exists between the two nodes, and
poten�ally use it for advantage.

Therefore in edge classifica�on you some�mes would like to exclude the edges sampled in
the minibatch from the original graph for neighborhood sampling, as well as the reverse edges
of the sampled edges on an undirected graph. You can specify exclude='reverse_id' in calling
as_edge_prediction_sampler() , with the mapping of the edge IDs to their reverse edges IDs.

Usually doing so will lead to much slower sampling process due to loca�ng the reverse edges
involving in the minibatch and removing them.

Adapt your model for minibatch training

The edge classifica�on model usually consists of two parts:

One part that obtains the representa�on of incident nodes.
The other part that computes the edge score from the incident node representa�ons.

The former part is exactly the same as that from node classifica�on and we can simply reuse
it. The input is s�ll the list of MFGs generated from a data loader provided by DGL, as well as
the input features.

n_edges = g.num_edges()
sampler = dgl.dataloading.as_edge_prediction_sampler(
 sampler, exclude='reverse_id', reverse_eids=torch.cat([
 torch.arange(n_edges // 2, n_edges), torch.arange(0, n_edges // 2)]))
dataloader = dgl.dataloading.DataLoader(
 g, train_eid_dict, sampler,
 batch_size=1024,
 shuffle=True,
 drop_last=False,
 num_workers=4)

https://docs.dgl.ai/guide/minibatch-custom-sampler.html#guide-minibatch-customizing-neighborhood-sampler
https://docs.dgl.ai/guide/minibatch-custom-sampler.html#guide-minibatch-customizing-neighborhood-sampler
https://docs.dgl.ai/generated/dgl.dataloading.as_edge_prediction_sampler.html#dgl.dataloading.as_edge_prediction_sampler
https://docs.dgl.ai/guide/minibatch-node.html#guide-minibatch-node-classification-model

The input to the la�er part is usually the output from the former part, as well as the subgraph
of the original graph induced by the edges in the minibatch. The subgraph is yielded from the
same data loader. One can call dgl.DGLGraph.apply_edges() to compute the scores on the
edges with the edge subgraph.

The following code shows an example of predic�ng scores on the edges by concatena�ng the
incident node features and projec�ng it with a dense layer.

The en�re model will take the list of MFGs and the edge subgraph generated by the data
loader, as well as the input node features as follows:

class StochasticTwoLayerGCN(nn.Module):
 def __init__(self, in_features, hidden_features, out_features):
 super().__init__()
 self.conv1 = dglnn.GraphConv(in_features, hidden_features)
 self.conv2 = dglnn.GraphConv(hidden_features, out_features)

 def forward(self, blocks, x):
 x = F.relu(self.conv1(blocks[0], x))
 x = F.relu(self.conv2(blocks[1], x))
 return x

class ScorePredictor(nn.Module):
 def __init__(self, num_classes, in_features):
 super().__init__()
 self.W = nn.Linear(2 * in_features, num_classes)

 def apply_edges(self, edges):
 data = torch.cat([edges.src['x'], edges.dst['x']], 1)
 return {'score': self.W(data)}

 def forward(self, edge_subgraph, x):
 with edge_subgraph.local_scope():
 edge_subgraph.ndata['x'] = x
 edge_subgraph.apply_edges(self.apply_edges)
 return edge_subgraph.edata['score']

class Model(nn.Module):
 def __init__(self, in_features, hidden_features, out_features, num_classes):
 super().__init__()
 self.gcn = StochasticTwoLayerGCN(
 in_features, hidden_features, out_features)
 self.predictor = ScorePredictor(num_classes, out_features)

 def forward(self, edge_subgraph, blocks, x):
 x = self.gcn(blocks, x)
 return self.predictor(edge_subgraph, x)

https://docs.dgl.ai/generated/dgl.DGLGraph.apply_edges.html#dgl.DGLGraph.apply_edges

DGL ensures that that the nodes in the edge subgraph are the same as the output nodes of
the last MFG in the generated list of MFGs.

Training Loop

The training loop is very similar to node classifica�on. You can iterate over the dataloader and
get a subgraph induced by the edges in the minibatch, as well as the list of MFGs necessary
for compu�ng their incident node representa�ons.

For heterogeneous graphs

The models compu�ng the node representa�ons on heterogeneous graphs can also be used
for compu�ng incident node representa�ons for edge classifica�on/regression.

For score predic�on, the only implementa�on difference between the homogeneous graph
and the heterogeneous graph is that we are looping over the edge types for apply_edges() .

model = Model(in_features, hidden_features, out_features, num_classes)
model = model.cuda()
opt = torch.optim.Adam(model.parameters())

for input_nodes, edge_subgraph, blocks in dataloader:
 blocks = [b.to(torch.device('cuda')) for b in blocks]
 edge_subgraph = edge_subgraph.to(torch.device('cuda'))
 input_features = blocks[0].srcdata['features']
 edge_labels = edge_subgraph.edata['labels']
 edge_predictions = model(edge_subgraph, blocks, input_features)
 loss = compute_loss(edge_labels, edge_predictions)
 opt.zero_grad()
 loss.backward()
 opt.step()

class StochasticTwoLayerRGCN(nn.Module):
 def __init__(self, in_feat, hidden_feat, out_feat, rel_names):
 super().__init__()
 self.conv1 = dglnn.HeteroGraphConv({
 rel : dglnn.GraphConv(in_feat, hidden_feat, norm='right')
 for rel in rel_names
 })
 self.conv2 = dglnn.HeteroGraphConv({
 rel : dglnn.GraphConv(hidden_feat, out_feat, norm='right')
 for rel in rel_names
 })

 def forward(self, blocks, x):
 x = self.conv1(blocks[0], x)
 x = self.conv2(blocks[1], x)
 return x

https://docs.dgl.ai/generated/dgl.DGLGraph.apply_edges.html#dgl.DGLGraph.apply_edges

Data loader defini�on is also very similar to that of node classifica�on. The only difference is
that you need as_edge_prediction_sampler() , and you will be supplying a dic�onary of edge
types and edge ID tensors instead of a dic�onary of node types and node ID tensors.

Things become a li�le different if you wish to exclude the reverse edges on heterogeneous
graphs. On heterogeneous graphs, reverse edges usually have a different edge type from the
edges themselves, in order to differen�ate the “forward” and “backward” rela�onships (e.g.
follow and followed by are reverse rela�ons of each other, purchase and purchased by are

reverse rela�ons of each other, etc.).

If each edge in a type has a reverse edge with the same ID in another type, you can specify
the mapping between edge types and their reverse types. The way to exclude the edges in
the minibatch as well as their reverse edges then goes as follows.

class ScorePredictor(nn.Module):
 def __init__(self, num_classes, in_features):
 super().__init__()
 self.W = nn.Linear(2 * in_features, num_classes)

 def apply_edges(self, edges):
 data = torch.cat([edges.src['x'], edges.dst['x']], 1)
 return {'score': self.W(data)}

 def forward(self, edge_subgraph, x):
 with edge_subgraph.local_scope():
 edge_subgraph.ndata['x'] = x
 for etype in edge_subgraph.canonical_etypes:
 edge_subgraph.apply_edges(self.apply_edges, etype=etype)
 return edge_subgraph.edata['score']

class Model(nn.Module):
 def __init__(self, in_features, hidden_features, out_features, num_classes,
 etypes):
 super().__init__()
 self.rgcn = StochasticTwoLayerRGCN(
 in_features, hidden_features, out_features, etypes)
 self.pred = ScorePredictor(num_classes, out_features)

 def forward(self, edge_subgraph, blocks, x):
 x = self.rgcn(blocks, x)
 return self.pred(edge_subgraph, x)

sampler = dgl.dataloading.MultiLayerFullNeighborSampler(2)
sampler = dgl.dataloading.as_edge_prediction_sampler(sampler)
dataloader = dgl.dataloading.DataLoader(
 g, train_eid_dict, sampler,
 batch_size=1024,
 shuffle=True,
 drop_last=False,
 num_workers=4)

https://docs.dgl.ai/generated/dgl.dataloading.as_edge_prediction_sampler.html#dgl.dataloading.as_edge_prediction_sampler

The training loop is again almost the same as that on homogeneous graph, except for the
implementa�on of compute_loss that will take in two dic�onaries of node types and
predic�ons here.

GCMC is an example of edge classifica�on on a bipar�te graph.

sampler = dgl.dataloading.as_edge_prediction_sampler(
 sampler, exclude='reverse_types',
 reverse_etypes={'follow': 'followed by', 'followed by': 'follow',
 'purchase': 'purchased by', 'purchased by': 'purchase'})
dataloader = dgl.dataloading.DataLoader(
 g, train_eid_dict, sampler,
 batch_size=1024,
 shuffle=True,
 drop_last=False,
 num_workers=4)

model = Model(in_features, hidden_features, out_features, num_classes, etypes)
model = model.cuda()
opt = torch.optim.Adam(model.parameters())

for input_nodes, edge_subgraph, blocks in dataloader:
 blocks = [b.to(torch.device('cuda')) for b in blocks]
 edge_subgraph = edge_subgraph.to(torch.device('cuda'))
 input_features = blocks[0].srcdata['features']
 edge_labels = edge_subgraph.edata['labels']
 edge_predictions = model(edge_subgraph, blocks, input_features)
 loss = compute_loss(edge_labels, edge_predictions)
 opt.zero_grad()
 loss.backward()
 opt.step()

https://github.com/dmlc/dgl/tree/master/examples/pytorch/gcmc

