A / User Guide / Chapter 6: Stochastic Training on Large Graphs
/ 6.2 Training GNN for Edge Classification with Neighborhood Sampling

6.2 Training GNN for Edge Classification with
Neighborhood Sampling

(FR3ZhR)

Training for edge classification/regression is somewhat similar to that of node
classification/regression with several notable differences.

Define a neighborhood sampler and data loader

You can use the same neighborhood samplers as node classification.

—

(‘sampler = dgl.dataloading.MultiLayerFullNeighborSampler(2)

To use the neighborhood sampler provided by DGL for edge classification, one need to
instead combine it with as_edge_prediction_sampler() , Which iterates over a set of edges in
minibatches, yielding the subgraph induced by the edge minibatch and message flow graphs
(MFGs) to be consumed by the module below.

For example, the following code creates a PyTorch DatalLoader that iterates over the training
edge ID array train_eids in batches, putting the list of generated MFGs onto GPU.

sampler = dgl.dataloading.as_edge_prediction_sampler(sampler)
dataloader = dgl.dataloading.DatalLoader(
g, train_eid_dict, sampler,
batch_size=1024,
shuffle=True,
drop_last=False,
num_workers=4)

See the Stochastic Training Tutorial for the concept of message flow graph.

For a complete list of supported builtin samplers, please refer to the neighborhood
sampler API reference.

https://docs.dgl.ai/index.html
https://docs.dgl.ai/guide/index.html
https://docs.dgl.ai/guide/minibatch.html
https://docs.dgl.ai/guide_cn/minibatch-edge.html#guide-cn-minibatch-edge-classification-sampler
https://docs.dgl.ai/guide/minibatch-node.html#guide-minibatch-node-classification-sampler
https://docs.dgl.ai/generated/dgl.dataloading.as_edge_prediction_sampler.html#dgl.dataloading.as_edge_prediction_sampler
https://docs.dgl.ai/api/python/dgl.dataloading.html#api-dataloading-neighbor-sampling
https://docs.dgl.ai/api/python/dgl.dataloading.html#api-dataloading-neighbor-sampling

If you wish to develop your own neighborhood sampler or you want a more detailed
explanation of the concept of MFGs, please refer to 6.4 Implementing Custom Graph
Samplers.

Removing edges in the minibatch from the original graph for
neighbor sampling

When training edge classification models, sometimes you wish to remove the edges
— e

appearing in the training data from the computation dependency as if they never existed.

Otherwise, the model will "know” the fact that an edge exists between the two nodes, and
\

potentially use it for advantage.

Therefore in edge classification you sometimes would like to exclude the edges sampled in
the minibatch from the original graph for neighborhood sampling, as well as the reverse edges
of the sampled edges on an undirected graph. You can specify exclude='reverse id' in calling
as_edge_prediction_sampler() , with the mapping of the edge IDs to their reverse edges IDs.
Usually doing so will lead to much slower sampling process due to locating the reverse edges
involving in the minibatch and removing them.
//;j;;;;li= g.num_edges()
sampler = dgl.dataloading.as_edge prediction_sampler(

sampler, exclude='reverse_id', reverse_eids=torch.cat([
torch.arange(n_edges // 2, n_edges), torch.arange(9, n_edges // 2)]))
dataloader = dgl.dataloading.DatalLoader(
g, train_eid_dict, sampler,
batch_size=1024,
shuffle=True,
drop_last=False,
num_workers=4)

Adapt your model for minibatch training

The edge classification model usually consists of two parts:

The former part is exactly the same as that from node classification and we can simply reuse
it. The input is still the list of MFGs generated from a data loader provided by DGL, as well as
the input features.

https://docs.dgl.ai/guide/minibatch-custom-sampler.html#guide-minibatch-customizing-neighborhood-sampler
https://docs.dgl.ai/guide/minibatch-custom-sampler.html#guide-minibatch-customizing-neighborhood-sampler
https://docs.dgl.ai/generated/dgl.dataloading.as_edge_prediction_sampler.html#dgl.dataloading.as_edge_prediction_sampler
https://docs.dgl.ai/guide/minibatch-node.html#guide-minibatch-node-classification-model

class StochasticTwoLayerGCN(nn.Module):
def __init_ (self, in_features, hidden_features, out_features):
super().__init_ ()
self.convl = dglnn.GraphConv(in_features, hidden_features)
dglnn.GraphConv(hidden_features, out_features)

self.conv2

def forward(self, blocks, x):
x = F.relu(self.convl(blocks[@], x))
x = F.relu(self.conv2(blocks[1], x))
return x

The input to the latter part is usually the output from the former part, as well as the subgraph
of the original graph induced by the edges in the minibatch. The subgraph is yielded from the

same data loader. One can call dgl.GLGraph. apply_edges() to compute the scores on the

The following code shows an example of predicting scores on the edges by concatenating the
incident node features and projecting it with a dense layer.

class ScorePredictor(nn.Module):
def __init_ (self, num_classes, in_features):
super().__init_ ()
self.W = nn.Linear(2 * in_features, num_classes)

def apply_edges(self, edges):
data = torch.cat([edges.src['x"'], edges.dst['x']], 1)
return {'score': self.W(data)}

def forward(self, edge_subgraph, x):

with edge_subgraph.local_scope():
edge_subgraph.ndata['x'] = x
edge_subgraph.apply_edges(self.apply_edges)
return edge_subgraph.edata['score’]

The entire model will take the list of MFGs and the edge subgraph generated by the data
loader, as well as the input node features as follows:

class Model(nn.Module):
def __init_ (self, in_features, hidden_features, out_features, num_classes):
super().__init_ ()
self.gcn = StochasticTwolLayerGCN(
in_features, hidden_features, out_features)
self.predictor = ScorePredictor(num_classes, out_features)

def forward(self, edge_subgraph, blocks, x):
x = self.gcn(blocks, x)
return self.predictor(edge_subgraph, x)

https://docs.dgl.ai/generated/dgl.DGLGraph.apply_edges.html#dgl.DGLGraph.apply_edges

DGL ensures that that the nodes in the edge subgraph are the same as the output nodes of
the last MFG in the generated list of MFGs.

Training Loop

The training loop is very similar to node classification. You can iterate over the dataloader and
get a subgraph induced by the edges in the minibatch, as well as the list of MFGs necessary
for computing their incident node representations.
—_—
—
model = Model(in_features, hidden_features, out_features, num_classes)

model = model.cuda()
opt = torch.optim.Adam(model.parameters())

for input_nodes, edge_subgraph, blocks in dataloader:

blocks = [b.to(torch.device('cuda')) for b in blocks]
edge_subgraph = edge_subgraph.to(torch.device('cuda'))
input_features = blocks[0@].srcdata['features']

edge_labels = edge_subgraph.edata['labels']

edge_predictions = model(edge_subgraph, blocks, input_features)
loss = compute_loss(edge_labels, edge_predictions)
opt.zero_grad()
loss.backward()
opt.step()

For heterogeneous graphs

The models computing the node representations on heterogeneous graphs can also be used
for computing incident node representations for edge classification/regression.

class StochasticTwoLayerRGCN(nn.Module):
def __init_ (self, in_feat, hidden_feat, out_feat, rel_names):
super().__init_ ()
self.convl = dglnn.HeteroGraphConv({
rel : dglnn.GraphConv(in_feat, hidden_feat, norm='right")
for rel in rel_names
9]
self.conv2 = dglnn.HeteroGraphConv({
rel : dglnn.GraphConv(hidden_feat, out_feat, norm='right")
for rel in rel_names

}

def forward(self, blocks, x):
x = self.convl(blocks[0], x)
x = self.conv2(blocks[1], x)
return x

L_’//—

For score prediction, the only implementation difference between the homogeneous graph

and the heterogeneous graph is that we are looping over the edge types for apply_edges() .

https://docs.dgl.ai/generated/dgl.DGLGraph.apply_edges.html#dgl.DGLGraph.apply_edges

class ScorePredictor(nn.Module):
def __init_ (self, num_classes, in_features):
super().__init_ ()
self.W = nn.Linear(2 * in_features, num_classes)

def apply_edges(self, edges):
data = torch.cat([edges.src['x"'], edges.dst['x']], 1)
return {'score': self.W(data)}

def forward(self, edge_subgraph, x):
with edge_subgraph.local_scope():
edge_subgraph.ndata['x'] = x
for etype in edge_subgraph.canonical_etypes:
edge_subgraph.apply_edges(self.apply edges, etype=etype)
return edge_subgraph.edata['score’]

class Model(nn.Module):
def __init_ (self, in_features, hidden_features, out_features, num_classes,
etypes):
super().__init_ ()
self.rgcn = StochasticTwolLayerRGCN(
in_features, hidden_features, out_features, etypes)
self.pred = ScorePredictor(num_classes, out_features)

def forward(self, edge_ subgraph, blocks, x):
x = self.rgcn(blocks, x)
return self.pred(edge_subgraph, x)

Data loader definition is also very similar to that of node classification. The only difference is
that you need as_edge_prediction_sampler() , and you will be supplying a dictionary of edge
types and edge ID tensors instead of a dictionary of node types and node ID tensors.

,——-—”'—__——‘—’——*

sampler = dgl.dataloading.MultilLayerFullNeighborSampler(2)
sampler = dgl.dataloading.as_edge_prediction_sampler(sampler)
dataloader = dgl.dataloading.DatalLoader(
g, train_eid_dict, sampler,
batch_size=1024,
shuffle=True,
drop_last=False,
num_workers=4)

Things become a little different if you wish to exclude the reverse edges on heterogeneous

graphs. On heterogeneous graphs, reverse edges usually have a different edge type from the

edges themselves, in order to differentiate the “forward” and “backward” relationships (e.g.
follow and followed by are reverse relations of each other, purchase and purchased by are

reverse relations of each other, etc.).

If each edge in a type has a reverse edge with the same ID in another type, you can specify
the mapping between edge types and their reverse types. The way to exclude the edges in
the minibatch as well as their reverse edges then goes as follows.

https://docs.dgl.ai/generated/dgl.dataloading.as_edge_prediction_sampler.html#dgl.dataloading.as_edge_prediction_sampler

sampler = dgl.dataloading.as_edge_prediction_sampler(

dataloader = dgl.dataloading.DatalLoader(

sampler, exclude='reverse_types',
reverse_etypes={'follow': 'followed by', 'followed by': 'follow',
'purchase’': 'purchased by', 'purchased by': 'purchase'})

g, train_eid_dict, sampler,
batch_size=1024,
shuffle=True,
drop_last=False,
num_workers=4)

The training loop is again almost the same as that on homogeneous graph, except for the

implementation of compute 1oss that will take in two dictionaries of node types and

predictions here.

model = Model(in_features, hidden_features, out_features, num_classes, etypes)
model = model.cuda()

for input_nodes, edge_subgraph, blocks in dataloader:

= torch.optim.Adam(model.parameters())

blocks = [b.to(torch.device('cuda')) for b in blocks]
edge_subgraph = edge_subgraph.to(torch.device('cuda'))
input_features = blocks[@].srcdata['features’]

edge_labels = edge_subgraph.edata['labels’]

edge_predictions = model(edge_subgraph, blocks, input_features)
loss = compute_loss(edge_ labels, edge_predictions)
opt.zero_grad()
loss.backward()
opt.step()

GCMC is an example of edge classification on a bipartite graph.

https://github.com/dmlc/dgl/tree/master/examples/pytorch/gcmc

