
 / User Guide / Chapter 6: Stochas�c Training on Large Graphs
/ 6.1 Training GNN for Node Classifica�on with Neighborhood Sampling

6.1 Training GNN for Node Classification with
Neighborhood Sampling

(中文版)

To make your model been trained stochas�cally, you need to do the followings:

Define a neighborhood sampler.
Adapt your model for minibatch training.
Modify your training loop.

The following sub-subsec�ons address these steps one by one.

Define a neighborhood sampler and data loader

DGL provides several neighborhood sampler classes that generates the computa�on
dependencies needed for each layer given the nodes we wish to compute on.

The simplest neighborhood sampler is MultiLayerFullNeighborSampler which makes the node
gather messages from all of its neighbors.

To use a sampler provided by DGL, one also need to combine it with DataLoader , which
iterates over a set of indices (nodes in this case) in minibatches.

For example, the following code creates a PyTorch DataLoader that iterates over the training
node ID array train_nids in batches, pu�ng the list of generated MFGs onto GPU.

import dgl
import dgl.nn as dglnn
import torch
import torch.nn as nn
import torch.nn.functional as F

sampler = dgl.dataloading.MultiLayerFullNeighborSampler(2)
dataloader = dgl.dataloading.DataLoader(
 g, train_nids, sampler,
 batch_size=1024,
 shuffle=True,
 drop_last=False,
 num_workers=4)

https://docs.dgl.ai/index.html
https://docs.dgl.ai/guide/index.html
https://docs.dgl.ai/guide/minibatch.html
https://docs.dgl.ai/guide_cn/minibatch-node.html#guide-cn-minibatch-node-classification-sampler
https://docs.dgl.ai/generated/dgl.dataloading.DataLoader.html#dgl.dataloading.DataLoader

Itera�ng over the DataLoader will yield a list of specially created graphs represen�ng the
computa�on dependencies on each layer. They are called message flow graphs (MFGs) in DGL.

The iterator generates three items at a �me. input_nodes describe the nodes needed to
compute the representa�on of output_nodes . blocks describe for each GNN layer which
node representa�ons are to be computed as output, which node representa�ons are needed
as input, and how does representa�on from the input nodes propagate to the output nodes.

 Note

See the Stochas�c Training Tutorial for the concept of message flow graph.

For a complete list of supported buil�n samplers, please refer to the neighborhood
sampler API reference.

If you wish to develop your own neighborhood sampler or you want a more detailed
explana�on of the concept of MFGs, please refer to 6.4 Implemen�ng Custom Graph
Samplers.

Adapt your model for minibatch training

If your message passing modules are all provided by DGL, the changes required to adapt your
model to minibatch training is minimal. Take a mul�-layer GCN as an example. If your model
on full graph is implemented as follows:

Then all you need is to replace g with blocks generated above.

input_nodes, output_nodes, blocks = next(iter(dataloader))
print(blocks)

class TwoLayerGCN(nn.Module):
 def __init__(self, in_features, hidden_features, out_features):
 super().__init__()
 self.conv1 = dglnn.GraphConv(in_features, hidden_features)
 self.conv2 = dglnn.GraphConv(hidden_features, out_features)

 def forward(self, g, x):
 x = F.relu(self.conv1(g, x))
 x = F.relu(self.conv2(g, x))
 return x

https://docs.dgl.ai/api/python/dgl.dataloading.html#api-dataloading-neighbor-sampling
https://docs.dgl.ai/api/python/dgl.dataloading.html#api-dataloading-neighbor-sampling
https://docs.dgl.ai/guide/minibatch-custom-sampler.html#guide-minibatch-customizing-neighborhood-sampler
https://docs.dgl.ai/guide/minibatch-custom-sampler.html#guide-minibatch-customizing-neighborhood-sampler

The DGL GraphConv modules above accepts an element in blocks generated by the data
loader as an argument.

The API reference of each NN module will tell you whether it supports accep�ng a MFG as an
argument.

If you wish to use your own message passing module, please refer to 6.5 Implemen�ng
Custom GNN Module for Mini-batch Training.

Training Loop

The training loop simply consists of itera�ng over the dataset with the customized batching
iterator. During each itera�on that yields a list of MFGs, we:

1. Load the node features corresponding to the input nodes onto GPU. The node features
can be stored in either memory or external storage. Note that we only need to load the
input nodes’ features, as opposed to load the features of all nodes as in full graph training.

If the features are stored in g.ndata , then the features can be loaded by accessing the
features in blocks[0].srcdata , the features of source nodes of the first MFG, which is
iden�cal to all the necessary nodes needed for compu�ng the final representa�ons.

2. Feed the list of MFGs and the input node features to the mul�layer GNN and get the
outputs.

3. Load the node labels corresponding to the output nodes onto GPU. Similarly, the node
labels can be stored in either memory or external storage. Again, note that we only need
to load the output nodes’ labels, as opposed to load the labels of all nodes as in full graph
training.

If the features are stored in g.ndata , then the labels can be loaded by accessing the
features in blocks[-1].dstdata , the features of des�na�on nodes of the last MFG, which is
iden�cal to the nodes we wish to compute the final representa�on.

4. Compute the loss and backpropagate.

class StochasticTwoLayerGCN(nn.Module):
 def __init__(self, in_features, hidden_features, out_features):
 super().__init__()
 self.conv1 = dgl.nn.GraphConv(in_features, hidden_features)
 self.conv2 = dgl.nn.GraphConv(hidden_features, out_features)

 def forward(self, blocks, x):
 x = F.relu(self.conv1(blocks[0], x))
 x = F.relu(self.conv2(blocks[1], x))
 return x

https://docs.dgl.ai/guide/minibatch-nn.html#guide-minibatch-custom-gnn-module
https://docs.dgl.ai/guide/minibatch-nn.html#guide-minibatch-custom-gnn-module

DGL provides an end-to-end stochas�c training example GraphSAGE implementa�on.

For heterogeneous graphs

Training a graph neural network for node classifica�on on heterogeneous graph is similar.

For instance, we have previously seen how to train a 2-layer RGCN on full graph. The code
for RGCN implementa�on on minibatch training looks very similar to that (with self-loops,
non-linearity and basis decomposi�on removed for simplicity):

Some of the samplers provided by DGL also support heterogeneous graphs. For example, one
can s�ll use the provided MultiLayerFullNeighborSampler class and DataLoader class for
stochas�c training. For full-neighbor sampling, the only difference would be that you would
specify a dic�onary of node types and node IDs for the training set.

model = StochasticTwoLayerGCN(in_features, hidden_features, out_features)
model = model.cuda()
opt = torch.optim.Adam(model.parameters())

for input_nodes, output_nodes, blocks in dataloader:
 blocks = [b.to(torch.device('cuda')) for b in blocks]
 input_features = blocks[0].srcdata['features']
 output_labels = blocks[-1].dstdata['label']
 output_predictions = model(blocks, input_features)
 loss = compute_loss(output_labels, output_predictions)
 opt.zero_grad()
 loss.backward()
 opt.step()

class StochasticTwoLayerRGCN(nn.Module):
 def __init__(self, in_feat, hidden_feat, out_feat, rel_names):
 super().__init__()
 self.conv1 = dglnn.HeteroGraphConv({
 rel : dglnn.GraphConv(in_feat, hidden_feat, norm='right')
 for rel in rel_names
 })
 self.conv2 = dglnn.HeteroGraphConv({
 rel : dglnn.GraphConv(hidden_feat, out_feat, norm='right')
 for rel in rel_names
 })

 def forward(self, blocks, x):
 x = self.conv1(blocks[0], x)
 x = self.conv2(blocks[1], x)
 return x

https://github.com/dmlc/dgl/blob/master/examples/pytorch/graphsage/node_classification.py
https://docs.dgl.ai/guide/training-node.html#guide-training-rgcn-node-classification
https://docs.dgl.ai/generated/dgl.dataloading.DataLoader.html#dgl.dataloading.DataLoader

The training loop is almost the same as that of homogeneous graphs, except for the
implementa�on of compute_loss that will take in two dic�onaries of node types and
predic�ons here.

DGL provides an end-to-end stochas�c training example RGCN implementa�on.

sampler = dgl.dataloading.MultiLayerFullNeighborSampler(2)
dataloader = dgl.dataloading.DataLoader(
 g, train_nid_dict, sampler,
 batch_size=1024,
 shuffle=True,
 drop_last=False,
 num_workers=4)

model = StochasticTwoLayerRGCN(in_features, hidden_features, out_features, etypes)
model = model.cuda()
opt = torch.optim.Adam(model.parameters())

for input_nodes, output_nodes, blocks in dataloader:
 blocks = [b.to(torch.device('cuda')) for b in blocks]
 input_features = blocks[0].srcdata # returns a dict
 output_labels = blocks[-1].dstdata # returns a dict
 output_predictions = model(blocks, input_features)
 loss = compute_loss(output_labels, output_predictions)
 opt.zero_grad()
 loss.backward()
 opt.step()

https://github.com/dmlc/dgl/blob/master/examples/pytorch/rgcn-hetero/entity_classify_mb.py

