
 / User Guide / Chapter 5: Training Graph Neural Networks / 5.4 Graph Classifica�on

5.4 Graph Classification

(中文版)

Instead of a big single graph, some�mes one might have the data in the form of mul�ple
graphs, for example a list of different types of communi�es of people. By characterizing the
friendship among people in the same community by a graph, one can get a list of graphs to
classify. In this scenario, a graph classifica�on model could help iden�fy the type of the
community, i.e. to classify each graph based on the structure and overall informa�on.

Overview

The major difference between graph classifica�on and node classifica�on or link predic�on is
that the predic�on result characterizes the property of the en�re input graph. One can
perform the message passing over nodes/edges just like the previous tasks, but also needs to
retrieve a graph-level representa�on.

The graph classifica�on pipeline proceeds as follows:

Graph Classifica�on Process

From le� to right, the common prac�ce is:

Prepare a batch of graphs
Perform message passing on the batched graphs to update node/edge features
Aggregate node/edge features into graph-level representa�ons
Classify graphs based on graph-level representa�ons

https://docs.dgl.ai/index.html
https://docs.dgl.ai/guide/index.html
https://docs.dgl.ai/guide/training.html
https://docs.dgl.ai/guide_cn/training-graph.html#guide-cn-training-graph-classification

Batch of Graphs

Usually a graph classifica�on task trains on a lot of graphs, and it will be very inefficient to use
only one graph at a �me when training the model. Borrowing the idea of mini-batch training
from common deep learning prac�ce, one can build a batch of mul�ple graphs and send them
together for one training itera�on.

In DGL, one can build a single batched graph from a list of graphs. This batched graph can be
simply used as a single large graph, with connected components corresponding to the original
small graphs.

Batched Graph

The following example calls dgl.batch() on a list of graphs. A batched graph is a single graph,
while it also carries informa�on about the list.

import dgl
import torch as th

g1 = dgl.graph((th.tensor([0, 1, 2]), th.tensor([1, 2, 3])))
g2 = dgl.graph((th.tensor([0, 0, 0, 1]), th.tensor([0, 1, 2, 0])))

bg = dgl.batch([g1, g2])
bg
Graph(num_nodes=7, num_edges=7,
ndata_schemes={}
edata_schemes={})
bg.batch_size
2
bg.batch_num_nodes()
tensor([4, 3])
bg.batch_num_edges()
tensor([3, 4])
bg.edges()
(tensor([0, 1, 2, 4, 4, 4, 5], tensor([1, 2, 3, 4, 5, 6, 4]))

https://docs.dgl.ai/generated/dgl.batch.html#dgl.batch

Please note that most dgl transforma�on func�ons will discard the batch informa�on. In
order to maintain such informa�on, please use dgl.DGLGraph.set_batch_num_nodes() and
dgl.DGLGraph.set_batch_num_edges() on the transformed graph.

Graph Readout

Every graph in the data may have its unique structure, as well as its node and edge features.
In order to make a single predic�on, one usually aggregates and summarizes over the possibly
abundant informa�on. This type of opera�on is named readout. Common readout opera�ons
include summa�on, average, maximum or minimum over all node or edge features.

Given a graph , one can define the average node feature readout as

where is the representa�on of , is the set of nodes in , is the feature of node .

DGL provides built-in support for common readout opera�ons. For example, dgl.mean_nodes()

implements the above readout opera�on.

Once is available, one can pass it through an MLP layer for classifica�on output.

Writing Neural Network Model

The input to the model is the batched graph with node and edge features.

Computation on a Batched Graph

First, different graphs in a batch are en�rely separated, i.e. no edges between any two graphs.
With this nice property, all message passing func�ons s�ll have the same results.

Second, the readout func�on on a batched graph will be conducted over each graph
separately. Assuming the batch size is and the feature to be aggregated has dimension ,
the shape of the readout result will be .

g

=hg

1

|V|
∑
v∈V

hv

hg g V g hv v

hg

B D

(B, D)

https://docs.dgl.ai/generated/dgl.DGLGraph.set_batch_num_nodes.html#dgl.DGLGraph.set_batch_num_nodes
https://docs.dgl.ai/generated/dgl.DGLGraph.set_batch_num_edges.html#dgl.DGLGraph.set_batch_num_edges
https://docs.dgl.ai/generated/dgl.mean_nodes.html#dgl.mean_nodes

Finally, each node/edge feature in a batched graph is obtained by concatena�ng the
corresponding features from all graphs in order.

Model Definition

Being aware of the above computa�on rules, one can define a model as follows.

import dgl
import torch

g1 = dgl.graph(([0, 1], [1, 0]))
g1.ndata['h'] = torch.tensor([1., 2.])
g2 = dgl.graph(([0, 1], [1, 2]))
g2.ndata['h'] = torch.tensor([1., 2., 3.])

dgl.readout_nodes(g1, 'h')
tensor([3.]) # 1 + 2

bg = dgl.batch([g1, g2])
dgl.readout_nodes(bg, 'h')
tensor([3., 6.]) # [1 + 2, 1 + 2 + 3]

bg.ndata['h']
tensor([1., 2., 1., 2., 3.])

import dgl.nn.pytorch as dglnn
import torch.nn as nn

class Classifier(nn.Module):
 def __init__(self, in_dim, hidden_dim, n_classes):
 super(Classifier, self).__init__()
 self.conv1 = dglnn.GraphConv(in_dim, hidden_dim)
 self.conv2 = dglnn.GraphConv(hidden_dim, hidden_dim)
 self.classify = nn.Linear(hidden_dim, n_classes)

 def forward(self, g, h):
 # Apply graph convolution and activation.
 h = F.relu(self.conv1(g, h))
 h = F.relu(self.conv2(g, h))
 with g.local_scope():
 g.ndata['h'] = h
 # Calculate graph representation by average readout.
 hg = dgl.mean_nodes(g, 'h')
 return self.classify(hg)

Training Loop

Data Loading

Once the model is defined, one can start training. Since graph classifica�on deals with lots of
rela�vely small graphs instead of a big single one, one can train efficiently on stochas�c mini-
batches of graphs, without the need to design sophis�cated graph sampling algorithms.

Assuming that one have a graph classifica�on dataset as introduced in Chapter 4: Graph Data
Pipeline.

Each item in the graph classifica�on dataset is a pair of a graph and its label. One can speed
up the data loading process by taking advantage of the GraphDataLoader to iterate over the
dataset of graphs in mini-batches.

Training loop then simply involves itera�ng over the dataloader and upda�ng the model.

For an end-to-end example of graph classifica�on, see DGL’s GIN example. The training loop
is inside the func�on train in main.py. The model implementa�on is inside gin.py with more
components such as using dgl.nn.pytorch.GINConv (also available in MXNet and Tensorflow) as
the graph convolu�on layer, batch normaliza�on, etc.

import dgl.data
dataset = dgl.data.GINDataset('MUTAG', False)

from dgl.dataloading import GraphDataLoader
dataloader = GraphDataLoader(
 dataset,
 batch_size=1024,
 drop_last=False,
 shuffle=True)

import torch.nn.functional as F

Only an example, 7 is the input feature size
model = Classifier(7, 20, 5)
opt = torch.optim.Adam(model.parameters())
for epoch in range(20):
 for batched_graph, labels in dataloader:
 feats = batched_graph.ndata['attr']
 logits = model(batched_graph, feats)
 loss = F.cross_entropy(logits, labels)
 opt.zero_grad()
 loss.backward()
 opt.step()

https://docs.dgl.ai/guide/data.html#guide-data-pipeline
https://docs.dgl.ai/guide/data.html#guide-data-pipeline
https://github.com/dmlc/dgl/tree/master/examples/pytorch/gin
https://github.com/dmlc/dgl/blob/master/examples/pytorch/gin/main.py
https://github.com/dmlc/dgl/blob/master/examples/pytorch/gin/gin.py

Heterogeneous graph

Graph classifica�on with heterogeneous graphs is a li�le different from that with
homogeneous graphs. In addi�on to graph convolu�on modules compa�ble with
heterogeneous graphs, one also needs to aggregate over the nodes of different types in the
readout func�on.

The following shows an example of summing up the average of node representa�ons for each
node type.

The rest of the code is not different from that for homogeneous graphs.

class RGCN(nn.Module):
 def __init__(self, in_feats, hid_feats, out_feats, rel_names):
 super().__init__()

 self.conv1 = dglnn.HeteroGraphConv({
 rel: dglnn.GraphConv(in_feats, hid_feats)
 for rel in rel_names}, aggregate='sum')
 self.conv2 = dglnn.HeteroGraphConv({
 rel: dglnn.GraphConv(hid_feats, out_feats)
 for rel in rel_names}, aggregate='sum')

 def forward(self, graph, inputs):
 # inputs is features of nodes
 h = self.conv1(graph, inputs)
 h = {k: F.relu(v) for k, v in h.items()}
 h = self.conv2(graph, h)
 return h

class HeteroClassifier(nn.Module):
 def __init__(self, in_dim, hidden_dim, n_classes, rel_names):
 super().__init__()

 self.rgcn = RGCN(in_dim, hidden_dim, hidden_dim, rel_names)
 self.classify = nn.Linear(hidden_dim, n_classes)

 def forward(self, g):
 h = g.ndata['feat']
 h = self.rgcn(g, h)
 with g.local_scope():
 g.ndata['h'] = h
 # Calculate graph representation by average readout.
 hg = 0
 for ntype in g.ntypes:
 hg = hg + dgl.mean_nodes(g, 'h', ntype=ntype)
 return self.classify(hg)

etypes is the list of edge types as strings.
model = HeteroClassifier(10, 20, 5, etypes)
opt = torch.optim.Adam(model.parameters())
for epoch in range(20):
 for batched_graph, labels in dataloader:
 logits = model(batched_graph)
 loss = F.cross_entropy(logits, labels)
 opt.zero_grad()
 loss.backward()
 opt.step()

