@ / User Guide / Chapter 5: Training Graph Neural Networks / 5.4 Graph Classification

5.4 Graph Classification

(FA3ZhiR)

Instead of a big single graph, sometimes one might have the data in the form of multiple
graphs, for example a list of different types of communities of people. By characterizing the
friendship among people in the same community by a graph, one can get a list of graphs to

classify. In this scenario, a graph classification model could help identify the type of the
community, i.e. to classify each graph based on the structure and overall information.

Overview

The major difference between graph classification and node classification or link prediction is
that the prediction result characterizes the property of the entire input graph. One can
perform the message passing over nodes/edges just like the previous tasks, but also needs to

retrieve a graph-level representation.

The graph classification pipeline proceeds as follows:

-
e o

Graph Classification Process

Graph convolution: Graph readout:
encoding local graph extracting graph Soft classification
and update node features representations

= = 0.1

= 0.95

inje

From left to right, the common practice is:

https://docs.dgl.ai/index.html
https://docs.dgl.ai/guide/index.html
https://docs.dgl.ai/guide/training.html
https://docs.dgl.ai/guide_cn/training-graph.html#guide-cn-training-graph-classification

Batch of Graphs

Usually a graph classification task trains on a lot of graphs, and it will be very inefficient to use
only one graph at a time when training the model. Borrowing the idea of mini-batch training
from common deep learning practice, one can build a batch of multiple graphs and send them
together for one training iteration.

This batched graph can be
simply used as a single large graph, with connected components corresponding to the original
small graphs.

dgl.batch(Q,%%) =1

A dlace
- o
Adjacency of
star

dgl.batch(EeH], 2) =

Batched Graph

The following example calls dgi.batch() on a list of graphs. A batched graph is a single graph,
while it also carries information about the list.

S
import dgl
import torch as th

gl = dgl.graph((th.tensor([0, 1, 2]), th.tensor([1, 2, 3])))

g2 = dgl.graph((th.tensor([0, 0, 0, 1]), th.tensor([0, 1, 2, 0])))
bg = dgl.batch([gl, g2])

bg

Graph(num_nodes=7, num_edges=7,

ndata_schemes={}

edata_schemes={})

bg.batch_size

2

bg.batch_num_nodes()

tensor([4, 3])

bg.batch_num_edges()

tensor([3, 4])

bg.edges()

(tensor([o, 1, 2, 4, 4, 4, 5], tensor([1, 2, 3, 4, 5, 6, 4]))

https://docs.dgl.ai/generated/dgl.batch.html#dgl.batch

— I

Please note that most dgl transformation functions will discard the batch information. In

order to maintain such information, please use dgl.DGLGraph.set_batch_num_nodes() and

dgl.DGLGraph.set_batch_num_edges() on the transformed graph.

Graph Readout

Every graph in the data may have its unique structure, as well as its node and edge features.
In order to make a single prediction, one usually aggregates and summarizes over the possibly

abundant information. This type of operation is named readout. CoMmMonfeadout operations
include summation, average, maximum or minimum over all node or edge features.

Given a graph g, one can define the average node feature readout as

where h,, is the representation of g, V is the set of nodes in g, h, is the feature of node v.

DGL provides built-in support for common readout operations. For example, dgl.mean_nodes()
implements the above readout operation.

Once hg is available, one can pass it through an MLP layer for classification output.

Writing Neural Network Model

The input to the model is the batched graph with node and edge features.

Computation on a Batched Graph

With this nice property, all message passing functions still have the same results.

Second, the readout function on a batched graph will be conducted over each graph
séparatelyl Assuming the batch size is B and the feature to be aggregated has dimension D,

the shape of the readout result will be (B, D).

https://docs.dgl.ai/generated/dgl.DGLGraph.set_batch_num_nodes.html#dgl.DGLGraph.set_batch_num_nodes
https://docs.dgl.ai/generated/dgl.DGLGraph.set_batch_num_edges.html#dgl.DGLGraph.set_batch_num_edges
https://docs.dgl.ai/generated/dgl.mean_nodes.html#dgl.mean_nodes

import dgl
import torch

gl = dgl.graph(([e, 1], [1, @]))
gl.ndata['h'] = torch.tensor([1., 2.])

g2 = dgl.graph(([e, 1], [1, 2]))
g2.ndata['h'] = torch.tensor([1., 2., 3.])

dgl.readout_nodes(gl, 'h')
tensor([3.]) # 1 + 2

bg = dgl.batch([gl, g2])
dgl.readout_nodes(bg, 'h")
tensor([3., 6.]) # [1 + 2, 1+ 2 + 3]

bg.ndata['h"]
tensor([1., 2., 1., 2., 3.])

____;
Model Definition

Being aware of the above computation rules, one can define a model as follows.

import dgl.nn.pytorch as dglnn
import torch.nn as nn

class Classifier(nn.Module):
def __init_ (self, in_dim, hidden_dim, n_classes):
super(Classifier, self).__init_ ()
self.convl = dglnn.GraphConv(in_dim, hidden_dim)
self.conv2 = dglnn.GraphConv(hidden_dim, hidden_dim)
self.classify = nn.Linear(hidden_dim, n_classes)

def forward(self, g, h):
Apply graph convolution and activation.

h = F.relu(self.convi(g, h))
h = F.relu(self.conv2(g, h))
with g.local_scope():
g.ndata['h'] = h
Calculate graph representation by average readout.
hg = dgl.mean_nodes(g, 'h')
return self.classify(hg)

Training Loop

Data Loading

Once the model is defined, one can start training. Since graph classification deals with lots of
relatively small graphs instead of a big single one, one can train efficiently on stochastic mini-

batches of graphs, without the need to design sophisticated graph sampling algorithms.

Assuming that one have a graph classification dataset as introduced in Chapter 4: Graph Data
Pipeline.

/ —
import dgl.data
dataset = dgl.data.GINDataset('MUTAG', False)

Each item in the graph classification dataset is a pair of a graph and its label. One can speed
up the data loading process by taking advantage of the GraphDataloader to iterate over the
dataset of graphs in mini-batches.

from dgl.dataloading import GraphDataloader
dataloader = GraphDataloader(

dataset,

batch_size=1024,

drop_last=False,
shuffle=True)

Training loop then simply involves iterating over the dataloader and updating the model.

import torch.nn.functional as F

Only an example, 7 is the input feature size

model = Classifier(7, 20, 5)

opt = torch.optim.Adam(model.parameters())

for epoch in range(20):

for batched_graph, labels in dataloader:

feats = batched_graph.ndata['attr']
logits = model(batched_graph, feats)
loss = F.cross_entropy(logits, labels)
opt.zero_grad()
loss.backward()
opt.step()

For an end-to-end example of graph classification, see DGL's GIN example. The training loop

is inside the function train in main.py. The model implementation is inside gin.py with more
components such as using dgl.nn.pytorch.GINconv (also available in MXNet and Tensorflow) as
the graph convolution layer, batch normalization, etc.

https://docs.dgl.ai/guide/data.html#guide-data-pipeline
https://docs.dgl.ai/guide/data.html#guide-data-pipeline
https://github.com/dmlc/dgl/tree/master/examples/pytorch/gin
https://github.com/dmlc/dgl/blob/master/examples/pytorch/gin/main.py
https://github.com/dmlc/dgl/blob/master/examples/pytorch/gin/gin.py

Heterogeneous graph

Graph classification with heterogeneous graphs is a little different from that with
homogeneous graphs. In addition to graph convolution modules compatible with
heterogeneous graphs, one also needs to aggregate over the nodes of different types in the
readout function.

The following shows an example of summing up the average of node representations for each
node type.

class RGCN(nn.Module):
def __init_ (self, in_feats, hid_feats, out_feats, rel_names):
super().__init_ ()

self.convl = dglnn.HeteroGraphConv({
rel: dglnn.GraphConv(in_feats, hid_feats)
for rel in rel_names}, aggregate='sum')
self.conv2 = dglnn.HeteroGraphConv({
rel: dglnn.GraphConv(hid_feats, out_feats)
for rel in rel_names}, aggregate='sum')

def forward(self, graph, inputs):
inputs 1s features of nodes
h = self.convl(graph, inputs)

h = {k: F.relu(v) for k, v in h.items()}
h = self.conv2(graph, h)
return h

class HeteroClassifier(nn.Module):
def __init_ (self, in_dim, hidden_dim, n_classes, rel_names):
super().__init_ ()

self.rgcn = RGCN(in_dim, hidden_dim, hidden_dim, rel_names)
self.classify = nn.Linear(hidden_dim, n_classes)

def forward(self, g):

h = g.ndata['feat']

h = self.rgcn(g, h)

with g.local_scope():
g.ndata['h'] = h
Calculate graph representation by average readout.
hg = 0
for ntype in g.ntypes:

hg = hg + dgl.mean_nodes(g, 'h', ntype=ntype)

return self.classify(hg)

The rest of the code is not different from that for homogeneous graphs.

—

etypes is the list of edge types as strings.
model = HeteroClassifier(10, 20, 5, etypes)
opt = torch.optim.Adam(model.parameters())
for epoch in range(20):
for batched_graph, labels in dataloader:
logits = model(batched_graph)
loss = F.cross_entropy(logits, labels)
opt.zero_grad()
loss.backward()
opt.step()

