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5.3 Link Prediction

(FA3ZhR)

In some other settings you may want to predict whether an edge exists between two given nodes
or not. Such task is called a link prediction task.

Overview

A GNN-based link prediction model represents the likelihood of connectivity between two nodes u

and v as a function of h,(LL) and hS,L), their node representation computed from the multi-layer
GNN.

H
In this section we refer to y, , the score between node u and node v.

Training a link prediction model involves comparing the scores between nodes connected by an
edge against the scores between an arbitrary pair of nodes. For example, given an edge connecting

u and v, we encourage the score between node u and v to be higher than the score between node

TS

u and a sampled rT(;de v’ from an arbitrary noise distribution v/ ~ P, (v) Such methodology is

called negative sampling.

There are lots of loss functions that can achieve the behavior above if minimized. A non-exhaustive
list include:
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» Cross-entropy loss: £ = —log o(yy») — ZUiNPn(U),i:L'_‘,k log[1 — o (yu,y,)]

» BPRloss: £ = Zvinn(v),izl,...,k —log o(Yup — Yuw)

« Margin loss: £ = vaPn(v),i:l,...,k max (0, M — Yy» + Yu., ), where M is a constant
hyperparameter.

You may find this idea familiar if you know what implicit feedback or noise-contrastive estimation
is.

The neural network model to compute the score between u and v is identical to the edge
regression model described above.

Here is an example of using dot product to compute the scores on edges.

class DotProductPredictor(nn.Module):
def forward(self, graph, h):

# h contains the node representations computed from the GNN defined

# in the node classification section (Section 5.1).

with graph.local_scope():
graph.ndata['h'] = h
graph.apply_edges(fn.u_dot_v('h', 'h', 'score'))
return graph.edata[ 'score']

Training loop

Because our score prediction model operates on graphs, we need to express the negative examples
as another graph. The graph will contain all negative node pairs as edges.

The following shows an example of expressing negative examples as a graph. Each edge (u, 'v) gets
k negative examples (u, v;) where v; is sampled from a uniform distribution.
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def construct_negative_graph(graph, k):
src, dst = graph.edges()

neg_src = src.repeat_interleave(k)
neg_dst = torch.randint(@, graph.num_nodes(), (len(src) * k,))
return dgl.graph((neg_src, neg_dst), num_nodes=graph.num_nodes())

The model that predicts edge scores is the same as that of edge classification/regression.

P

class Model(nn.Module):

def __init__ (self, in_features, hidden_features, out_features):
super().__init_ ()
self.sage = SAGE(in_features, hidden_features, out_features)
self.pred = DotProductPredictor()

def forward(self, g, neg g, Xx):
h = self.sage(g, X)
return self.pred(g, h), self.pred(neg_g, h)

The training loop then repeatedly constructs the negative graph and computes loss.



def compute_loss(pos_score, neg_score):
# Margin loss
n_edges = pos_score.shape[0]
return (1 - pos_score + neg_score.view(n_edges, -1)).clamp(min=0).mean()

node_features = graph.ndata['feat']

n_features = node_ features.shape[1]

k =5

model = Model(n_features, 100, 100)

opt = torch.optim.Adam(model.parameters())

for epoch in range(10):
negative_graph = construct_negative_graph(graph, k)
pos_score, neg_score = model(graph, negative_graph, node_features)
loss = compute_loss(pos_score, neg_score)
opt.zero_grad()
loss.backward()
opt.step()
print(loss.item())
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After training, the node representation can be obtained via

node_embeddings = model.sage(graph, node_features)

There are multiple ways of using the node embeddings. Examples include training downstream
classifiers, or doing nearest neighbor search or maximum inner product search for relevant entity
recommendation.

Heterogeneous graphs

Link prediction on heterogeneous graphs is not very different from that on homogeneous graphs.
The following assumes that we are predicting on one edge type, and it is easy to extend it to
multiple edge types.



For example, you can reuse the HeterobotProductpPredictor above for computing the scores of the
edges of an edge type for link prediction.

—
class HeteroDotProductPredictor(nn.Module):
def forward(self, graph, h, etype):

# h contains the node representations for each node type computed from
# the GNN defined in the previous section (Section 5.1).
with graph.local_scope():
graph.ndata['h'] = h
graph.apply_edges(fn.u_dot_v('h', 'h', 'score'), etype=etype)
return graph.edges[etype].data['score']

To perform negative sampling, one can construct a negative graph for the edge type you are
performing link prediction on as well.

def construct_negative_graph(graph, k, etype):
utype, _, vtype = etype
src, dst = graph.edges(etype=etype)
neg_src = src.repeat_interleave(k)
neg_dst = torch.randint(@, graph.num_nodes(vtype), (len(src) * k,))
return dgl.heterograph(

{etype: (neg_src, neg_dst)},

num_nodes_dict={ntype: graph.num_nodes(ntype) for ntype in graph.ntypes})

The model is a bit different from that in edge classification on heterogeneous graphs since you
need to specify edge type where you perform link prediction.
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def __init_ (self, in_features, hidden_features, out_features, rel_names):
super().__init_ ()
self.sage = RGCN(in_features, hidden_features, out_features, rel_names)
self.pred = HeteroDotProductPredictor()

def forward(self, g, neg g, X, etype):
h = self.sage(g, X)
return self.pred(g, h, etype), self.pred(neg_g, h, etype)

The training loop is similar to that of homogeneous graphs.
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def compute_loss(pos_score, neg_score):
# Margin Loss
n_edges = pos_score.shape[0]
return (1 - pos_score + neg_score.view(n_edges, -1)).clamp(min=0).mean()

k =5
model = Model(1@, 20, 5, hetero_graph.etypes)
user_feats = hetero_graph.nodes['user'].data['feature']
item_feats = hetero_graph.nodes['item'].data[ 'feature']
node_features = {'user': user_feats, 'item': item_feats}
opt = torch.optim.Adam(model.parameters())
for epoch in range(10):
negative_graph = construct_negative_graph(hetero_graph, k, ('user', 'click', 'item'))
pos_score, neg_score = model(hetero_graph, negative_graph, node_features, ('user', 'click',
"item'))
loss = compute_loss(pos_score, neg_score)
opt.zero_grad()
loss.backward()
opt.step()
print(loss.item())




