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5.3 Link Prediction

(中文版)

In some other se�ngs you may want to predict whether an edge exists between two given nodes
or not. Such task is called a link predic�on task.

Overview

A GNN-based link predic�on model represents the likelihood of connec�vity between two nodes 

and  as a func�on of  and , their node representa�on computed from the mul�-layer
GNN.

In this sec�on we refer to  the score between node  and node .

Training a link predic�on model involves comparing the scores between nodes connected by an
edge against the scores between an arbitrary pair of nodes. For example, given an edge connec�ng

 and , we encourage the score between node  and  to be higher than the score between node
 and a sampled node  from an arbitrary noise distribu�on . Such methodology is

called nega�ve sampling.

There are lots of loss func�ons that can achieve the behavior above if minimized. A non-exhaus�ve
list include:
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Cross-entropy loss: 

BPR loss: 

Margin loss: , where  is a constant

hyperparameter.

You may find this idea familiar if you know what implicit feedback or noise-contras�ve es�ma�on
is.

The neural network model to compute the score between  and  is iden�cal to the edge
regression model described above.

Here is an example of using dot product to compute the scores on edges.

Training loop

Because our score predic�on model operates on graphs, we need to express the nega�ve examples
as another graph. The graph will contain all nega�ve node pairs as edges.

The following shows an example of expressing nega�ve examples as a graph. Each edge  gets
 nega�ve examples  where  is sampled from a uniform distribu�on.
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class DotProductPredictor(nn.Module):
    def forward(self, graph, h):
        # h contains the node representations computed from the GNN defined
        # in the node classification section (Section 5.1).
        with graph.local_scope():
            graph.ndata['h'] = h
            graph.apply_edges(fn.u_dot_v('h', 'h', 'score'))
            return graph.edata['score']
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The model that predicts edge scores is the same as that of edge classifica�on/regression.

The training loop then repeatedly constructs the nega�ve graph and computes loss.

def construct_negative_graph(graph, k):
    src, dst = graph.edges()

    neg_src = src.repeat_interleave(k)
    neg_dst = torch.randint(0, graph.num_nodes(), (len(src) * k,))
    return dgl.graph((neg_src, neg_dst), num_nodes=graph.num_nodes())

     

    

class Model(nn.Module):
    def __init__(self, in_features, hidden_features, out_features):
        super().__init__()
        self.sage = SAGE(in_features, hidden_features, out_features)
        self.pred = DotProductPredictor()
    def forward(self, g, neg_g, x):
        h = self.sage(g, x)
        return self.pred(g, h), self.pred(neg_g, h)

     

    



A�er training, the node representa�on can be obtained via

There are mul�ple ways of using the node embeddings. Examples include training downstream
classifiers, or doing nearest neighbor search or maximum inner product search for relevant en�ty
recommenda�on.

Heterogeneous graphs

Link predic�on on heterogeneous graphs is not very different from that on homogeneous graphs.
The following assumes that we are predic�ng on one edge type, and it is easy to extend it to
mul�ple edge types.

def compute_loss(pos_score, neg_score):
    # Margin loss
    n_edges = pos_score.shape[0]
    return (1 - pos_score + neg_score.view(n_edges, -1)).clamp(min=0).mean()

node_features = graph.ndata['feat']
n_features = node_features.shape[1]
k = 5
model = Model(n_features, 100, 100)
opt = torch.optim.Adam(model.parameters())
for epoch in range(10):
    negative_graph = construct_negative_graph(graph, k)
    pos_score, neg_score = model(graph, negative_graph, node_features)
    loss = compute_loss(pos_score, neg_score)
    opt.zero_grad()
    loss.backward()
    opt.step()
    print(loss.item())

     

    

node_embeddings = model.sage(graph, node_features)
     



For example, you can reuse the HeteroDotProductPredictor  above for compu�ng the scores of the
edges of an edge type for link predic�on.

To perform nega�ve sampling, one can construct a nega�ve graph for the edge type you are
performing link predic�on on as well.

The model is a bit different from that in edge classifica�on on heterogeneous graphs since you
need to specify edge type where you perform link predic�on.

class HeteroDotProductPredictor(nn.Module):
    def forward(self, graph, h, etype):
        # h contains the node representations for each node type computed from
        # the GNN defined in the previous section (Section 5.1).
        with graph.local_scope():
            graph.ndata['h'] = h
            graph.apply_edges(fn.u_dot_v('h', 'h', 'score'), etype=etype)
            return graph.edges[etype].data['score']

     

    

def construct_negative_graph(graph, k, etype):
    utype, _, vtype = etype
    src, dst = graph.edges(etype=etype)
    neg_src = src.repeat_interleave(k)
    neg_dst = torch.randint(0, graph.num_nodes(vtype), (len(src) * k,))
    return dgl.heterograph(
        {etype: (neg_src, neg_dst)},
        num_nodes_dict={ntype: graph.num_nodes(ntype) for ntype in graph.ntypes})
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The training loop is similar to that of homogeneous graphs.

class Model(nn.Module):
    def __init__(self, in_features, hidden_features, out_features, rel_names):
        super().__init__()
        self.sage = RGCN(in_features, hidden_features, out_features, rel_names)
        self.pred = HeteroDotProductPredictor()
    def forward(self, g, neg_g, x, etype):
        h = self.sage(g, x)
        return self.pred(g, h, etype), self.pred(neg_g, h, etype)

     

    

def compute_loss(pos_score, neg_score):
    # Margin loss
    n_edges = pos_score.shape[0]
    return (1 - pos_score + neg_score.view(n_edges, -1)).clamp(min=0).mean()

k = 5
model = Model(10, 20, 5, hetero_graph.etypes)
user_feats = hetero_graph.nodes['user'].data['feature']
item_feats = hetero_graph.nodes['item'].data['feature']
node_features = {'user': user_feats, 'item': item_feats}
opt = torch.optim.Adam(model.parameters())
for epoch in range(10):
    negative_graph = construct_negative_graph(hetero_graph, k, ('user', 'click', 'item'))
    pos_score, neg_score = model(hetero_graph, negative_graph, node_features, ('user', 'click', 
'item'))
    loss = compute_loss(pos_score, neg_score)
    opt.zero_grad()
    loss.backward()
    opt.step()
    print(loss.item())

     

    


