
 / User Guide / Chapter 5: Training Graph Neural Networks / 5.2 Edge Classifica�on/Regression

5.2 Edge Classification/Regression

(中文版)

Some�mes you wish to predict the a�ributes on the edges of the graph. In that case, you would like
to have an edge classifica�on/regression model.

Here we generate a random graph for edge predic�on as a demonstra�on.

Overview

From the previous sec�on you have learned how to do node classifica�on with a mul�layer GNN.
The same technique can be applied for compu�ng a hidden representa�on of any node. The
predic�on on edges can then be derived from the representa�on of their incident nodes.

src = np.random.randint(0, 100, 500)
dst = np.random.randint(0, 100, 500)
make it symmetric
edge_pred_graph = dgl.graph((np.concatenate([src, dst]), np.concatenate([dst, src])))
synthetic node and edge features, as well as edge labels
edge_pred_graph.ndata['feature'] = torch.randn(100, 10)
edge_pred_graph.edata['feature'] = torch.randn(1000, 10)
edge_pred_graph.edata['label'] = torch.randn(1000)
synthetic train-validation-test splits
edge_pred_graph.edata['train_mask'] = torch.zeros(1000, dtype=torch.bool).bernoulli(0.6)

https://docs.dgl.ai/index.html
https://docs.dgl.ai/guide/index.html
https://docs.dgl.ai/guide/training.html
https://docs.dgl.ai/guide_cn/training-edge.html#guide-cn-training-edge-classification

The most common case of compu�ng the predic�on on an edge is to express it as a parameterized
func�on of the representa�on of its incident nodes, and op�onally the features on the edge itself.

Model Implementation Difference from Node Classification

Assuming that you compute the node representa�on with the model from the previous sec�on, you
only need to write another component that computes the edge predic�on with the apply_edges()

method.

For instance, if you would like to compute a score for each edge for edge regression, the following
code computes the dot product of incident node representa�ons on each edge.

One can also write a predic�on func�on that predicts a vector for each edge with an MLP. Such
vector can be used in further downstream tasks, e.g. as logits of a categorical distribu�on.

import dgl.function as fn
class DotProductPredictor(nn.Module):
 def forward(self, graph, h):
 # h contains the node representations computed from the GNN defined
 # in the node classification section (Section 5.1).
 with graph.local_scope():
 graph.ndata['h'] = h
 graph.apply_edges(fn.u_dot_v('h', 'h', 'score'))
 return graph.edata['score']

https://docs.dgl.ai/generated/dgl.DGLGraph.apply_edges.html#dgl.DGLGraph.apply_edges

Training loop

Given the node representa�on computa�on model and an edge predictor model, we can easily
write a full-graph training loop where we compute the predic�on on all edges.

The following example takes SAGE in the previous sec�on as the node representa�on computa�on
model and DotPredictor as an edge predictor model.

class MLPPredictor(nn.Module):
 def __init__(self, in_features, out_classes):
 super().__init__()
 self.W = nn.Linear(in_features * 2, out_classes)

 def apply_edges(self, edges):
 h_u = edges.src['h']
 h_v = edges.dst['h']
 score = self.W(torch.cat([h_u, h_v], 1))
 return {'score': score}

 def forward(self, graph, h):
 # h contains the node representations computed from the GNN defined
 # in the node classification section (Section 5.1).
 with graph.local_scope():
 graph.ndata['h'] = h
 graph.apply_edges(self.apply_edges)
 return graph.edata['score']

class Model(nn.Module):
 def __init__(self, in_features, hidden_features, out_features):
 super().__init__()
 self.sage = SAGE(in_features, hidden_features, out_features)
 self.pred = DotProductPredictor()
 def forward(self, g, x):
 h = self.sage(g, x)
 return self.pred(g, h)

In this example, we also assume that the training/valida�on/test edge sets are iden�fied by boolean
masks on edges. This example also does not include early stopping and model saving.

Heterogeneous graph

Edge classifica�on on heterogeneous graphs is not very different from that on homogeneous
graphs. If you wish to perform edge classifica�on on one edge type, you only need to compute the
node representa�on for all node types, and predict on that edge type with apply_edges() method.

For example, to make DotProductPredictor work on one edge type of a heterogeneous graph, you
only need to specify the edge type in apply_edges method.

node_features = edge_pred_graph.ndata['feature']
edge_label = edge_pred_graph.edata['label']
train_mask = edge_pred_graph.edata['train_mask']
model = Model(10, 20, 5)
opt = torch.optim.Adam(model.parameters())
for epoch in range(10):
 pred = model(edge_pred_graph, node_features)
 loss = ((pred[train_mask] - edge_label[train_mask]) ** 2).mean()
 opt.zero_grad()
 loss.backward()
 opt.step()
 print(loss.item())

class HeteroDotProductPredictor(nn.Module):
 def forward(self, graph, h, etype):
 # h contains the node representations for each edge type computed from
 # the GNN for heterogeneous graphs defined in the node classification
 # section (Section 5.1).
 with graph.local_scope():
 graph.ndata['h'] = h # assigns 'h' of all node types in one shot
 graph.apply_edges(fn.u_dot_v('h', 'h', 'score'), etype=etype)
 return graph.edges[etype].data['score']

https://docs.dgl.ai/generated/dgl.DGLGraph.apply_edges.html#dgl.DGLGraph.apply_edges

You can similarly write a HeteroMLPPredictor .

The end-to-end model that predicts a score for each edge on a single edge type will look like this:

Using the model simply involves feeding the model a dic�onary of node types and features.

class HeteroMLPPredictor(nn.Module):
 def __init__(self, in_features, out_classes):
 super().__init__()
 self.W = nn.Linear(in_features * 2, out_classes)

 def apply_edges(self, edges):
 h_u = edges.src['h']
 h_v = edges.dst['h']
 score = self.W(torch.cat([h_u, h_v], 1))
 return {'score': score}

 def forward(self, graph, h, etype):
 # h contains the node representations for each edge type computed from
 # the GNN for heterogeneous graphs defined in the node classification
 # section (Section 5.1).
 with graph.local_scope():
 graph.ndata['h'] = h # assigns 'h' of all node types in one shot
 graph.apply_edges(self.apply_edges, etype=etype)
 return graph.edges[etype].data['score']

class Model(nn.Module):
 def __init__(self, in_features, hidden_features, out_features, rel_names):
 super().__init__()
 self.sage = RGCN(in_features, hidden_features, out_features, rel_names)
 self.pred = HeteroDotProductPredictor()
 def forward(self, g, x, etype):
 h = self.sage(g, x)
 return self.pred(g, h, etype)

Then the training loop looks almost the same as that in homogeneous graph. For instance, if you
wish to predict the edge labels on edge type click , then you can simply do

Predicting Edge Type of an Existing Edge on a
Heterogeneous Graph

Some�mes you may want to predict which type an exis�ng edge belongs to.

For instance, given the heterogeneous graph example, your task is given an edge connec�ng a user
and an item, to predict whether the user would click or dislike an item.

This is a simplified version of ra�ng predic�on, which is common in recommenda�on literature.

You can use a heterogeneous graph convolu�on network to obtain the node representa�ons. For
instance, you can s�ll use the RGCN defined previously for this purpose.

model = Model(10, 20, 5, hetero_graph.etypes)
user_feats = hetero_graph.nodes['user'].data['feature']
item_feats = hetero_graph.nodes['item'].data['feature']
label = hetero_graph.edges['click'].data['label']
train_mask = hetero_graph.edges['click'].data['train_mask']
node_features = {'user': user_feats, 'item': item_feats}

opt = torch.optim.Adam(model.parameters())
for epoch in range(10):
 pred = model(hetero_graph, node_features, 'click')
 loss = ((pred[train_mask] - label[train_mask]) ** 2).mean()
 opt.zero_grad()
 loss.backward()
 opt.step()
 print(loss.item())

https://docs.dgl.ai/guide/training.html#guide-training-heterogeneous-graph-example
https://docs.dgl.ai/guide/training-node.html#guide-training-rgcn-node-classification

To predict the type of an edge, you can simply repurpose the HeteroDotProductPredictor above so
that it takes in another graph with only one edge type that “merges” all the edge types to be
predicted, and emits the score of each type for every edge.

In the example here, you will need a graph that has two node types user and item , and one single
edge type that “merges” all the edge types from user and item , i.e. click and dislike . This can
be conveniently created using the following syntax:

which returns a heterogeneous graphs with node type user and item , as well as a single edge
type combining all edge types in between, i.e. click and dislike .

Since the statement above also returns the original edge types as a feature named dgl.ETYPE , we
can use that as labels.

Given the graph above as input to the edge type predictor module, you can write your predictor
module as follows.

dec_graph = hetero_graph['user', :, 'item']

edge_label = dec_graph.edata[dgl.ETYPE]

The model that combines the node representa�on module and the edge type predictor module is
the following:

The training loop then simply be the following:

class HeteroMLPPredictor(nn.Module):
 def __init__(self, in_dims, n_classes):
 super().__init__()
 self.W = nn.Linear(in_dims * 2, n_classes)

 def apply_edges(self, edges):
 x = torch.cat([edges.src['h'], edges.dst['h']], 1)
 y = self.W(x)
 return {'score': y}

 def forward(self, graph, h):
 # h contains the node representations for each edge type computed from
 # the GNN for heterogeneous graphs defined in the node classification
 # section (Section 5.1).
 with graph.local_scope():
 graph.ndata['h'] = h # assigns 'h' of all node types in one shot
 graph.apply_edges(self.apply_edges)
 return graph.edata['score']

class Model(nn.Module):
 def __init__(self, in_features, hidden_features, out_features, rel_names):
 super().__init__()
 self.sage = RGCN(in_features, hidden_features, out_features, rel_names)
 self.pred = HeteroMLPPredictor(out_features, len(rel_names))
 def forward(self, g, x, dec_graph):
 h = self.sage(g, x)
 return self.pred(dec_graph, h)

DGL provides Graph Convolu�onal Matrix Comple�on as an example of ra�ng predic�on, which is
formulated by predic�ng the type of an exis�ng edge on a heterogeneous graph. The node
representa�on module in the model implementa�on file is called GCMCLayer . The edge type
predictor module is called BiDecoder . Both of them are more complicated than the se�ng
described here.

model = Model(10, 20, 5, hetero_graph.etypes)
user_feats = hetero_graph.nodes['user'].data['feature']
item_feats = hetero_graph.nodes['item'].data['feature']
node_features = {'user': user_feats, 'item': item_feats}

opt = torch.optim.Adam(model.parameters())
for epoch in range(10):
 logits = model(hetero_graph, node_features, dec_graph)
 loss = F.cross_entropy(logits, edge_label)
 opt.zero_grad()
 loss.backward()
 opt.step()
 print(loss.item())

https://github.com/dmlc/dgl/tree/master/examples/pytorch/gcmc
https://github.com/dmlc/dgl/tree/master/examples/pytorch/gcmc

