
 / User Guide / Chapter 5: Training Graph Neural Networks
/ 5.1 Node Classifica�on/Regression

5.1 Node Classification/Regression

(中文版)

One of the most popular and widely adopted tasks for graph neural networks is node
classifica�on, where each node in the training/valida�on/test set is assigned a ground truth
category from a set of predefined categories. Node regression is similar, where each node in
the training/valida�on/test set is assigned a ground truth number.

Overview

To classify nodes, graph neural network performs message passing discussed in Chapter 2:
Message Passing to u�lize the node’s own features, but also its neighboring node and edge
features. Message passing can be repeated mul�ple rounds to incorporate informa�on from
larger range of neighborhood.

Writing neural network model

DGL provides a few built-in graph convolu�on modules that can perform one round of
message passing. In this guide, we choose dgl.nn.pytorch.SAGEConv (also available in MXNet
and Tensorflow), the graph convolu�on module for GraphSAGE.

Usually for deep learning models on graphs we need a mul�-layer graph neural network,
where we do mul�ple rounds of message passing. This can be achieved by stacking graph
convolu�on modules as follows.

https://docs.dgl.ai/index.html
https://docs.dgl.ai/guide/index.html
https://docs.dgl.ai/guide/training.html
https://docs.dgl.ai/guide_cn/training-node.html#guide-cn-training-node-classification
https://docs.dgl.ai/guide/message.html#guide-message-passing
https://docs.dgl.ai/guide/message.html#guide-message-passing

Note that you can use the model above for not only node classifica�on, but also obtaining
hidden node representa�ons for other downstream tasks such as 5.2 Edge
Classifica�on/Regression, 5.3 Link Predic�on, or 5.4 Graph Classifica�on.

For a complete list of built-in graph convolu�on modules, please refer to apinn.

For more details in how DGL neural network modules work and how to write a custom neural
network module with message passing please refer to the example in Chapter 3: Building
GNN Modules.

Training loop

Training on the full graph simply involves a forward propaga�on of the model defined above,
and compu�ng the loss by comparing the predic�on against ground truth labels on the
training nodes.

This sec�on uses a DGL built-in dataset dgl.data.CiteseerGraphDataset to show a training loop.
The node features and labels are stored on its graph instance, and the training-valida�on-test
split are also stored on the graph as boolean masks. This is similar to what you have seen in
Chapter 4: Graph Data Pipeline.

The following is an example of evalua�ng your model by accuracy.

Contruct a two-layer GNN model
import dgl.nn as dglnn
import torch.nn as nn
import torch.nn.functional as F
class SAGE(nn.Module):
 def __init__(self, in_feats, hid_feats, out_feats):
 super().__init__()
 self.conv1 = dglnn.SAGEConv(
 in_feats=in_feats, out_feats=hid_feats, aggregator_type='mean')
 self.conv2 = dglnn.SAGEConv(
 in_feats=hid_feats, out_feats=out_feats, aggregator_type='mean')

 def forward(self, graph, inputs):
 # inputs are features of nodes
 h = self.conv1(graph, inputs)
 h = F.relu(h)
 h = self.conv2(graph, h)
 return h

node_features = graph.ndata['feat']
node_labels = graph.ndata['label']
train_mask = graph.ndata['train_mask']
valid_mask = graph.ndata['val_mask']
test_mask = graph.ndata['test_mask']
n_features = node_features.shape[1]
n_labels = int(node_labels.max().item() + 1)

https://docs.dgl.ai/guide/training-edge.html#guide-training-edge-classification
https://docs.dgl.ai/guide/training-edge.html#guide-training-edge-classification
https://docs.dgl.ai/guide/training-link.html#guide-training-link-prediction
https://docs.dgl.ai/guide/training-graph.html#guide-training-graph-classification
https://docs.dgl.ai/guide/nn.html#guide-nn
https://docs.dgl.ai/guide/nn.html#guide-nn
https://docs.dgl.ai/generated/dgl.data.CiteseerGraphDataset.html#dgl.data.CiteseerGraphDataset
https://docs.dgl.ai/guide/data.html#guide-data-pipeline

You can then write our training loop as follows.

GraphSAGE provides an end-to-end homogeneous graph node classifica�on example. You
could see the corresponding model implementa�on is in the GraphSAGE class in the example
with adjustable number of layers, dropout probabili�es, and customizable aggrega�on
func�ons and nonlineari�es.

Heterogeneous graph

If your graph is heterogeneous, you may want to gather message from neighbors along all
edge types. You can use the module dgl.nn.pytorch.HeteroGraphConv (also available in MXNet
and Tensorflow) to perform message passing on all edge types, then combining different
graph convolu�on modules for each edge type.

The following code will define a heterogeneous graph convolu�on module that first performs
a separate graph convolu�on on each edge type, then sums the message aggrega�ons on
each edge type as the final result for all node types.

def evaluate(model, graph, features, labels, mask):
 model.eval()
 with torch.no_grad():
 logits = model(graph, features)
 logits = logits[mask]
 labels = labels[mask]
 _, indices = torch.max(logits, dim=1)
 correct = torch.sum(indices == labels)
 return correct.item() * 1.0 / len(labels)

model = SAGE(in_feats=n_features, hid_feats=100, out_feats=n_labels)
opt = torch.optim.Adam(model.parameters())

for epoch in range(10):
 model.train()
 # forward propagation by using all nodes
 logits = model(graph, node_features)
 # compute loss
 loss = F.cross_entropy(logits[train_mask], node_labels[train_mask])
 # compute validation accuracy
 acc = evaluate(model, graph, node_features, node_labels, valid_mask)
 # backward propagation
 opt.zero_grad()
 loss.backward()
 opt.step()
 print(loss.item())

 # Save model if necessary. Omitted in this example.

https://github.com/dmlc/dgl/blob/master/examples/pytorch/graphsage/train_full.py
https://docs.dgl.ai/generated/dgl.nn.pytorch.HeteroGraphConv.html#dgl.nn.pytorch.HeteroGraphConv

dgl.nn.HeteroGraphConv takes in a dic�onary of node types and node feature tensors as input,
and returns another dic�onary of node types and node features.

So given that we have the user and item features in the heterogeneous graph example.

One can simply perform a forward propaga�on as follows:

Training loop is the same as the one for homogeneous graph, except that now you have a
dic�onary of node representa�ons from which you compute the predic�ons. For instance, if
you are only predic�ng the user nodes, you can just extract the user node embeddings
from the returned dic�onary:

Define a Heterograph Conv model

class RGCN(nn.Module):
 def __init__(self, in_feats, hid_feats, out_feats, rel_names):
 super().__init__()

 self.conv1 = dglnn.HeteroGraphConv({
 rel: dglnn.GraphConv(in_feats, hid_feats)
 for rel in rel_names}, aggregate='sum')
 self.conv2 = dglnn.HeteroGraphConv({
 rel: dglnn.GraphConv(hid_feats, out_feats)
 for rel in rel_names}, aggregate='sum')

 def forward(self, graph, inputs):
 # inputs are features of nodes
 h = self.conv1(graph, inputs)
 h = {k: F.relu(v) for k, v in h.items()}
 h = self.conv2(graph, h)
 return h

model = RGCN(n_hetero_features, 20, n_user_classes, hetero_graph.etypes)
user_feats = hetero_graph.nodes['user'].data['feature']
item_feats = hetero_graph.nodes['item'].data['feature']
labels = hetero_graph.nodes['user'].data['label']
train_mask = hetero_graph.nodes['user'].data['train_mask']

node_features = {'user': user_feats, 'item': item_feats}
h_dict = model(hetero_graph, {'user': user_feats, 'item': item_feats})
h_user = h_dict['user']
h_item = h_dict['item']

https://docs.dgl.ai/guide/training.html#guide-training-heterogeneous-graph-example

DGL provides an end-to-end example of RGCN for node classifica�on. You can see the
defini�on of heterogeneous graph convolu�on in RelGraphConvLayer in the model
implementa�on file.

opt = torch.optim.Adam(model.parameters())

for epoch in range(5):
 model.train()
 # forward propagation by using all nodes and extracting the user embeddings
 logits = model(hetero_graph, node_features)['user']
 # compute loss
 loss = F.cross_entropy(logits[train_mask], labels[train_mask])
 # Compute validation accuracy. Omitted in this example.
 # backward propagation
 opt.zero_grad()
 loss.backward()
 opt.step()
 print(loss.item())

 # Save model if necessary. Omitted in the example.

https://github.com/dmlc/dgl/blob/master/examples/pytorch/rgcn-hetero/entity_classify.py
https://github.com/dmlc/dgl/blob/master/examples/pytorch/rgcn-hetero/model.py
https://github.com/dmlc/dgl/blob/master/examples/pytorch/rgcn-hetero/model.py

