@ / User Guide / Chapter 3: Building GNN Modules
/ 3.2 DGL NN Module Forward Function

3.2 DGL NN Module Forward Function

(FA3ZhiR)

In NN module, forward() function does the actual message passing and computation.
Compared with PyTorch’s NN module which usually takes tensors as the parameters, DGL NN

module takes an additional parameter dgi.peLeraph . The workload for forward() function can

e —

be split into three parts:

« Graph checking and graph type specification.

+ Message passing.

T ee—
« Feature update.
—

The rest of the section takes a deep dive into the forward() function in SAGEConv example.

Graph checking and graph type specification

e

def forward(self, graph, feat):
with graph.local_scope():
Specify graph type then expand input feature according to graph type
feat_src, feat_dst = expand_as_pair(feat, graph)

e

forward() needs to handle many corner cases on the input that can lead to invalid values in
computing and message passing. One typical check in conv modules like Graphconv is to
verify that the input graph has no 0-in-degree nodes. When a node has O in-degree, the

mailbox Will be empty and the reduce function will produce all-zero values. This may cause
silent regression in model performance. However, in sageconv module, the aggregated
representation will be concatenated with the original node feature, the output of forward()
will not be all-zero. No such check is needed in this case.

DGL NN module should be reusable across different types of graph input including:
homogeneous graph, heterogeneous graph (1.5 Heterogeneous Graphs), subgraph block
(Chapter 6: Stochastic Training on Large Graphs).

The math formulas for SAGEConv are:

KD - ageregate ({Rhye, Vsre € N (dst)})

N (dst)
—_— /

https://docs.dgl.ai/index.html
https://docs.dgl.ai/guide/index.html
https://docs.dgl.ai/guide/nn.html
https://docs.dgl.ai/guide_cn/nn-forward.html#guide-cn-nn-forward
https://docs.dgl.ai/api/python/dgl.DGLGraph.html#dgl.DGLGraph
https://docs.dgl.ai/generated/dgl.nn.pytorch.conv.GraphConv.html#dgl.nn.pytorch.conv.GraphConv
https://docs.dgl.ai/generated/dgl.nn.pytorch.conv.SAGEConv.html#dgl.nn.pytorch.conv.SAGEConv
https://docs.dgl.ai/guide/graph-heterogeneous.html#guide-graph-heterogeneous
https://docs.dgl.ai/guide/minibatch.html#guide-minibatch

hfil;;l) =0 (W - concat(hl_,, hﬁl t)) + b)

(ds
el
—

One needs to specify the source node feature feat src and destination node feature
feat_dst according to the graph type. expand_as_pair() is a function that specifies the graph
type and expand feat into feat src and feat dst . The detail of this function is shown

below.

def expand_as_pair(input_, g=None):
if isinstance(input_, tuple):
Bipartite graph case
return input_
elif g is not None and g.is_block:
Subgraph block case
if isinstance(input_, Mapping):
input_dst = {
k: F.narrow_row(v, ©, g.number_of_dst nodes(k))
for k, v in input_.items()}

else:
input_dst = F.narrow_row(input_, 0, g.number_of_dst_nodes())
return input_, input_dst
else:
Homogeneous graph case

return input_, input_

For homogeneous whole graph training, source nodes and destination nodes are the same.
They are all the nodes in the graph.

For heterogeneous case, the graph can be split into several bipartite graphs, one for each
relation. The relations are represented as (src_type, edge type, dst_dtype) . When it identifies
that the input feature feat is a tuple, it will treat the graph as bipartite. [ThesfirStielementiin
the tuple will be the source node feature and the second element will be the destination
node feature.

In mini-batch training, the computing is applied on a subgraph sampled based on a bunch of
destination nodes. The subgraph is called as biock in DGL. In the block creation phase, dst
nodes are in the front of the node list. One can find the feat _dst by the index

[0:g.number_of_dst_nodes()] .

After determining feat_src and feat_dst , the computing for the above three graph types are

the same.

Message passing and reducing

T E—

import dgl.function as fn
import torch.nn.functional as F
from dgl.utils import check_eq_shape

if self._aggre_type == 'mean':
graph.srcdata['h'] = feat_src
graph.update_all(fn.copy u('h', 'm'), fn.mean('m', 'neigh'))
h_neigh = graph.dstdata['neigh']
elif self._aggre_type == 'gcn':
check_eq_shape(feat)
graph.srcdata['h'] = feat_src
graph.dstdata['h'] = feat_dst
graph.update_all(fn.copy u('h', 'm"'), fn.sum('m', 'neigh'))
divide in_degrees
degs = graph.in_degrees().to(feat_dst)
h_neigh = (graph.dstdata['neigh'] + graph.dstdata['h']) / (degs.unsqueeze(-1) + 1)
elif self._aggre_type == 'pool':
graph.srcdata['h'] = F.relu(self.fc_pool(feat_src))
graph.update_all(fn.copy u('h', 'm"), fn.max('m', 'neigh'))
h_neigh = graph.dstdata['neigh']
else:
raise KeyError('Aggregator type {} not recognized.'.format(self._aggre_type))

GraphSAGE GCN does not require fc_self.
if self._aggre_type == 'gcn':
rst = self.fc_neigh(h_neigh)
else:
rst = self.fc_self(h_self) + self.fc_neigh(h_neigh)

The code actually does message passing and reducing computing. This part of code varies
module by module. Note that all the message passing in the above code are implemented
using update_all() APl and built-in message/reduce functions to fully utilize DGL's
performance optimization as described in 2.2 Writing Efficient Message Passing Code.

Update feature after reducing for output

activation
if self.activation is not None:
rst = self.activation(rst)
normalization
if self.norm is not None:
rst = self.norm(rst)
return rst

/

The last part of forward() function is to update the feature after the reduce function .
Common update operations are applying activation function and normalization according to
the option set in the object construction phase.

https://docs.dgl.ai/generated/dgl.DGLGraph.update_all.html#dgl.DGLGraph.update_all
https://docs.dgl.ai/guide/message-efficient.html#guide-message-passing-efficient

