@ / User Guide / Chapter 2: Message Passing
/ 2.1 Built-in Functions and Message Passing APIs

2.1 Built-in Functions and Message Passing APIs

(FR3ZhR)

In DGL, message function takes a single argument edges , which is an EdgeBatch instance.
During message passing, DGL generates it internally to represent a batch of edges. It has

three members src, dst and data to access features of source nodes, destination nodes,

and edges, respectively.

reduce function takes a single argument nodes , which is a NodeBatch instance. During
message passing, DGL generates it internally to represent a batch of nodes. It has member
mailbox to access the messages received for the nodes in the batch. Some of the most

—
common reduce operations include sum , max , min , etc.

update function takes a single argument nodes as described above. This function operates

on the aggregation result from reduce function , typically combining it with a node’s original
feature at the the last step and saving the result as a node feature. #

e

DGL has implemented commonly used message functions and reduce functions as built-in in
the namespace dgl.function . In general, DGL suggests using built-in functions whenever

possible since they are heavily optimized and automatically handle dimension broadcasting.

If your message passing functions cannot be implemented with built-ins, you can implement
user-defined message/reduce function (aka. UDF).

Built-in message functions can be unary or binary. DGL supports copy for unary. For binary
funcs, DGL supports add , sub, mul, div, dot . The naming convention for message built-in

funcsis that u represents src nodes, v represents dst nodes,and e represents edges .

The parameters for those functions are strings indicating the input and output field names for

the corresponding nodes and edges. The list of supported built-in functions can be found in

DGL Built-in Function. For example, to add the hu feature from src nodes and hv feature
ﬁ

from dst nodes then save the result on the edge at ne field, one can use built-in function

dgl.function.u_add_v('hu', 'hv', 'he') . This is equivalent to the Message UDF:

def message_func(edges):
return {'he': edges.src['hu'] + edges.dst['hv']}

https://docs.dgl.ai/index.html
https://docs.dgl.ai/guide/index.html
https://docs.dgl.ai/guide/message.html
https://docs.dgl.ai/guide_cn/message-api.html#guide-cn-message-passing-api
https://docs.dgl.ai/api/python/dgl.function.html#api-built-in

Built-in reduce functions support operations sum, max , min , and mean . Reduce functions

usually have two parameters, one for field name in mailbox , one for field name in node
x

features, both are strings. For example, dgl.function.sum('m', *h*) is equivalent to the Reduce

UDF that sums up the message n :

import torch
def reduce_func(nodes):
return {'h': torch.sum(nodes.mailbox['m"'], dim=1)}

For advanced usage of UDF, see User-defined Functions.

It is also possible to invoke only edge-wise computation by app1y_edges() without invoking
message passing. apply_edges() takes a message function for parameter and by default

updates the features of all edges. For example:

——

import dgl.function as fn
graph.apply_edges(fn.u_add_v('el’,

er', 'e'))

For message passing, update_al1() is a high-level APl that merges message generation,

message aggregation and node update in a single call, which leaves room for optimization as

.

e

a whole.
—_—

The parameters for update_all() are a message function, a reduce function and an update
_

function. One can call update function outside of update_a11 and not specify it in invoking
update_all() . DGL recommends this approach since the update function can usually be

written as pure tensor operations to make the code concise. For example:

def update_all_example(graph):
store the result in graph.ndata['ft']
graph.update_all(fn.u_mul_e('ft"', 'a', 'm"),
fn.sum('m', 'ft'))
Call update function outside of update_all
final_ft = graph.ndata['ft'] * 2
return final ft

B

This call will generate the messages m by multiply src node features ft and edge features
a , sum up the messages m to update node features +t , and finally multiply ft by 2 to get
the result fina1_ft . After the call, DGL will clean the intermediate messages m . The math

formula for the above function is:

BENEES

e

final_ft; = 2 * Z (ft; * az)

JEN(3)

https://docs.dgl.ai/api/python/udf.html#apiudf
https://docs.dgl.ai/generated/dgl.DGLGraph.apply_edges.html#dgl.DGLGraph.apply_edges
https://docs.dgl.ai/generated/dgl.DGLGraph.apply_edges.html#dgl.DGLGraph.apply_edges
https://docs.dgl.ai/generated/dgl.DGLGraph.update_all.html#dgl.DGLGraph.update_all
https://docs.dgl.ai/generated/dgl.DGLGraph.update_all.html#dgl.DGLGraph.update_all
https://docs.dgl.ai/generated/dgl.DGLGraph.update_all.html#dgl.DGLGraph.update_all

DGL's built-in functions support floating point data types, i.e. the feature must be haif

(floatie)/ float / double tensors. floatie data type support is disabled by default as it has
a minimum GPU compute capacity requirement of sm_s3 (Pascal, Volta, Turing and Ampere
architectures).

User can enable float16 for mixed precision training by compiling DGL from source (see
Mixed Precision Training tutorial for details).

https://docs.dgl.ai/guide/mixed_precision.html

