
 / User Guide / Chapter 1: Graph / 1.2 Graphs, Nodes, and Edges

1.2 Graphs, Nodes, and Edges

(中文版)

DGL represents each node by a unique integer, called its node ID, and each edge by a pair of
integers corresponding to the IDs of its end nodes. DGL assigns to each edge a unique
integer, called its edge ID, based on the order in which it was added to the graph. The
numbering of node and edge IDs starts from 0. In DGL, all the edges are directed, and an
edge indicates that the direction goes from node to node .

To specify multiple nodes, DGL uses a 1-D integer tensor (i.e., PyTorch’s tensor, TensorFlow’s
Tensor, or MXNet’s ndarray) of node IDs. DGL calls this format “node-tensors”. To specify
multiple edges, it uses a tuple of node-tensors . decides an edge from

 to .

One way to create a DGLGraph is to use the dgl.graph() method, which takes as input a set of
edges. DGL also supports creating graphs from other data sources, see 1.4 Creating Graphs
from External Sources.

The following code snippet uses the dgl.graph() method to create a DGLGraph corresponding
to the four-node graph shown below and illustrates some of its APIs for querying the graph’s
structure.

(u, v) u v

(U , V) (U [i], V [i])

U [i] V [i]

https://docs.dgl.ai/index.html
https://docs.dgl.ai/guide/index.html
https://docs.dgl.ai/guide/graph.html
https://docs.dgl.ai/guide_cn/graph-graphs-nodes-edges.html#guide-cn-graph-graphs-nodes-edges
https://docs.dgl.ai/api/python/dgl.DGLGraph.html#dgl.DGLGraph
https://docs.dgl.ai/generated/dgl.graph.html#dgl.graph
https://docs.dgl.ai/guide/graph-external.html#guide-graph-external
https://docs.dgl.ai/guide/graph-external.html#guide-graph-external
https://docs.dgl.ai/generated/dgl.graph.html#dgl.graph
https://docs.dgl.ai/api/python/dgl.DGLGraph.html#dgl.DGLGraph
https://data.dgl.ai/asset/image/user_guide_graphch_1.png
https://data.dgl.ai/asset/image/user_guide_graphch_1.png

For an undirected graph, one needs to create edges for both directions. dgl.to_bidirected()

can be helpful in this case, which converts a graph into a new one with edges for both
directions.

 Note

Tensor types are generally preferred throughout DGL APIs due to their efficient internal
storage in C and explicit data type and device context information. However, most DGL
APIs do support python iterable (e.g., list) or numpy.ndarray as arguments for quick
prototyping.

DGL can use either - or -bit integers to store the node and edge IDs. The data types for
the node and edge IDs should be the same. By using bits, DGL can handle graphs with up
to nodes or edges. However, if a graph contains less than nodes or edges,
one should use -bit integers as it leads to better speed and requires less memory. DGL
provides methods for making such conversions. See below for an example.

>>> import dgl
>>> import torch as th

>>> # edges 0->1, 0->2, 0->3, 1->3
>>> u, v = th.tensor([0, 0, 0, 1]), th.tensor([1, 2, 3, 3])
>>> g = dgl.graph((u, v))
>>> print(g) # number of nodes are inferred from the max node IDs in the given edges
Graph(num_nodes=4, num_edges=4,
 ndata_schemes={}
 edata_schemes={})

>>> # Node IDs
>>> print(g.nodes())
tensor([0, 1, 2, 3])
>>> # Edge end nodes
>>> print(g.edges())
(tensor([0, 0, 0, 1]), tensor([1, 2, 3, 3]))
>>> # Edge end nodes and edge IDs
>>> print(g.edges(form='all'))
(tensor([0, 0, 0, 1]), tensor([1, 2, 3, 3]), tensor([0, 1, 2, 3]))

>>> # If the node with the largest ID is isolated (meaning no edges),
>>> # then one needs to explicitly set the number of nodes
>>> g = dgl.graph((u, v), num_nodes=8)

>>> bg = dgl.to_bidirected(g)
>>> bg.edges()
(tensor([0, 0, 0, 1, 1, 2, 3, 3]), tensor([1, 2, 3, 0, 3, 0, 0, 1]))

32 64

64

− 1263 − 1231

32

https://docs.dgl.ai/generated/dgl.to_bidirected.html#dgl.to_bidirected

See APIs: dgl.graph() , dgl.DGLGraph.nodes() , dgl.DGLGraph.edges() , dgl.to_bidirected() ,
dgl.DGLGraph.int() , dgl.DGLGraph.long() , and dgl.DGLGraph.idtype .

>>> edges = th.tensor([2, 5, 3]), th.tensor([3, 5, 0]) # edges 2->3, 5->5, 3->0
>>> g64 = dgl.graph(edges) # DGL uses int64 by default
>>> print(g64.idtype)
torch.int64
>>> g32 = dgl.graph(edges, idtype=th.int32) # create a int32 graph
>>> g32.idtype
torch.int32
>>> g64_2 = g32.long() # convert to int64
>>> g64_2.idtype
torch.int64
>>> g32_2 = g64.int() # convert to int32
>>> g32_2.idtype
torch.int32

https://docs.dgl.ai/generated/dgl.graph.html#dgl.graph
https://docs.dgl.ai/generated/dgl.DGLGraph.nodes.html#dgl.DGLGraph.nodes
https://docs.dgl.ai/generated/dgl.DGLGraph.edges.html#dgl.DGLGraph.edges
https://docs.dgl.ai/generated/dgl.to_bidirected.html#dgl.to_bidirected
https://docs.dgl.ai/generated/dgl.DGLGraph.int.html#dgl.DGLGraph.int
https://docs.dgl.ai/generated/dgl.DGLGraph.long.html#dgl.DGLGraph.long
https://docs.dgl.ai/generated/dgl.DGLGraph.idtype.html#dgl.DGLGraph.idtype

