/ A Blitz Introduction to DGL / Training a GNN for Graph Classification

O Note

Click here to download the full example code

Training a GNN for Graph Classification

By the end of this tutorial, you will be able to

(Time estimate: 18 minutes)

import os

os.environ["DGLBACKEND"] = "pytorch"
import dgl

import dgl.data

import torch

import torch.nn as nn

import torch.nn.functional as F

Overview of Graph Classification with GNN
Graph classification or regression requires a model to predict certain graph-level properties of
a single graph given its node and edge features. Molecular property prediction is one

particular application.

This tutorial shows how to train a graph classification model for a small dataset from the
paper How Powerful Are Graph Neural Networks.

Loading Data

Generate a synthetic dataset with 10000 graphs, ranging from 160 to 560 nodes.
dataset = dgl.data.GINDataset("PROTEINS", self_loop=True)

https://docs.dgl.ai/index.html
https://docs.dgl.ai/tutorials/blitz/index.html
https://arxiv.org/abs/1810.00826
https://docs.python.org/3/library/os.html#os.environ
https://docs.python.org/3/library/os.html#os.environ
https://docs.python.org/3/library/os.html#os.environ

The dataset is a set of graphs, each with node features and a single label. One can see the
node feature dimensionality and the number of possible graph categories of cinpataset

objects in dim_nfeats and gclasses attributes.

print("Node feature dimensionality:", dataset.dim_nfeats)
print("Number of graph categories:", dataset.gclasses)

from dgl.dataloading import GraphDatalLoader

)

Out:

Node feature dimensionality: 3
Number of graph categories: 2

Defining Data Loader

A graph classification dataset usually contains two types of elements: a set of graphs, and
their graph-level labels. Similar to an image classification task, when the dataset is large
enough, we need to train with mini-batches. When you train a model for image classification
or language modeling, you will use a pataloader to iterate over the dataset. In DGL, you can

use the Graphpataloader .

You can also use various dataset samplers provided in torch.utils.data.sampler. For example,
this tutorial creates a training GraphbataLoader and test Graphbataloader , using

subsetRandomsampler to tell PyTorch to sample from only a subset of the dataset.

from torch.utils.data.sampler import SubsetRandomSampler

num_examples = len(dataset)
num_train = int(num_examples * 0.8)

train_sampler = SubsetRandomSampler(torch.arange(num_train))
test_sampler = SubsetRandomSampler(torch.arange(num_train, num_examples))

train_dataloader = GraphDataloader(

dataset, sampler=train_sampler, batch_size=5, drop_last=False
)
test_dataloader = GraphDatalLoader(

dataset, sampler=test_sampler, batch_size=5, drop_last=False

_/

You can try to iterate over the created craphpataLoader and see what it gives:

—
it = iter(train_dataloader)
batch = next(it)
print(batch)

https://pytorch.org/docs/stable/data.html#data-loading-order-and-sampler
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/typing.html#typing.Generic
https://docs.python.org/3/library/typing.html#typing.Generic
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/typing.html#typing.Generic
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/typing.html#typing.Generic
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/typing.html#typing.Generic
https://docs.python.org/3/library/typing.html#typing.Generic
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#list

Out:

[Graph(num_nodes=257, num_edges=1217,

ndata_schemes={"attr': Scheme(shape=(3,), dtype=torch.float32), 'label': Scheme(shape=(),
dtype=torch.int64)}

edata_schemes={}), tensor([1, 1, 0, 1, 0])]

As each element in dataset has a graph and a label, the GraphpataLoader will return two

objects for each iteration. Thefirstielementis the batched graph, and the'second elementis

simply a label vector representing the category of each graph in the mini-batch. Next, we'll
talked about the batched graph.

A Batched Graph in DGL

In each mini-batch, the sampled graphs are combined into a single bigger batched graph via

dgl.batch . The single bigger batched graph merges all original graphs as separately
connected components, with the node and edge features concatenated. This bigger graph is
also a peLeraph instance (so you can still treat it as a normal bcLcraph object as in here). It
however contains the information necessary for recovering the original graphs, such as the
number of nodes and edges of each graph element.

batched_graph, labels = batch

print(
"Number of nodes for each graph element in the batch:",
batched_graph.batch_num_nodes(),

)

print(
"Number of edges for each graph element in the batch:",
batched_graph.batch_num_edges(),

Recover the original graph elements from the minibatch
graphs = dgl.unbatch(batched_graph)

print("The original graphs in the minibatch:")
print(graphs)

Out:

https://docs.dgl.ai/tutorials/blitz/2_dglgraph.html
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#list

Number of nodes for each graph element in the batch: tensor([65, 27, 66, 10, 89])
Number of edges for each graph element in the batch: tensor([291, 127, 378, 46, 375])
The original graphs in the minibatch:
[Graph(num_nodes=65, num_edges=291,

ndata_schemes={"attr': Scheme(shape=(3,), dtype=torch.float32), 'label': Scheme(shape=(),
dtype=torch.int64)}

edata_schemes={}), Graph(num_nodes=27, num_edges=127,

ndata_schemes={"attr': Scheme(shape=(3,), dtype=torch.float32), 'label': Scheme(shape=(),
dtype=torch.int64)}

edata_schemes={}), Graph(num_nodes=66, num_edges=378,

ndata_schemes={"attr': Scheme(shape=(3,), dtype=torch.float32), 'label': Scheme(shape=(),
dtype=torch.int64)}

edata_schemes={}), Graph(num_nodes=10, num_edges=46,

ndata_schemes={"attr': Scheme(shape=(3,), dtype=torch.float32), 'label': Scheme(shape=(),
dtype=torch.int64)}

edata_schemes={}), Graph(num_nodes=89, num_edges=375,

ndata_schemes={"attr': Scheme(shape=(3,), dtype=torch.float32), 'label': Scheme(shape=(),
dtype=torch.int64)}

edata_schemes={})]

Define Model

This tutorial will build a two-layer Graph Convolutional Network (GCN). Each of its layer
computes new node representations by aggregating neighbor information. If you have gone
through the introduction, you will notice two differences:

- Since the task is to predict a single category for the entire graph instead of for every node,
you will need to aggregate the representations of all the nodes and potentially the edges
to'form a graphelevelrepresentation. Such process is more commonly referred as a
readout. A simple choice is to average the node features of a graph with dgi.mean_nodes() .

« The input graph to the model will be a batched graph yielded by the GraphpataLoader . The
readout functions provided by DGL can handle batched graphs so that they will return
one representation for each minibatch element.

R —

from dgl.nn import GraphConv

class GCN(nn.Module):
def __init_ (self, in_feats, h_feats, num_classes):
super(GCN, self)._ _init_ ()
self.convl = GraphConv(in_feats, h_feats)
self.conv2 = GraphConv(h_feats, num_classes)

def forward(self, g, in_feat):
h = self.convl(g, in_feat)
h = F.relu(h)
h = self.conv2(g, h)
g.ndata["h"] = h
return dgl.mean_nodes(g, "h")

- e—— e

http://tkipf.github.io/graph-convolutional-networks/
https://docs.dgl.ai/tutorials/blitz/1_introduction.html

Training Loop

The training loop iterates over the training set with the GraphpataLoader object and computes
the gradients, just like image classification or language modeling.

Create the model with given dimensions
model = GCN(dataset.dim_nfeats, 16, dataset.gclasses)
optimizer = torch.optim.Adam(model.parameters(), 1lr=0.01)

for epoch in range(20):
for batched_graph, labels in train_dataloader:
pred = model(batched_graph, batched_graph.ndata["attr"].float())
loss = F.cross_entropy(pred, labels)
optimizer.zero_grad()
loss.backward()
optimizer.step()

num_correct = 0

num_tests = 0

for batched_graph, labels in test_dataloader:
pred = model(batched_graph, batched_graph.ndata["attr"].float())
num_correct += (pred.argmax(l) == labels).sum().item()
num_tests += len(labels)

print("Test accuracy:", num_correct / num_tests)

Out:

Test accuracy: 0.2600896860986547

What's next

« See GIN example for an end-to-end graph classification model.

Thumbnail credits: DGL
sphinx_gallery thumbnail_path = '_static/blitz_5 graph_classification.png’

Total running time of the script: (O minutes 24.297 seconds)

& Download Python source code: 5_graph_classification.py

& Download Jupyter notebook: 5_graph_classification.ipynb

https://github.com/dmlc/dgl/tree/master/examples/pytorch/gin
https://docs.dgl.ai/_downloads/ae1209d61d402e4b9fe4ac4a64047fd0/5_graph_classification.py
https://docs.dgl.ai/_downloads/4050a45fd5b85070ff144419307a88ac/5_graph_classification.ipynb
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int

Gallery generated by Sphinx-Gallery

https://sphinx-gallery.github.io/

