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O Note

Click here to download the full example code

Training a GNN for Graph Classification

By the end of this tutorial, you will be able to

(Time estimate: 18 minutes)

import os

os.environ["DGLBACKEND"] = "pytorch"
import dgl

import dgl.data

import torch

import torch.nn as nn

import torch.nn.functional as F

Overview of Graph Classification with GNN
Graph classification or regression requires a model to predict certain graph-level properties of
a single graph given its node and edge features. Molecular property prediction is one

particular application.

This tutorial shows how to train a graph classification model for a small dataset from the
paper How Powerful Are Graph Neural Networks.

Loading Data

# Generate a synthetic dataset with 10000 graphs, ranging from 160 to 560 nodes.
dataset = dgl.data.GINDataset("PROTEINS", self_loop=True)
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The dataset is a set of graphs, each with node features and a single label. One can see the
node feature dimensionality and the number of possible graph categories of cinpataset

objects in dim_nfeats and gclasses attributes.

print("Node feature dimensionality:", dataset.dim_nfeats)
print("Number of graph categories:", dataset.gclasses)

from dgl.dataloading import GraphDatalLoader

)

Out:

Node feature dimensionality: 3
Number of graph categories: 2

Defining Data Loader

A graph classification dataset usually contains two types of elements: a set of graphs, and
their graph-level labels. Similar to an image classification task, when the dataset is large
enough, we need to train with mini-batches. When you train a model for image classification
or language modeling, you will use a pataloader to iterate over the dataset. In DGL, you can

use the Graphpataloader .

You can also use various dataset samplers provided in torch.utils.data.sampler. For example,
this tutorial creates a training GraphbataLoader and test Graphbataloader , using

subsetRandomsampler to tell PyTorch to sample from only a subset of the dataset.

from torch.utils.data.sampler import SubsetRandomSampler

num_examples = len(dataset)
num_train = int(num_examples * 0.8)

train_sampler = SubsetRandomSampler(torch.arange(num_train))
test_sampler = SubsetRandomSampler(torch.arange(num_train, num_examples))

train_dataloader = GraphDataloader(

dataset, sampler=train_sampler, batch_size=5, drop_last=False
)
test_dataloader = GraphDatalLoader(

dataset, sampler=test_sampler, batch_size=5, drop_last=False

_/

You can try to iterate over the created craphpataLoader and see what it gives:

—
it = iter(train_dataloader)
batch = next(it)
print(batch)
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Out:

[Graph(num_nodes=257, num_edges=1217,

ndata_schemes={"attr': Scheme(shape=(3,), dtype=torch.float32), 'label': Scheme(shape=(),
dtype=torch.int64)}

edata_schemes={}), tensor([1, 1, 0, 1, 0])]

As each element in dataset has a graph and a label, the GraphpataLoader will return two

objects for each iteration. Thefirstielementis the batched graph, and the'second elementis

simply a label vector representing the category of each graph in the mini-batch. Next, we'll
talked about the batched graph.

A Batched Graph in DGL

In each mini-batch, the sampled graphs are combined into a single bigger batched graph via

dgl.batch . The single bigger batched graph merges all original graphs as separately
connected components, with the node and edge features concatenated. This bigger graph is
also a peLeraph instance (so you can still treat it as a normal bcLcraph object as in here). It
however contains the information necessary for recovering the original graphs, such as the
number of nodes and edges of each graph element.

batched_graph, labels = batch

print(
"Number of nodes for each graph element in the batch:",
batched_graph.batch_num_nodes(),

)

print(
"Number of edges for each graph element in the batch:",
batched_graph.batch_num_edges(),

# Recover the original graph elements from the minibatch
graphs = dgl.unbatch(batched_graph)

print("The original graphs in the minibatch:")
print(graphs)

Out:
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Number of nodes for each graph element in the batch: tensor([65, 27, 66, 10, 89])
Number of edges for each graph element in the batch: tensor([291, 127, 378, 46, 375])
The original graphs in the minibatch:
[Graph(num_nodes=65, num_edges=291,

ndata_schemes={"attr': Scheme(shape=(3,), dtype=torch.float32), 'label': Scheme(shape=(),
dtype=torch.int64)}

edata_schemes={}), Graph(num_nodes=27, num_edges=127,

ndata_schemes={"attr': Scheme(shape=(3,), dtype=torch.float32), 'label': Scheme(shape=(),
dtype=torch.int64)}

edata_schemes={}), Graph(num_nodes=66, num_edges=378,

ndata_schemes={"attr': Scheme(shape=(3,), dtype=torch.float32), 'label': Scheme(shape=(),
dtype=torch.int64)}

edata_schemes={}), Graph(num_nodes=10, num_edges=46,

ndata_schemes={"attr': Scheme(shape=(3,), dtype=torch.float32), 'label': Scheme(shape=(),
dtype=torch.int64)}

edata_schemes={}), Graph(num_nodes=89, num_edges=375,

ndata_schemes={"attr': Scheme(shape=(3,), dtype=torch.float32), 'label': Scheme(shape=(),
dtype=torch.int64)}

edata_schemes={})]

Define Model

This tutorial will build a two-layer Graph Convolutional Network (GCN). Each of its layer
computes new node representations by aggregating neighbor information. If you have gone
through the introduction, you will notice two differences:

- Since the task is to predict a single category for the entire graph instead of for every node,
you will need to aggregate the representations of all the nodes and potentially the edges
to'form a graphelevelrepresentation. Such process is more commonly referred as a
readout. A simple choice is to average the node features of a graph with dgi.mean_nodes() .

« The input graph to the model will be a batched graph yielded by the GraphpataLoader . The
readout functions provided by DGL can handle batched graphs so that they will return
one representation for each minibatch element.

R —

from dgl.nn import GraphConv

class GCN(nn.Module):
def __init_ (self, in_feats, h_feats, num_classes):
super(GCN, self)._ _init_ ()
self.convl = GraphConv(in_feats, h_feats)
self.conv2 = GraphConv(h_feats, num_classes)

def forward(self, g, in_feat):
h = self.convl(g, in_feat)
h = F.relu(h)
h = self.conv2(g, h)
g.ndata["h"] = h
return dgl.mean_nodes(g, "h")

- e—— e
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Training Loop

The training loop iterates over the training set with the GraphpataLoader object and computes
the gradients, just like image classification or language modeling.

# Create the model with given dimensions
model = GCN(dataset.dim_nfeats, 16, dataset.gclasses)
optimizer = torch.optim.Adam(model.parameters(), 1lr=0.01)

for epoch in range(20):
for batched_graph, labels in train_dataloader:
pred = model(batched_graph, batched_graph.ndata["attr"].float())
loss = F.cross_entropy(pred, labels)
optimizer.zero_grad()
loss.backward()
optimizer.step()

num_correct = 0

num_tests = 0

for batched_graph, labels in test_dataloader:
pred = model(batched_graph, batched_graph.ndata["attr"].float())
num_correct += (pred.argmax(l) == labels).sum().item()
num_tests += len(labels)

print("Test accuracy:", num_correct / num_tests)

Out:

Test accuracy: 0.2600896860986547

What's next

« See GIN example for an end-to-end graph classification model.
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Total running time of the script: ( O minutes 24.297 seconds)

& Download Python source code: 5_graph_classification.py

& Download Jupyter notebook: 5_graph_classification.ipynb
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