
 / A Blitz Introduc�on to DGL / How Does DGL Represent A Graph?

 Note

Click here to download the full example code

How Does DGL Represent A Graph?

By the end of this tutorial you will be able to:

Construct a graph in DGL from scratch.
Assign node and edge features to a graph.
Query proper�es of a DGL graph such as node degrees and connec�vity.
Transform a DGL graph into another graph.
Load and save DGL graphs.

(Time es�mate: 16 minutes)

DGL Graph Construction

DGL represents a directed graph as a DGLGraph object. You can construct a graph by
specifying the number of nodes in the graph as well as the list of source and des�na�on
nodes. Nodes in the graph have consecu�ve IDs star�ng from 0.

For instance, the following code constructs a directed star graph with 5 leaves. The center
node’s ID is 0. The edges go from the center node to the leaves.

import os

os.environ["DGLBACKEND"] = "pytorch"
import dgl
import numpy as np
import torch

g = dgl.graph(([0, 0, 0, 0, 0], [1, 2, 3, 4, 5]), num_nodes=6)
Equivalently, PyTorch LongTensors also work.
g = dgl.graph(
 (torch.LongTensor([0, 0, 0, 0, 0]), torch.LongTensor([1, 2, 3, 4, 5])),
 num_nodes=6,
)

You can omit the number of nodes argument if you can tell the number of nodes from the edge
list alone.
g = dgl.graph(([0, 0, 0, 0, 0], [1, 2, 3, 4, 5]))

https://docs.dgl.ai/index.html
https://docs.dgl.ai/tutorials/blitz/index.html
https://docs.python.org/3/library/os.html#os.environ
https://docs.python.org/3/library/os.html#os.environ
https://docs.python.org/3/library/os.html#os.environ

Edges in the graph have consecu�ve IDs star�ng from 0, and are in the same order as the list
of source and des�na�on nodes during crea�on.

Out:

 Note

DGLGraph ’s are always directed to best fit the computa�on pa�ern of graph neural
networks, where the messages sent from one node to the other are o�en different
between both direc�ons. If you want to handle undirected graphs, you may consider
trea�ng it as a bidirec�onal graph. See Graph Transforma�ons for an example of making a
bidirec�onal graph.

Assigning Node and Edge Features to Graph

Many graph data contain a�ributes on nodes and edges. Although the types of node and
edge a�ributes can be arbitrary in real world, DGLGraph only accepts a�ributes stored in
tensors (with numerical contents). Consequently, an a�ribute of all the nodes or edges must
have the same shape. In the context of deep learning, those a�ributes are o�en called
features.

You can assign and retrieve node and edge features via ndata and edata interface.

Out:

Print the source and destination nodes of every edge.
print(g.edges())

(tensor([0, 0, 0, 0, 0]), tensor([1, 2, 3, 4, 5]))

Assign a 3-dimensional node feature vector for each node.
g.ndata["x"] = torch.randn(6, 3)
Assign a 4-dimensional edge feature vector for each edge.
g.edata["a"] = torch.randn(5, 4)
Assign a 5x4 node feature matrix for each node. Node and edge features in DGL can be multi-
dimensional.
g.ndata["y"] = torch.randn(6, 5, 4)

print(g.edata["a"])

tensor([[0.4923, 1.1030, 0.0339, -0.3949],
 [0.3530, 0.0209, 1.3001, 1.8026],
 [-0.4374, 0.8340, 0.5542, 0.4071],
 [-0.9745, 0.6320, -0.4542, 1.1930],
 [-0.3848, -0.7547, -0.5155, -1.5347]])

 Note

The vast development of deep learning has provided us many ways to encode various
types of a�ributes into numerical features. Here are some general sugges�ons:

For categorical a�ributes (e.g. gender, occupa�on), consider conver�ng them to
integers or one-hot encoding.
For variable length string contents (e.g. news ar�cle, quote), consider applying a
language model.
For images, consider applying a vision model such as CNNs.

You can find plenty of materials on how to encode such a�ributes into a tensor in the
PyTorch Deep Learning Tutorials.

Querying Graph Structures

DGLGraph object provides various methods to query a graph structure.

Out:

Graph Transformations

DGL provides many APIs to transform a graph to another such as extrac�ng a subgraph:

You can obtain the node/edge mapping from the subgraph to the original graph by looking
into the node feature dgl.NID or edge feature dgl.EID in the new graph.

print(g.num_nodes())
print(g.num_edges())
Out degrees of the center node
print(g.out_degrees(0))
In degrees of the center node - note that the graph is directed so the in degree should be 0.
print(g.in_degrees(0))

6
5
5
0

Induce a subgraph from node 0, node 1 and node 3 from the original graph.
sg1 = g.subgraph([0, 1, 3])
Induce a subgraph from edge 0, edge 1 and edge 3 from the original graph.
sg2 = g.edge_subgraph([0, 1, 3])

https://pytorch.org/tutorials/

Out:

subgraph and edge_subgraph also copies the original features to the subgraph:

Out:

Another common transforma�on is to add a reverse edge for each edge in the original graph
with dgl.add_reverse_edges .

 Note

If you have an undirected graph, it is be�er to convert it into a bidirec�onal graph first via
adding reverse edges.

The original IDs of each node in sg1
print(sg1.ndata[dgl.NID])
The original IDs of each edge in sg1
print(sg1.edata[dgl.EID])
The original IDs of each node in sg2
print(sg2.ndata[dgl.NID])
The original IDs of each edge in sg2
print(sg2.edata[dgl.EID])

tensor([0, 1, 3])
tensor([0, 2])
tensor([0, 1, 2, 4])
tensor([0, 1, 3])

The original node feature of each node in sg1
print(sg1.ndata["x"])
The original edge feature of each node in sg1
print(sg1.edata["a"])
The original node feature of each node in sg2
print(sg2.ndata["x"])
The original edge feature of each node in sg2
print(sg2.edata["a"])

tensor([[0.9192, 0.4320, -1.1305],
 [-0.0056, -0.5874, 0.1528],
 [0.2726, -1.6391, -0.3148]])
tensor([[0.4923, 1.1030, 0.0339, -0.3949],
 [-0.4374, 0.8340, 0.5542, 0.4071]])
tensor([[0.9192, 0.4320, -1.1305],
 [-0.0056, -0.5874, 0.1528],
 [-1.3349, -0.1582, -0.7141],
 [-1.7423, 0.4454, 1.3130]])
tensor([[0.4923, 1.1030, 0.0339, -0.3949],
 [0.3530, 0.0209, 1.3001, 1.8026],
 [-0.9745, 0.6320, -0.4542, 1.1930]])

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str

Out:

Loading and Saving Graphs

You can save a graph or a list of graphs via dgl.save_graphs and load them back with
dgl.load_graphs .

Out:

What’s next?

See here for a list of graph structure query APIs.
See here for a list of subgraph extrac�on rou�nes.
See here for a list of graph transforma�on rou�nes.

newg = dgl.add_reverse_edges(g)
print(newg.edges())

(tensor([0, 0, 0, 0, 0, 1, 2, 3, 4, 5]), tensor([1, 2, 3, 4, 5, 0, 0, 0, 0, 0]))

Save graphs
dgl.save_graphs("graph.dgl", g)
dgl.save_graphs("graphs.dgl", [g, sg1, sg2])

Load graphs
(g,), _ = dgl.load_graphs("graph.dgl")
print(g)
(g, sg1, sg2), _ = dgl.load_graphs("graphs.dgl")
print(g)
print(sg1)
print(sg2)

Graph(num_nodes=6, num_edges=5,
 ndata_schemes={'y': Scheme(shape=(5, 4), dtype=torch.float32), 'x': Scheme(shape=(3,),
dtype=torch.float32)}
 edata_schemes={'a': Scheme(shape=(4,), dtype=torch.float32)})
Graph(num_nodes=6, num_edges=5,
 ndata_schemes={'y': Scheme(shape=(5, 4), dtype=torch.float32), 'x': Scheme(shape=(3,),
dtype=torch.float32)}
 edata_schemes={'a': Scheme(shape=(4,), dtype=torch.float32)})
Graph(num_nodes=3, num_edges=2,
 ndata_schemes={'_ID': Scheme(shape=(), dtype=torch.int64), 'x': Scheme(shape=(3,),
dtype=torch.float32), 'y': Scheme(shape=(5, 4), dtype=torch.float32)}
 edata_schemes={'_ID': Scheme(shape=(), dtype=torch.int64), 'a': Scheme(shape=(4,),
dtype=torch.float32)})
Graph(num_nodes=4, num_edges=3,
 ndata_schemes={'_ID': Scheme(shape=(), dtype=torch.int64), 'x': Scheme(shape=(3,),
dtype=torch.float32), 'y': Scheme(shape=(5, 4), dtype=torch.float32)}
 edata_schemes={'_ID': Scheme(shape=(), dtype=torch.int64), 'a': Scheme(shape=(4,),
dtype=torch.float32)})

https://docs.dgl.ai/api/python/dgl.DGLGraph.html#apigraph-querying-graph-structure
https://docs.dgl.ai/api/python/dgl.html#api-subgraph-extraction
https://docs.dgl.ai/api/python/dgl.html#api-transform
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#dict

API reference of dgl.save_graphs() and dgl.load_graphs()

Total running �me of the script: (0 minutes 0.023 seconds)

 Download Python source code: 2_dglgraph.py

 Download Jupyter notebook: 2_dglgraph.ipynb

Gallery generated by Sphinx-Gallery

Thumbnail credits: Wikipedia
sphinx_gallery_thumbnail_path = '_static/blitz_2_dglgraph.png'

https://docs.dgl.ai/generated/dgl.save_graphs.html#dgl.save_graphs
https://docs.dgl.ai/generated/dgl.load_graphs.html#dgl.load_graphs
https://docs.dgl.ai/_downloads/1357fffdf9ee9430b5258018c3185318/2_dglgraph.py
https://docs.dgl.ai/_downloads/5e754d077c80317655fc1cbae96537f9/2_dglgraph.ipynb
https://sphinx-gallery.github.io/

