@ / A Blitz Introduction to DGL / How Does DGL Represent A Graph?

O Note

Click here to download the full example code

How Does DGL Represent A Graph?

By the end of this tutorial you will be able to:

(Time estimate: 16 minutes)

DGL Graph Construction

DGL represents a directed graph as a pcLcraph object. You can construct a graph by
specifying the number of nodes in the graph as well as the list of source and destination

nodes. Nodes in the graph have consecutive IDs starting from O.
For instance, the following code constructs a directed star graph with 5 leaves. The center

node’s ID is 0. The edges go from the center node to the leaves.

import os

os.environ["DGLBACKEND"] = "pytorch"
import dgl

import numpy as np

import torch

g = dgl.graph(([0, 0, 0, 0, 0], [1, 2, 3, 4, 5]), num_nodes=6)

# Equivalently, PyTorch LongTensors also work.

g = dgl.graph(
(torch.LongTensor([0, ©, @, 0, ©]), torch.LongTensor([1, 2, 3, 4, 5])),
num_nodes=6,

)

# You can omit the number of nodes argument if you can tell the number of nodes from the edge
List alone.
g = dgl.graph(([e, @, @, @, @], [1, 2, 3, 4, 5]))



https://docs.dgl.ai/index.html
https://docs.dgl.ai/tutorials/blitz/index.html
https://docs.python.org/3/library/os.html#os.environ
https://docs.python.org/3/library/os.html#os.environ
https://docs.python.org/3/library/os.html#os.environ

—/
# Print the source and destination nodes of every edge.
print(g.edges())

Out:

t (tensor([0, 0, 0, 0, 0]), tensor([1, 2, 3, 4, 5]))

e

O Note

DGLGraph 's are always directed to best fit the computation pattern of graph neural
networks, where the messages sent from one node to the other are often different
between both directions. If you want to handle undirected graphs, you may consider
treating it as a bidirectional graph. See Graph Transformations for an example of making a
bidirectional graph.

Assigning Node and Edge Features to Graph

Many graph data contain attributes on nodes and edges. Although the types of node and
edge attributes can be arbitrary in real world, pcLcraph only accepts attributes stored in
tensors (with numerical contents). Consequently, an attribute of all the nodes or edges must
have the same shape. In the context of deep learning, those attributes are often called
features.

You can assign and retrieve node and edge features via ndata and edata interface.

(
# Assign a 3-dimensional node feature vector for each node.

g.ndata["x"] = torch.randn(6, 3)

# Assign a 4-dimensional edge feature vector for each edge.

g.edata["a"] = torch.randn(5, 4)

# Assign a 5x4 node feature matrix for each node. Node and edge features in DGL can be multi-
dimensional.

g.ndata["y"] = torch.randn(6, 5, 4)

print(g.edata["a"])

Out:

tensor([[ ©.4923, 1.1030, ©.0339, -0.3949],
[ ©.3530, ©.0209, 1.3001, 1.8026],
[-0.4374, ©.8340, 0.5542, 0.4071],
[-0.9745, ©.6320, -0.4542, 1.1930],
[-0.3848, -0.7547, -0.5155, -1.5347]])




O Note

The vast development of deep learning has provided us many ways to encode various
types of attributes into numerical features. Here are some general suggestions:

You can find plenty of materials on how to encode such attributes into a tensor in the
PyTorch Deep Learning Tutorials.

Querying Graph Structures

DGLGraph Object provides various methods to query a graph structure.

print(g.num_nodes())

print(g.num_edges())

# Out degrees of the center node

print(g.out_degrees(0))

# In degrees of the center node - note that the graph is directed so the in degree should be ©.
print(g.in_degrees(0))

Out:

© U1 U1 O

Graph Transformations

DGL provides many APIs to transform a graph to another such as extracting a subgraph:

# Induce a subgraph from node ©, node 1 and node 3 from the original graph.
sgl = g.subgraph([0, 1, 3])

# Induce a subgraph from edge @, edge 1 and edge 3 from the original graph.
sg2 = g.edge_subgraph([0, 1, 3])

You can obtain the node/edge mapping from the subgraph to the original graph by looking
into the node feature dgi.n1p or edge feature dgi.e1p in the new graph.


https://pytorch.org/tutorials/

e .
# The original IDs of each node in sgil
print(sgl.ndata[dgl.NID])

# The original IDs of each edge in sgil
print(sgl.edata[dgl.EID])
# The original IDs of each node in sg2
print(sg2.ndata[dgl.NID])
# The original IDs of each edge in sg2
print(sg2.edata[dgl.EID])

/

Out:

tensor([0, 1, 3])
tensor ([0, 2])
tensor([0, 1, 2, 4])
tensor([0, 1, 3])

subgraph and edge_subgraph also copies the original features to the subgraph:

# The original node feature of each node in sgl
print(sgl.ndata["x"])
# The original edge feature of each node in sgl
print(sgl.edata["a"])
# The original node feature of each node in sg2
print(sg2.ndata["x"])
# The original edge feature of each node in sg2
print(sg2.edata["a"])

Out:

tensor([[ ©.9192, ©.4320, -1.1305],
[-0.0056, -0.5874, 0.1528],
[ 0.2726, -1.6391, -0.3148]])
tensor([[ ©.4923, 1.1030, ©0.0339, -0.3949],
[-0.4374, ©0.8340, 0.5542, ©0.4071]])
tensor([[ ©.9192, ©0.4320, -1.1305],
-0.0056, -0.5874, ©0.1528],
-1.3349, -0.1582, -0.7141],
-1.7423, ©.4454, 1.3130]])
0.4923, 1.1030, ©0.0339, -0.3949],
0.3530, 0.0209, 1.3001, 1.8026],
-0.9745, ©.6320, -0.4542, 1.1930]])

tensor([

L B e B e T e B I s |

O Note

If you have an undirected graph, it is better to convert it into a bidirectional graph first via
adding reverse edges.


https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str

newg = dgl.add_reverse_edges(g)
print(newg.edges())

Out:

(tensor([0, 0, 0, 0, 0, 1, 2, 3, 4, 5]), tensor([1, 2, 3, 4, 5, 0, @, 0, 0, 9]))

Loading and Saving Graphs

You can save a graph or a list of graphs via dgl.save graphs and load them back with

dgl.load_graphs .

~—

/ # Save graphs
dgl.save_graphs("graph.dgl"”, g)

dgl.save_graphs("graphs.dgl", [g, sgl, sg2])

# Load graphs

(g,), _ = dgl.load_graphs("graph.dgl")

print(g)

(g, sgl, sg2), _ = dgl.load_graphs("graphs.dgl")
print(g)

print(sgl)

\ print(sg2)

Out:

Graph(num_nodes=6, num_edges=5,

ndata_schemes={"y': Scheme(shape=(5, 4), dtype=torch.float32), 'x': Scheme(shape=(3,),
dtype=torch.float32)}

edata_schemes={'a"': Scheme(shape=(4,), dtype=torch.float32)})
Graph(num_nodes=6, num_edges=5,

ndata_schemes={"y': Scheme(shape=(5, 4), dtype=torch.float32), 'x': Scheme(shape=(3,),
dtype=torch.float32)}

edata_schemes={"'a': Scheme(shape=(4,), dtype=torch.float32)})
Graph(num_nodes=3, num_edges=2,

ndata_schemes={'_ID': Scheme(shape=(), dtype=torch.inté64), 'x': Scheme(shape=(3,),
dtype=torch.float32), 'y': Scheme(shape=(5, 4), dtype=torch.float32)}

edata_schemes={'_ID': Scheme(shape=(), dtype=torch.int64), 'a': Scheme(shape=(4,),
dtype=torch.float32)})
Graph(num_nodes=4, num_edges=3,

ndata_schemes={'_ID': Scheme(shape=(), dtype=torch.int64), 'x': Scheme(shape=(3,),
dtype=torch.float32), 'y': Scheme(shape=(5, 4), dtype=torch.float32)}

edata_schemes={'_ID': Scheme(shape=(), dtype=torch.int64), 'a': Scheme(shape=(4,),
dtype=torch.float32)})

What's next?

« See here for a list of graph structure query APIs.
« See here for a list of subgraph extraction routines.
« See here for a list of graph transformation routines.


https://docs.dgl.ai/api/python/dgl.DGLGraph.html#apigraph-querying-graph-structure
https://docs.dgl.ai/api/python/dgl.html#api-subgraph-extraction
https://docs.dgl.ai/api/python/dgl.html#api-transform
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#dict

o API reference of dgl.save_graphs() and dgl.load_graphs()
# Thumbnail credits: Wikipedia

# sphinx_gallery_thumbnail_path = '_static/blitz_2_dglgraph.png'

Total running time of the script: ( O minutes 0.023 seconds)

& Download Python source code: 2_dglgraph.py

& Download Jupyter notebook: 2_dglgraph.ipynb

Gallery generated by Sphinx-Gallery


https://docs.dgl.ai/generated/dgl.save_graphs.html#dgl.save_graphs
https://docs.dgl.ai/generated/dgl.load_graphs.html#dgl.load_graphs
https://docs.dgl.ai/_downloads/1357fffdf9ee9430b5258018c3185318/2_dglgraph.py
https://docs.dgl.ai/_downloads/5e754d077c80317655fc1cbae96537f9/2_dglgraph.ipynb
https://sphinx-gallery.github.io/

