
 / Install and Setup

Install and Setup

System requirements

DGL works with the following opera�ng systems:

Ubuntu 16.04
macOS X
Windows 10

DGL requires Python version 3.6, 3.7, 3.8 or 3.9.

DGL supports mul�ple tensor libraries as backends, e.g., PyTorch, MXNet. For requirements
on backends and how to select one, see Working with different backends.

Star�ng at version 0.3, DGL is separated into CPU and CUDA builds. The builds share the
same Python package name. If you install DGL with a CUDA 9 build a�er you install the CPU
build, then the CPU build is overwri�en.

Install from Conda or Pip

We recommend installing DGL by conda or pip . Check out the instruc�ons on the Get
Started page.

 Note

For Windows users: you will need to install Visual C++ 2015 Redistributable.

Install from source

Download the source files from GitHub.

(Op�onal) Clone the repository first, and then run the following:

git clone --recurse-submodules https://github.com/dmlc/dgl.git

git submodule update --init --recursive

https://docs.dgl.ai/index.html
https://www.dgl.ai/pages/start.html
https://www.dgl.ai/pages/start.html
https://www.microsoft.com/en-us/download/details.aspx?id=48145

Linux

Install the system packages for building the shared library. For Debian and Ubuntu users, run:

For Fedora/RHEL/CentOS users, run:

To create a Conda environment for CPU development, run:

To create a Conda environment for GPU development, run:

To further configure the conda environment, run the following command for more details:

To build the shared library for CPU development, run:

To build the shared library for GPU development, run:

To further build the shared library, run the following command for more details:

sudo apt-get update
sudo apt-get install -y build-essential python3-dev make cmake

sudo yum install -y gcc-c++ python3-devel make cmake

bash script/create_dev_conda_env.sh -c

bash script/create_dev_conda_env.sh -g 11.7

bash script/create_dev_conda_env.sh -h

bash script/build_dgl.sh -c

bash script/build_dgl.sh -g

Finally, install the Python binding.

macOS

Installa�on on macOS is similar to Linux. But macOS users need to install build tools like
clang, GNU Make, and cmake first. These installa�on steps were tested on macOS X with
clang 10.0.0, GNU Make 3.81, and cmake 3.13.1.

Tools like clang and GNU Make are packaged in Command Line Tools for macOS. To install,
run the following:

To install other needed packages like cmake, we recommend first installing Homebrew, which
is a popular package manager for macOS. To learn more, see the Homebrew website.

A�er you install Homebrew, install cmake.

Go to root directory of the DGL repository, build a shared library, and install the Python
binding for DGL.

bash script/build_dgl.sh -h

cd python
python setup.py install
Build Cython extension
python setup.py build_ext --inplace

xcode-select --install

brew install cmake

mkdir build
cd build
cmake -DUSE_OPENMP=off -DUSE_LIBXSMM=OFF ..
make -j4
cd ../python
python setup.py install
Build Cython extension
python setup.py build_ext --inplace

https://brew.sh/

Windows

You can build DGL with MSBuild. With MS Build Tools and CMake on Windows installed, run
the following in VS2019 x64 Na�ve tools command prompt.

CPU only build:

CUDA build:

Working with different backends

DGL supports PyTorch, MXNet and Tensorflow backends. DGL will choose the backend on
the following op�ons (high priority to low priority)

Use the DGLBACKEND environment variable:

You can use DGLBACKEND=[BACKEND] python gcn.py ... to specify the backend
Or export DGLBACKEND=[BACKEND] to set the global environment variable

Modify the config.json file under “~/.dgl”:

You can use python -m dgl.backend.set_default_backend [BACKEND] to set the default
backend

Currently BACKEND can be chosen from mxnet, pytorch, tensorflow.

PyTorch backend

Export DGLBACKEND as pytorch to specify PyTorch backend. The required PyTorch version is
1.12.0 or later. See pytorch.org for installa�on instruc�ons.

MD build
CD build
cmake -DCMAKE_CXX_FLAGS="/DDGL_EXPORTS" -DCMAKE_CONFIGURATION_TYPES="Release" -
DDMLC_FORCE_SHARED_CRT=ON .. -G "Visual Studio 16 2019"
msbuild dgl.sln /m
CD ..\python
python setup.py install

MD build
CD build
cmake -DCMAKE_CXX_FLAGS="/DDGL_EXPORTS" -DCMAKE_CONFIGURATION_TYPES="Release" -
DDMLC_FORCE_SHARED_CRT=ON -DUSE_CUDA=ON .. -G "Visual Studio 16 2019"
msbuild dgl.sln /m
CD ..\python
python setup.py install

https://go.microsoft.com/fwlink/?linkid=840931
https://cmake.org/download/
https://pytorch.org/

MXNet backend

Export DGLBACKEND as mxnet to specify MXNet backend. The required MXNet version is 1.6 or
later. See mxnet.apache.org for installa�on instruc�ons.

MXNet uses uint32 as the default data type for integer tensors, which only supports graph of
size smaller than 2^32. To enable large graph training, build MXNet with
USE_INT64_TENSOR_SIZE=1 flag. See this FAQ for more informa�on.

MXNet 1.5 and later has an op�on to enable Numpy shape mode for NDArray objects, some
DGL models need this mode to be enabled to run correctly. However, this mode may not
compa�ble with pretrained model parameters with this mode disabled, e.g. pretrained models
from GluonCV and GluonNLP. By se�ng DGL_MXNET_SET_NP_SHAPE , users can switch this mode
on or off.

Tensorflow backend

Export DGLBACKEND as tensorflow to specify Tensorflow backend. The required Tensorflow
version is 2.3.0 or later. See tensorflow.org for installa�on instruc�ons. In addi�on, DGL will
set TF_FORCE_GPU_ALLOW_GROWTH to true to prevent Tensorflow take over the whole GPU
memory:

https://mxnet.apache.org/get_started
https://mxnet.apache.org/api/faq/large_tensor_support
https://www.tensorflow.org/install

