
Ray Tracing in One Weekend
Peter Shirley

edited by Steve Hollasch and Trevor David Black

Version 3.2.3, 2020-12-07

Copyright 2018-2020 Peter Shirley. All rights reserved.

Contents

1 Overview

2 Output an Image
 2.1 The PPM Image Format
 2.2 Creating an Image File
 2.3 Adding a Progress Indicator

3 The vec3 Class
 3.1 Variables and Methods
 3.2 vec3 Utility Functions
 3.3 Color Utility Functions

4 Rays, a Simple Camera, and Background
 4.1 The ray Class
 4.2 Sending Rays Into the Scene

5 Adding a Sphere
 5.1 Ray-Sphere Intersection
 5.2 Creating Our First Raytraced Image

6 Surface Normals and Multiple Objects
 6.1 Shading with Surface Normals
 6.2 Simplifying the Ray-Sphere Intersection Code
 6.3 An Abstraction for Hittable Objects
 6.4 Front Faces Versus Back Faces
 6.5 A List of Hittable Objects
 6.6 Some New C++ Features
 6.7 Common Constants and Utility Functions

7 Antialiasing
 7.1 Some Random Number Utilities
 7.2 Generating Pixels with Multiple Samples

8 Diffuse Materials
 8.1 A Simple Diffuse Material
 8.2 Limiting the Number of Child Rays
 8.3 Using Gamma Correction for Accurate Color Intensity
 8.4 Fixing Shadow Acne

https://github.com/petershirley
https://github.com/hollasch
https://github.com/trevordblack

 8.5 True Lambertian Reflection
 8.6 An Alternative Diffuse Formulation

9 Metal
 9.1 An Abstract Class for Materials
 9.2 A Data Structure to Describe Ray-Object Intersections
 9.3 Modeling Light Scatter and Reflectance
 9.4 Mirrored Light Reflection
 9.5 A Scene with Metal Spheres
 9.6 Fuzzy Reflection

10 Dielectrics
 10.1 Refraction
 10.2 Snell's Law
 10.3 Total Internal Reflection
 10.4 Schlick Approximation
 10.5 Modeling a Hollow Glass Sphere

11 Positionable Camera
 11.1 Camera Viewing Geometry
 11.2 Positioning and Orienting the Camera

12 Defocus Blur
 12.1 A Thin Lens Approximation
 12.2 Generating Sample Rays

13 Where Next?
 13.1 A Final Render
 13.2 Next Steps

14 Acknowledgments

15 Citing This Book
 15.1 Basic Data
 15.2 Snippets
 15.2.1 Markdown
 15.2.2 HTML
 15.2.3 LaTeX and BibTex
 15.2.4 BibLaTeX
 15.2.5 IEEE
 15.2.6 MLA:

1. Overview
I’ve taught many graphics classes over the years. Often I do them in ray tracing, because you
are forced to write all the code, but you can still get cool images with no API. I decided to adapt
my course notes into a how-to, to get you to a cool program as quickly as possible. It will not
be a full-featured ray tracer, but it does have the indirect lighting which has made ray tracing a
staple in movies. Follow these steps, and the architecture of the ray tracer you produce will be
good for extending to a more extensive ray tracer if you get excited and want to pursue that.

When somebody says “ray tracing” it could mean many things. What I am going to describe
is technically a path tracer, and a fairly general one. While the code will be pretty simple (let the
computer do the work!) I think you’ll be very happy with the images you can make.

lyf
高亮

I’ll take you through writing a ray tracer in the order I do it, along with some debugging tips.
By the end, you will have a ray tracer that produces some great images. You should be able to
do this in a weekend. If you take longer, don’t worry about it. I use C++ as the driving
language, but you don’t need to. However, I suggest you do, because it’s fast, portable, and
most production movie and video game renderers are written in C++. Note that I avoid most
“modern features” of C++, but inheritance and operator overloading are too useful for ray
tracers to pass on. I do not provide the code online, but the code is real and I show all of it
except for a few straightforward operators in the vec3 class. I am a big believer in typing in
code to learn it, but when code is available I use it, so I only practice what I preach when the
code is not available. So don’t ask!

I have left that last part in because it is funny what a 180 I have done. Several readers ended up
with subtle errors that were helped when we compared code. So please do type in the code,
but if you want to look at mine it is at:

https://github.com/RayTracing/raytracing.github.io/

I assume a little bit of familiarity with vectors (like dot product and vector addition). If you
don’t know that, do a little review. If you need that review, or to learn it for the first time,
check out Marschner’s and my graphics text, Foley, Van Dam, et al., or McGuire’s graphics
codex.

If you run into trouble, or do something cool you’d like to show somebody, send me some
email at ptrshrl@gmail.com.

I’ll be maintaining a site related to the book including further reading and links to resources at
a blog https://in1weekend.blogspot.com/ related to this book.

Thanks to everyone who lent a hand on this project. You can find them in the acknowledgments
section at the end of this book.

Let’s get on with it!

2. Output an Image

2.1. The PPM Image Format

Whenever you start a renderer, you need a way to see an image. The most straightforward way
is to write it to a file. The catch is, there are so many formats. Many of those are complex. I
always start with a plain text ppm file. Here’s a nice description from Wikipedia:

Figure 1: PPM Example

https://github.com/RayTracing/raytracing.github.io/
mailto:ptrshrl@gmail.com.
https://in1weekend.blogspot.com/
https://raytracing.github.io/images/fig-1.01-ppm.jpg
lyf
高亮

lyf
下划线

lyf
高亮

lyf
高亮

Let’s make some C++ code to output such a thing:

#include <iostream>

int main() {

 // Image

 const int image_width = 256;
 const int image_height = 256;

 // Render

 std::cout << "P3\n" << image_width << ' ' << image_height << "\n255\n";

 for (int j = image_height-1; j >= 0; --j) {
 for (int i = 0; i < image_width; ++i) {
 auto r = double(i) / (image_width-1);
 auto g = double(j) / (image_height-1);
 auto b = 0.25;

 int ir = static_cast<int>(255.999 * r);
 int ig = static_cast<int>(255.999 * g);
 int ib = static_cast<int>(255.999 * b);

 std::cout << ir << ' ' << ig << ' ' << ib << '\n';
 }
 }
}

Listing 1: [main.cc] Creating your first image

There are some things to note in that code:

1. The pixels are written out in rows with pixels left to right.

2. The rows are written out from top to bottom.

3. By convention, each of the red/green/blue components range from 0.0 to 1.0. We will
relax that later when we internally use high dynamic range, but before output we will
tone map to the zero to one range, so this code won’t change.

4. Red goes from fully off (black) to fully on (bright red) from left to right, and green goes
from black at the bottom to fully on at the top. Red and green together make yellow so
we should expect the upper right corner to be yellow.

2.2. Creating an Image File

lyf
矩形

lyf
高亮

lyf
高亮

Because the file is written to the program output, you'll need to redirect it to an image file.
Typically this is done from the command-line by using the > redirection operator, like so:

build\Release\inOneWeekend.exe > image.ppm

This is how things would look on Windows. On Mac or Linux, it would look like this:

build/inOneWeekend > image.ppm

Opening the output file (in ToyViewer on my Mac, but try it in your favorite viewer and Google
“ppm viewer” if your viewer doesn’t support it) shows this result:

Image 1: First PPM image

https://raytracing.github.io/images/img-1.01-first-ppm-image.png
lyf
矩形

lyf
矩形

Hooray! This is the graphics “hello world”. If your image doesn’t look like that, open the
output file in a text editor and see what it looks like. It should start something like this:

P3
256 256
255
0 255 63
1 255 63
2 255 63
3 255 63
4 255 63
5 255 63
6 255 63
7 255 63
8 255 63
9 255 63
...

Listing 2: First image output

If it doesn’t, then you probably just have some newlines or something similar that is confusing
the image reader.

If you want to produce more image types than PPM, I am a fan of stb_image.h, a header-only
image library available on GitHub at https://github.com/nothings/stb.

2.3. Adding a Progress Indicator

Before we continue, let's add a progress indicator to our output. This is a handy way to track the
progress of a long render, and also to possibly identify a run that's stalled out due to an infinite
loop or other problem.

Our program outputs the image to the standard output stream (std::cout), so leave that alone
and instead write to the error output stream (std::cerr):

 for (int j = image_height-1; j >= 0; --j) {
 std::cerr << "\rScanlines remaining: " << j << ' ' << std::flush;
 for (int i = 0; i < image_width; ++i) {
 auto r = double(i) / (image_width-1);
 auto g = double(j) / (image_height-1);
 auto b = 0.25;

 int ir = static_cast<int>(255.999 * r);
 int ig = static_cast<int>(255.999 * g);
 int ib = static_cast<int>(255.999 * b);

 std::cout << ir << ' ' << ig << ' ' << ib << '\n';
 }
 }

 std::cerr << "\nDone.\n";

Listing 3: [main.cc] Main render loop with progress reporting

https://github.com/nothings/stb
lyf
矩形

lyf
高亮

lyf
矩形

lyf
矩形

3. The vec3 Class
Almost all graphics programs have some class(es) for storing geometric vectors and colors. In
many systems these vectors are 4D (3D plus a homogeneous coordinate for geometry, and RGB
plus an alpha transparency channel for colors). For our purposes, three coordinates suffices.
We’ll use the same class vec3 for colors, locations, directions, offsets, whatever. Some people
don’t like this because it doesn’t prevent you from doing something silly, like adding a color
to a location. They have a good point, but we’re going to always take the “less code” route
when not obviously wrong. In spite of this, we do declare two aliases for vec3: point3 and color.
Since these two types are just aliases for vec3, you won't get warnings if you pass a color to a
function expecting a point3, for example. We use them only to clarify intent and use.

3.1. Variables and Methods

Here’s the top part of my vec3 class:

#ifndef VEC3_H
#define VEC3_H

#include <cmath>
#include <iostream>

using std::sqrt;

class vec3 {
 public:
 vec3() : e{0,0,0} {}
 vec3(double e0, double e1, double e2) : e{e0, e1, e2} {}

 double x() const { return e[0]; }
 double y() const { return e[1]; }
 double z() const { return e[2]; }

 vec3 operator-() const { return vec3(-e[0], -e[1], -e[2]); }
 double operator[](int i) const { return e[i]; }
 double& operator[](int i) { return e[i]; }

 vec3& operator+=(const vec3 &v) {
 e[0] += v.e[0];
 e[1] += v.e[1];
 e[2] += v.e[2];
 return *this;
 }

 vec3& operator*=(const double t) {
 e[0] *= t;
 e[1] *= t;
 e[2] *= t;
 return *this;
 }

 vec3& operator/=(const double t) {
 return *this *= 1/t;
 }

 double length() const {
 return sqrt(length_squared());
 }

 double length_squared() const {
 return e[0]*e[0] + e[1]*e[1] + e[2]*e[2];
 }

 public:
 double e[3];
};

// Type aliases for vec3
using point3 = vec3; // 3D point
using color = vec3; // RGB color

lyf
矩形

#endif

Listing 4: [vec3.h] vec3 class

We use double here, but some ray tracers use float. Either one is fine — follow your own tastes.

3.2. vec3 Utility Functions

The second part of the header file contains vector utility functions:

lyf
矩形

// vec3 Utility Functions

inline std::ostream& operator<<(std::ostream &out, const vec3 &v) {
 return out << v.e[0] << ' ' << v.e[1] << ' ' << v.e[2];
}

inline vec3 operator+(const vec3 &u, const vec3 &v) {
 return vec3(u.e[0] + v.e[0], u.e[1] + v.e[1], u.e[2] + v.e[2]);
}

inline vec3 operator-(const vec3 &u, const vec3 &v) {
 return vec3(u.e[0] - v.e[0], u.e[1] - v.e[1], u.e[2] - v.e[2]);
}

inline vec3 operator*(const vec3 &u, const vec3 &v) {
 return vec3(u.e[0] * v.e[0], u.e[1] * v.e[1], u.e[2] * v.e[2]);
}

inline vec3 operator*(double t, const vec3 &v) {
 return vec3(t*v.e[0], t*v.e[1], t*v.e[2]);
}

inline vec3 operator*(const vec3 &v, double t) {
 return t * v;
}

inline vec3 operator/(vec3 v, double t) {
 return (1/t) * v;
}

inline double dot(const vec3 &u, const vec3 &v) {
 return u.e[0] * v.e[0]
 + u.e[1] * v.e[1]
 + u.e[2] * v.e[2];
}

inline vec3 cross(const vec3 &u, const vec3 &v) {
 return vec3(u.e[1] * v.e[2] - u.e[2] * v.e[1],
 u.e[2] * v.e[0] - u.e[0] * v.e[2],
 u.e[0] * v.e[1] - u.e[1] * v.e[0]);
}

inline vec3 unit_vector(vec3 v) {
 return v / v.length();
}

Listing 5: [vec3.h] vec3 utility functions

3.3. Color Utility Functions

Using our new vec3 class, we'll create a utility function to write a single pixel's color out to the
standard output stream.

lyf
矩形

lyf
矩形

#ifndef COLOR_H
#define COLOR_H

#include "vec3.h"

#include <iostream>

void write_color(std::ostream &out, color pixel_color) {
 // Write the translated [0,255] value of each color component.
 out << static_cast<int>(255.999 * pixel_color.x()) << ' '
 << static_cast<int>(255.999 * pixel_color.y()) << ' '
 << static_cast<int>(255.999 * pixel_color.z()) << '\n';
}

#endif

Listing 6: [color.h] color utility functions

Now we can change our main to use this:

#include "color.h"
#include "vec3.h"

#include <iostream>

int main() {

 // Image

 const int image_width = 256;
 const int image_height = 256;

 // Render

 std::cout << "P3\n" << image_width << ' ' << image_height << "\n255\n";

 for (int j = image_height-1; j >= 0; --j) {
 std::cerr << "\rScanlines remaining: " << j << ' ' << std::flush;
 for (int i = 0; i < image_width; ++i) {
 color pixel_color(double(i)/(image_width-1),
double(j)/(image_height-1), 0.25);
 write_color(std::cout, pixel_color);
 }
 }

 std::cerr << "\nDone.\n";
}

Listing 7: [main.cc] Final code for the first PPM image

4. Rays, a Simple Camera, and Background

lyf
矩形

lyf
矩形

4.1. The ray Class

The one thing that all ray tracers have is a ray class and a computation of what color is seen
along a ray. Let’s think of a ray as a function . Here is a 3D position along a
line in 3D. is the ray origin and is the ray direction. The ray parameter is a real number
(double in the code). Plug in a different and moves the point along the ray. Add in
negative values and you can go anywhere on the 3D line. For positive , you get only the parts
in front of , and this is what is often called a half-line or ray.

Figure 2: Linear interpolation

The function in more verbose code form I call ray::at(t):

#ifndef RAY_H
#define RAY_H

#include "vec3.h"

class ray {
 public:
 ray() {}
 ray(const point3& origin, const vec3& direction)
 : orig(origin), dir(direction)
 {}

 point3 origin() const { return orig; }
 vec3 direction() const { return dir; }

 point3 at(double t) const {
 return orig + t*dir;
 }

 public:
 point3 orig;
 vec3 dir;
};

#endif

Listing 8: [ray.h] The ray class

P(t) = A + tb P

A b t
t P(t)

t t
A

P(t)

https://raytracing.github.io/images/fig-1.02-lerp.jpg
lyf
下划线

lyf
下划线

lyf
下划线

lyf
下划线

lyf
下划线

lyf
矩形

4.2. Sending Rays Into the Scene

Now we are ready to turn the corner and make a ray tracer. At the core, the ray tracer sends
rays through pixels and computes the color seen in the direction of those rays. The involved
steps are (1) calculate the ray from the eye to the pixel, (2) determine which objects the ray
intersects, and (3) compute a color for that intersection point. When first developing a ray
tracer, I always do a simple camera for getting the code up and running. I also make a simple
ray_color(ray) function that returns the color of the background (a simple gradient).

I’ve often gotten into trouble using square images for debugging because I transpose and
too often, so I’ll use a non-square image. For now we'll use a 16:9 aspect ratio, since that's so
common.

In addition to setting up the pixel dimensions for the rendered image, we also need to set up a
virtual viewport through which to pass our scene rays. For the standard square pixel spacing,
the viewport's aspect ratio should be the same as our rendered image. We'll just pick a viewport
two units in height. We'll also set the distance between the projection plane and the projection
point to be one unit. This is referred to as the “focal length”, not to be confused with “focus
distance”, which we'll present later.

I’ll put the “eye” (or camera center if you think of a camera) at . I will have the y-axis
go up, and the x-axis to the right. In order to respect the convention of a right handed
coordinate system, into the screen is the negative z-axis. I will traverse the screen from the
upper left hand corner, and use two offset vectors along the screen sides to move the ray
endpoint across the screen. Note that I do not make the ray direction a unit length vector
because I think not doing that makes for simpler and slightly faster code.

Figure 3: Camera geometry

x y

(0, 0, 0)

https://raytracing.github.io/images/fig-1.03-cam-geom.jpg
lyf
高亮

lyf
高亮

lyf
高亮

lyf
高亮

lyf
下划线

lyf
下划线

lyf
下划线

lyf
下划线

lyf
下划线

lyf
下划线

lyf
下划线

lyf
高亮

Below in code, the ray r goes to approximately the pixel centers (I won’t worry about
exactness for now because we’ll add antialiasing later):

#include "color.h"
#include "ray.h"
#include "vec3.h"

#include <iostream>

color ray_color(const ray& r) {
 vec3 unit_direction = unit_vector(r.direction());
 auto t = 0.5*(unit_direction.y() + 1.0);
 return (1.0-t)*color(1.0, 1.0, 1.0) + t*color(0.5, 0.7, 1.0);
}

int main() {

 // Image
 const auto aspect_ratio = 16.0 / 9.0;
 const int image_width = 400;
 const int image_height = static_cast<int>(image_width / aspect_ratio);

 // Camera

 auto viewport_height = 2.0;
 auto viewport_width = aspect_ratio * viewport_height;
 auto focal_length = 1.0;

 auto origin = point3(0, 0, 0);
 auto horizontal = vec3(viewport_width, 0, 0);
 auto vertical = vec3(0, viewport_height, 0);
 auto lower_left_corner = origin - horizontal/2 - vertical/2 - vec3(0, 0,
focal_length);

 // Render

 std::cout << "P3\n" << image_width << " " << image_height << "\n255\n";

 for (int j = image_height-1; j >= 0; --j) {
 std::cerr << "\rScanlines remaining: " << j << ' ' << std::flush;
 for (int i = 0; i < image_width; ++i) {
 auto u = double(i) / (image_width-1);
 auto v = double(j) / (image_height-1);
 ray r(origin, lower_left_corner + u*horizontal + v*vertical -
origin);
 color pixel_color = ray_color(r);
 write_color(std::cout, pixel_color);
 }
 }

 std::cerr << "\nDone.\n";
}

Listing 9: [main.cc] Rendering a blue-to-white gradient

lyf
矩形

The ray_color(ray) function linearly blends white and blue depending on the height of the
coordinate after scaling the ray direction to unit length (so). Because we're
looking at the height after normalizing the vector, you'll notice a horizontal gradient to the
color in addition to the vertical gradient.

I then did a standard graphics trick of scaling that to . When I want blue.
When I want white. In between, I want a blend. This forms a “linear blend”, or
“linear interpolation”, or “lerp” for short, between two things. A lerp is always of the form

with going from zero to one. In our case this produces:

Image 2: A blue-to-white gradient depending on ray Y coordinate

5. Adding a Sphere
Let’s add a single object to our ray tracer. People often use spheres in ray tracers because
calculating whether a ray hits a sphere is pretty straightforward.

5.1. Ray-Sphere Intersection

Recall that the equation for a sphere centered at the origin of radius is .
Put another way, if a given point is on the sphere, then . If the
given point is inside the sphere, then , and if a given point

 is outside the sphere, then .

It gets uglier if the sphere center is at :

y

−1.0 < y < 1.0
y

0.0 ≤ t ≤ 1.0 t = 1.0
t = 0.0

blendedValue = (1 − t) ⋅ startValue + t ⋅ endValue,

t

R + + =x2 y2 z2 R2

(x, y, z) + + =x2 y2 z2 R2

(x, y, z) + + <x2 y2 z2 R2

(x, y, z) + + >x2 y2 z2 R2

(, ,)Cx Cy Cz

(x − + (y − + (z − =Cx)2 Cy)2 Cz)2 r2

https://raytracing.github.io/images/img-1.02-blue-to-white.png
lyf
下划线

lyf
矩形

lyf
矩形

In graphics, you almost always want your formulas to be in terms of vectors so all the x/y/z stuff
is under the hood in the vec3 class. You might note that the vector from center

 to point is , and therefore

So the equation of the sphere in vector form is:

We can read this as “any point that satisfies this equation is on the sphere”. We want to
know if our ray ever hits the sphere anywhere. If it does hit the sphere, there is
some for which satisfies the sphere equation. So we are looking for any where this is
true:

or expanding the full form of the ray :

The rules of vector algebra are all that we would want here. If we expand that equation and
move all the terms to the left hand side we get:

The vectors and in that equation are all constant and known. The unknown is , and the
equation is a quadratic, like you probably saw in your high school math class. You can solve for
 and there is a square root part that is either positive (meaning two real solutions), negative

(meaning no real solutions), or zero (meaning one real solution). In graphics, the algebra almost
always relates very directly to the geometry. What we have is:

Figure 4: Ray-sphere intersection results

C = (, ,)Cx Cy Cz P = (x, y, z) (P − C)

(P − C) ⋅ (P − C) = (x − + (y − + (z −Cx)2 Cy)2 Cz)
2

(P − C) ⋅ (P − C) = r2

P

P(t) = A + tb

t P(t) t

(P(t) − C) ⋅ (P(t) − C) = r2

P(t)

(A + tb − C) ⋅ (A + tb − C) = r2

b ⋅ b + 2tb ⋅ (A − C) + (A − C) ⋅ (A − C) − = 0t2 r2

r t

t

https://raytracing.github.io/images/fig-1.04-ray-sphere.jpg
lyf
高亮

lyf
矩形

lyf
矩形

lyf
矩形

lyf
下划线

5.2. Creating Our First Raytraced Image

If we take that math and hard-code it into our program, we can test it by coloring red any pixel
that hits a small sphere we place at −1 on the z-axis:

bool hit_sphere(const point3& center, double radius, const ray& r) {
 vec3 oc = r.origin() - center;
 auto a = dot(r.direction(), r.direction());
 auto b = 2.0 * dot(oc, r.direction());
 auto c = dot(oc, oc) - radius*radius;
 auto discriminant = b*b - 4*a*c;
 return (discriminant > 0);
}

color ray_color(const ray& r) {
 if (hit_sphere(point3(0,0,-1), 0.5, r))
 return color(1, 0, 0);
 vec3 unit_direction = unit_vector(r.direction());
 auto t = 0.5*(unit_direction.y() + 1.0);
 return (1.0-t)*color(1.0, 1.0, 1.0) + t*color(0.5, 0.7, 1.0);
}

Listing 10: [main.cc] Rendering a red sphere

What we get is this:

Image 3: A simple red sphere

Now this lacks all sorts of things — like shading and reflection rays and more than one object
— but we are closer to halfway done than we are to our start! One thing to be aware of is that
we tested whether the ray hits the sphere at all, but solutions work fine. If you change
your sphere center to you will get exactly the same picture because you see the things
behind you. This is not a feature! We’ll fix those issues next.

t < 0
z = +1

https://raytracing.github.io/images/img-1.03-red-sphere.png
lyf
矩形

6. Surface Normals and Multiple Objects

6.1. Shading with Surface Normals

First, let’s get ourselves a surface normal so we can shade. This is a vector that is
perpendicular to the surface at the point of intersection. There are two design decisions to
make for normals. The first is whether these normals are unit length. That is convenient for
shading so I will say yes, but I won’t enforce that in the code. This could allow subtle bugs, so
be aware this is personal preference as are most design decisions like that. For a sphere, the
outward normal is in the direction of the hit point minus the center:

Figure 5: Sphere surface-normal geometry

https://raytracing.github.io/images/fig-1.05-sphere-normal.jpg
lyf
高亮

On the earth, this implies that the vector from the earth’s center to you points straight up.
Let’s throw that into the code now, and shade it. We don’t have any lights or anything yet, so
let’s just visualize the normals with a color map. A common trick used for visualizing normals
(because it’s easy and somewhat intuitive to assume is a unit length vector — so each
component is between −1 and 1) is to map each component to the interval from 0 to 1, and
then map x/y/z to r/g/b. For the normal, we need the hit point, not just whether we hit or not.
We only have one sphere in the scene, and it's directly in front of the camera, so we won't worry
about negative values of yet. We'll just assume the closest hit point (smallest). These
changes in the code let us compute and visualize :

double hit_sphere(const point3& center, double radius, const ray& r) {
 vec3 oc = r.origin() - center;
 auto a = dot(r.direction(), r.direction());
 auto b = 2.0 * dot(oc, r.direction());
 auto c = dot(oc, oc) - radius*radius;
 auto discriminant = b*b - 4*a*c;
 if (discriminant < 0) {
 return -1.0;
 } else {
 return (-b - sqrt(discriminant)) / (2.0*a);
 }
}

color ray_color(const ray& r) {
 auto t = hit_sphere(point3(0,0,-1), 0.5, r);
 if (t > 0.0) {
 vec3 N = unit_vector(r.at(t) - vec3(0,0,-1));
 return 0.5*color(N.x()+1, N.y()+1, N.z()+1);
 }
 vec3 unit_direction = unit_vector(r.direction());
 t = 0.5*(unit_direction.y() + 1.0);
 return (1.0-t)*color(1.0, 1.0, 1.0) + t*color(0.5, 0.7, 1.0);
}

Listing 11: [main.cc] Rendering surface normals on a sphere

n

t t
n

lyf
高亮

lyf
高亮

lyf
矩形

And that yields this picture:

Image 4: A sphere colored according to its normal vectors

6.2. Simplifying the Ray-Sphere Intersection Code

Let’s revisit the ray-sphere equation:

double hit_sphere(const point3& center, double radius, const ray& r) {
 vec3 oc = r.origin() - center;
 auto a = dot(r.direction(), r.direction());
 auto b = 2.0 * dot(oc, r.direction());
 auto c = dot(oc, oc) - radius*radius;
 auto discriminant = b*b - 4*a*c;

 if (discriminant < 0) {
 return -1.0;
 } else {
 return (-b - sqrt(discriminant)) / (2.0*a);
 }
}

Listing 12: [main.cc] Ray-sphere intersection code (before)

First, recall that a vector dotted with itself is equal to the squared length of that vector.

Second, notice how the equation for b has a factor of two in it. Consider what happens to the
quadratic equation if :b = 2h

−b ± − 4acb2− −−−−−−√

2a

=
−2h ± (2h − 4ac)2− −−−−−−−−√

2a

https://raytracing.github.io/images/img-1.04-normals-sphere.png

Using these observations, we can now simplify the sphere-intersection code to this:

double hit_sphere(const point3& center, double radius, const ray& r) {
 vec3 oc = r.origin() - center;
 auto a = r.direction().length_squared();
 auto half_b = dot(oc, r.direction());
 auto c = oc.length_squared() - radius*radius;
 auto discriminant = half_b*half_b - a*c;

 if (discriminant < 0) {
 return -1.0;
 } else {
 return (-half_b - sqrt(discriminant)) / a;
 }
}

Listing 13: [main.cc] Ray-sphere intersection code (after)

6.3. An Abstraction for Hittable Objects

Now, how about several spheres? While it is tempting to have an array of spheres, a very clean
solution is the make an “abstract class” for anything a ray might hit, and make both a sphere
and a list of spheres just something you can hit. What that class should be called is something
of a quandary — calling it an “object” would be good if not for “object oriented”
programming. “Surface” is often used, with the weakness being maybe we will want volumes.
“hittable” emphasizes the member function that unites them. I don’t love any of these, but I
will go with “hittable”.

=
−2h ± 2 − ach2− −−−−−√

2a

=
−h ± − ach2− −−−−−√

a

lyf
矩形

This hittable abstract class will have a hit function that takes in a ray. Most ray tracers have
found it convenient to add a valid interval for hits to , so the hit only “counts” if

. For the initial rays this is positive , but as we will see, it can help some
details in the code to have an interval to . One design question is whether to do
things like compute the normal if we hit something. We might end up hitting something closer
as we do our search, and we will only need the normal of the closest thing. I will go with the
simple solution and compute a bundle of stuff I will store in some structure. Here’s the
abstract class:

#ifndef HITTABLE_H
#define HITTABLE_H

#include "ray.h"

struct hit_record {
 point3 p;
 vec3 normal;
 double t;
};

class hittable {
 public:
 virtual bool hit(const ray& r, double t_min, double t_max, hit_record&
rec) const = 0;
};

#endif

Listing 14: [hittable.h] The hittable class

tmin tmax

< t <tmin tmax t
tmin tmax

lyf
矩形

And here’s the sphere:

#ifndef SPHERE_H
#define SPHERE_H

#include "hittable.h"
#include "vec3.h"

class sphere : public hittable {
 public:
 sphere() {}
 sphere(point3 cen, double r) : center(cen), radius(r) {};

 virtual bool hit(
 const ray& r, double t_min, double t_max, hit_record& rec) const
override;

 public:
 point3 center;
 double radius;
};

bool sphere::hit(const ray& r, double t_min, double t_max, hit_record& rec)
const {
 vec3 oc = r.origin() - center;
 auto a = r.direction().length_squared();
 auto half_b = dot(oc, r.direction());
 auto c = oc.length_squared() - radius*radius;

 auto discriminant = half_b*half_b - a*c;
 if (discriminant < 0) return false;
 auto sqrtd = sqrt(discriminant);

 // Find the nearest root that lies in the acceptable range.
 auto root = (-half_b - sqrtd) / a;
 if (root < t_min || t_max < root) {
 root = (-half_b + sqrtd) / a;
 if (root < t_min || t_max < root)
 return false;
 }

 rec.t = root;
 rec.p = r.at(rec.t);
 rec.normal = (rec.p - center) / radius;

 return true;
}

#endif

Listing 15: [sphere.h] The sphere class

6.4. Front Faces Versus Back Faces

lyf
矩形

The second design decision for normals is whether they should always point out. At present,
the normal found will always be in the direction of the center to the intersection point (the
normal points out). If the ray intersects the sphere from the outside, the normal points against
the ray. If the ray intersects the sphere from the inside, the normal (which always points out)
points with the ray. Alternatively, we can have the normal always point against the ray. If the ray
is outside the sphere, the normal will point outward, but if the ray is inside the sphere, the
normal will point inward.

Figure 6: Possible directions for sphere surface-normal geometry

We need to choose one of these possibilities because we will eventually want to determine
which side of the surface that the ray is coming from. This is important for objects that are
rendered differently on each side, like the text on a two-sided sheet of paper, or for objects that
have an inside and an outside, like glass balls.

If we decide to have the normals always point out, then we will need to determine which side
the ray is on when we color it. We can figure this out by comparing the ray with the normal. If
the ray and the normal face in the same direction, the ray is inside the object, if the ray and the
normal face in the opposite direction, then the ray is outside the object. This can be determined
by taking the dot product of the two vectors, where if their dot is positive, the ray is inside the
sphere.

if (dot(ray_direction, outward_normal) > 0.0) {
 // ray is inside the sphere
 ...
} else {
 // ray is outside the sphere
 ...
}

https://raytracing.github.io/images/fig-1.06-normal-sides.jpg
lyf
高亮

lyf
高亮

lyf
高亮

lyf
下划线

lyf
高亮

lyf
高亮

lyf
矩形

Listing 16: Comparing the ray and the normal

If we decide to have the normals always point against the ray, we won't be able to use the dot
product to determine which side of the surface the ray is on. Instead, we would need to store
that information:

bool front_face;
if (dot(ray_direction, outward_normal) > 0.0) {
 // ray is inside the sphere
 normal = -outward_normal;
 front_face = false;
} else {
 // ray is outside the sphere
 normal = outward_normal;
 front_face = true;
}

Listing 17: Remembering the side of the surface

We can set things up so that normals always point “outward” from the surface, or always
point against the incident ray. This decision is determined by whether you want to determine
the side of the surface at the time of geometry intersection or at the time of coloring. In this
book we have more material types than we have geometry types, so we'll go for less work and
put the determination at geometry time. This is simply a matter of preference, and you'll see
both implementations in the literature.

We add the front_face bool to the hit_record struct. We'll also add a function to solve this
calculation for us.

struct hit_record {
 point3 p;
 vec3 normal;
 double t;
 bool front_face;

 inline void set_face_normal(const ray& r, const vec3& outward_normal) {
 front_face = dot(r.direction(), outward_normal) < 0;
 normal = front_face ? outward_normal :-outward_normal;
 }
};

Listing 18: [hittable.h] Adding front-face tracking to hit_record

lyf
矩形

lyf
高亮

lyf
矩形

And then we add the surface side determination to the class:

bool sphere::hit(const ray& r, double t_min, double t_max, hit_record& rec)
const {
 ...

 rec.t = root;
 rec.p = r.at(rec.t);
 vec3 outward_normal = (rec.p - center) / radius;
 rec.set_face_normal(r, outward_normal);

 return true;
}

Listing 19: [sphere.h] The sphere class with normal determination

6.5. A List of Hittable Objects

lyf
矩形

lyf
矩形

We have a generic object called a hittable that the ray can intersect with. We now add a class
that stores a list of hittables:

#ifndef HITTABLE_LIST_H
#define HITTABLE_LIST_H

#include "hittable.h"

#include <memory>
#include <vector>

using std::shared_ptr;
using std::make_shared;

class hittable_list : public hittable {
 public:
 hittable_list() {}
 hittable_list(shared_ptr<hittable> object) { add(object); }

 void clear() { objects.clear(); }
 void add(shared_ptr<hittable> object) { objects.push_back(object); }

 virtual bool hit(
 const ray& r, double t_min, double t_max, hit_record& rec) const
override;

 public:
 std::vector<shared_ptr<hittable>> objects;
};

bool hittable_list::hit(const ray& r, double t_min, double t_max, hit_record&
rec) const {
 hit_record temp_rec;
 bool hit_anything = false;
 auto closest_so_far = t_max;

 for (const auto& object : objects) {
 if (object->hit(r, t_min, closest_so_far, temp_rec)) {
 hit_anything = true;
 closest_so_far = temp_rec.t;
 rec = temp_rec;
 }
 }

 return hit_anything;
}

#endif

Listing 20: [hittable_list.h] The hittable_list class

lyf
矩形

6.6. Some New C++ Features

The hittable_list class code uses two C++ features that may trip you up if you're not normally
a C++ programmer: vector and shared_ptr.

shared_ptr<type> is a pointer to some allocated type, with reference-counting semantics. Every
time you assign its value to another shared pointer (usually with a simple assignment), the
reference count is incremented. As shared pointers go out of scope (like at the end of a block or
function), the reference count is decremented. Once the count goes to zero, the object is
deleted.

Typically, a shared pointer is first initialized with a newly-allocated object, something like this:

shared_ptr<double> double_ptr = make_shared<double>(0.37);
shared_ptr<vec3> vec3_ptr = make_shared<vec3>(1.414214, 2.718281,
1.618034);
shared_ptr<sphere> sphere_ptr = make_shared<sphere>(point3(0,0,0), 1.0);

Listing 21: An example allocation using shared_ptr

make_shared<thing>(thing_constructor_params ...) allocates a new instance of type thing,
using the constructor parameters. It returns a shared_ptr<thing>.

Since the type can be automatically deduced by the return type of make_shared<type>(...), the
above lines can be more simply expressed using C++'s auto type specifier:

auto double_ptr = make_shared<double>(0.37);
auto vec3_ptr = make_shared<vec3>(1.414214, 2.718281, 1.618034);
auto sphere_ptr = make_shared<sphere>(point3(0,0,0), 1.0);

Listing 22: An example allocation using shared_ptr with auto type

We'll use shared pointers in our code, because it allows multiple geometries to share a common
instance (for example, a bunch of spheres that all use the same texture map material), and
because it makes memory management automatic and easier to reason about.

std::shared_ptr is included with the <memory> header.

The second C++ feature you may be unfamiliar with is std::vector. This is a generic array-like
collection of an arbitrary type. Above, we use a collection of pointers to hittable. std::vector
automatically grows as more values are added: objects.push_back(object) adds a value to the
end of the std::vector member variable objects.

std::vector is included with the <vector> header.

Finally, the using statements in listing 20 tell the compiler that we'll be getting shared_ptr and
make_shared from the std library, so we don't need to prefex these with std:: every time we
reference them.

6.7. Common Constants and Utility Functions

lyf
矩形

lyf
矩形

We need some math constants that we conveniently define in their own header file. For now we
only need infinity, but we will also throw our own definition of pi in there, which we will need
later. There is no standard portable definition of pi, so we just define our own constant for it.
We'll throw common useful constants and future utility functions in rtweekend.h, our general
main header file.

#ifndef RTWEEKEND_H
#define RTWEEKEND_H

#include <cmath>
#include <limits>
#include <memory>

// Usings

using std::shared_ptr;
using std::make_shared;
using std::sqrt;

// Constants

const double infinity = std::numeric_limits<double>::infinity();
const double pi = 3.1415926535897932385;

// Utility Functions

inline double degrees_to_radians(double degrees) {
 return degrees * pi / 180.0;
}

// Common Headers

#include "ray.h"
#include "vec3.h"

#endif

Listing 23: [rtweekend.h] The rtweekend.h common header

lyf
矩形

And the new main:

#include "rtweekend.h"

#include "color.h"
#include "hittable_list.h"
#include "sphere.h"

#include <iostream>
color ray_color(const ray& r, const hittable& world) {
 hit_record rec;
 if (world.hit(r, 0, infinity, rec)) {
 return 0.5 * (rec.normal + color(1,1,1));
 }
 vec3 unit_direction = unit_vector(r.direction());
 auto t = 0.5*(unit_direction.y() + 1.0);
 return (1.0-t)*color(1.0, 1.0, 1.0) + t*color(0.5, 0.7, 1.0);
}

int main() {

 // Image

 const auto aspect_ratio = 16.0 / 9.0;
 const int image_width = 400;
 const int image_height = static_cast<int>(image_width / aspect_ratio);

 // World
 hittable_list world;
 world.add(make_shared<sphere>(point3(0,0,-1), 0.5));
 world.add(make_shared<sphere>(point3(0,-100.5,-1), 100));

 // Camera

 auto viewport_height = 2.0;
 auto viewport_width = aspect_ratio * viewport_height;
 auto focal_length = 1.0;

 auto origin = point3(0, 0, 0);
 auto horizontal = vec3(viewport_width, 0, 0);
 auto vertical = vec3(0, viewport_height, 0);
 auto lower_left_corner = origin - horizontal/2 - vertical/2 - vec3(0, 0,
focal_length);

 // Render

 std::cout << "P3\n" << image_width << ' ' << image_height << "\n255\n";

 for (int j = image_height-1; j >= 0; --j) {
 std::cerr << "\rScanlines remaining: " << j << ' ' << std::flush;
 for (int i = 0; i < image_width; ++i) {
 auto u = double(i) / (image_width-1);
 auto v = double(j) / (image_height-1);
 ray r(origin, lower_left_corner + u*horizontal + v*vertical);
 color pixel_color = ray_color(r, world);
 write_color(std::cout, pixel_color);
 }
 }

lyf
矩形

 std::cerr << "\nDone.\n";
}

Listing 24: [main.cc] The new main with hittables

This yields a picture that is really just a visualization of where the spheres are along with their
surface normal. This is often a great way to look at your model for flaws and characteristics.

Image 5: Resulting render of normals-colored sphere with ground

7. Antialiasing
When a real camera takes a picture, there are usually no jaggies along edges because the edge
pixels are a blend of some foreground and some background. We can get the same effect by
averaging a bunch of samples inside each pixel. We will not bother with stratification. This is
controversial, but is usual for my programs. For some ray tracers it is critical, but the kind of
general one we are writing doesn’t benefit very much from it and it makes the code uglier. We
abstract the camera class a bit so we can make a cooler camera later.

7.1. Some Random Number Utilities

One thing we need is a random number generator that returns real random numbers. We need
a function that returns a canonical random number which by convention returns a random real
in the range . The “less than” before the 1 is important as we will sometimes take
advantage of that.

0 ≤ r < 1

https://raytracing.github.io/images/img-1.05-normals-sphere-ground.png
lyf
矩形

A simple approach to this is to use the rand() function that can be found in <cstdlib>. This
function returns a random integer in the range 0 and RAND_MAX. Hence we can get a real random
number as desired with the following code snippet, added to rtweekend.h:

#include <cstdlib>
...

inline double random_double() {
 // Returns a random real in [0,1).
 return rand() / (RAND_MAX + 1.0);
}

inline double random_double(double min, double max) {
 // Returns a random real in [min,max).
 return min + (max-min)*random_double();
}

Listing 25: [rtweekend.h] random_double() functions

C++ did not traditionally have a standard random number generator, but newer versions of
C++ have addressed this issue with the <random> header (if imperfectly according to some
experts). If you want to use this, you can obtain a random number with the conditions we need
as follows:

#include <random>

inline double random_double() {
 static std::uniform_real_distribution<double> distribution(0.0, 1.0);
 static std::mt19937 generator;
 return distribution(generator);
}

Listing 26: [rtweekend.h] random_double(), alternate implemenation

7.2. Generating Pixels with Multiple Samples

lyf
矩形

lyf
矩形

For a given pixel we have several samples within that pixel and send rays through each of the
samples. The colors of these rays are then averaged:

Figure 7: Pixel samples

https://raytracing.github.io/images/fig-1.07-pixel-samples.jpg

Now's a good time to create a camera class to manage our virtual camera and the related tasks
of scene scampling. The following class implements a simple camera using the axis-aligned
camera from before:

#ifndef CAMERA_H
#define CAMERA_H

#include "rtweekend.h"

class camera {
 public:
 camera() {
 auto aspect_ratio = 16.0 / 9.0;
 auto viewport_height = 2.0;
 auto viewport_width = aspect_ratio * viewport_height;
 auto focal_length = 1.0;

 origin = point3(0, 0, 0);
 horizontal = vec3(viewport_width, 0.0, 0.0);
 vertical = vec3(0.0, viewport_height, 0.0);
 lower_left_corner = origin - horizontal/2 - vertical/2 - vec3(0, 0,
focal_length);
 }

 ray get_ray(double u, double v) const {
 return ray(origin, lower_left_corner + u*horizontal + v*vertical -
origin);
 }

 private:
 point3 origin;
 point3 lower_left_corner;
 vec3 horizontal;
 vec3 vertical;
};
#endif

Listing 27: [camera.h] The camera class

To handle the multi-sampled color computation, we'll update the write_color() function.
Rather than adding in a fractional contribution each time we accumulate more light to the
color, just add the full color each iteration, and then perform a single divide at the end (by the
number of samples) when writing out the color. In addition, we'll add a handy utility function to
the rtweekend.h utility header: clamp(x,min,max), which clamps the value x to the range
[min,max]:

inline double clamp(double x, double min, double max) {
 if (x < min) return min;
 if (x > max) return max;
 return x;
}

Listing 28: [rtweekend.h] The clamp() utility function

lyf
矩形

lyf
矩形

void write_color(std::ostream &out, color pixel_color, int samples_per_pixel) {
 auto r = pixel_color.x();
 auto g = pixel_color.y();
 auto b = pixel_color.z();

 // Divide the color by the number of samples.
 auto scale = 1.0 / samples_per_pixel;
 r *= scale;
 g *= scale;
 b *= scale;

 // Write the translated [0,255] value of each color component.
 out << static_cast<int>(256 * clamp(r, 0.0, 0.999)) << ' '
 << static_cast<int>(256 * clamp(g, 0.0, 0.999)) << ' '
 << static_cast<int>(256 * clamp(b, 0.0, 0.999)) << '\n';
}

Listing 29: [color.h] The multi-sample write_color() function

lyf
矩形

lyf
矩形

Main is also changed:

#include "camera.h"

...

int main() {

 // Image

 const auto aspect_ratio = 16.0 / 9.0;
 const int image_width = 400;
 const int image_height = static_cast<int>(image_width / aspect_ratio);
 const int samples_per_pixel = 100;

 // World

 hittable_list world;
 world.add(make_shared<sphere>(point3(0,0,-1), 0.5));
 world.add(make_shared<sphere>(point3(0,-100.5,-1), 100));

 // Camera
 camera cam;

 // Render

 std::cout << "P3\n" << image_width << " " << image_height << "\n255\n";

 for (int j = image_height-1; j >= 0; --j) {
 std::cerr << "\rScanlines remaining: " << j << ' ' << std::flush;
 for (int i = 0; i < image_width; ++i) {
 color pixel_color(0, 0, 0);
 for (int s = 0; s < samples_per_pixel; ++s) {
 auto u = (i + random_double()) / (image_width-1);
 auto v = (j + random_double()) / (image_height-1);
 ray r = cam.get_ray(u, v);
 pixel_color += ray_color(r, world);
 }
 write_color(std::cout, pixel_color, samples_per_pixel);
 }
 }

 std::cerr << "\nDone.\n";
}

Listing 30: [main.cc] Rendering with multi-sampled pixels

Zooming into the image that is produced, we can see the difference in edge pixels.

lyf
矩形

Image 6: Before and after antialiasing

8. Diffuse Materials
Now that we have objects and multiple rays per pixel, we can make some realistic looking
materials. We’ll start with diffuse (matte) materials. One question is whether we mix and
match geometry and materials (so we can assign a material to multiple spheres, or vice versa)
or if geometry and material are tightly bound (that could be useful for procedural objects
where the geometry and material are linked). We’ll go with separate — which is usual in most
renderers — but do be aware of the limitation.

8.1. A Simple Diffuse Material

https://raytracing.github.io/images/img-1.06-antialias-before-after.png

Diffuse objects that don’t emit light merely take on the color of their surroundings, but they
modulate that with their own intrinsic color. Light that reflects off a diffuse surface has its
direction randomized. So, if we send three rays into a crack between two diffuse surfaces they
will each have different random behavior:

Figure 8: Light ray bounces

They also might be absorbed rather than reflected. The darker the surface, the more likely
absorption is. (That’s why it is dark!) Really any algorithm that randomizes direction will
produce surfaces that look matte. One of the simplest ways to do this turns out to be exactly
correct for ideal diffuse surfaces. (I used to do it as a lazy hack that approximates
mathematically ideal Lambertian.)

(Reader Vassillen Chizhov proved that the lazy hack is indeed just a lazy hack and is inaccurate.
The correct representation of ideal Lambertian isn't much more work, and is presented at the
end of the chapter.)

https://raytracing.github.io/images/fig-1.08-light-bounce.jpg

There are two unit radius spheres tangent to the hit point of a surface. These two spheres
have a center of and , where is the normal of the surface. The sphere with a
center at is considered inside the surface, whereas the sphere with center is
considered outside the surface. Select the tangent unit radius sphere that is on the same side of
the surface as the ray origin. Pick a random point inside this unit radius sphere and send a
ray from the hit point to the random point (this is the vector):

Figure 9: Generating a random diffuse bounce ray

p
(P + n) (P − n) n

(P − n) (P + n)

S

P S (S − P)

https://raytracing.github.io/images/fig-1.09-rand-vec.jpg
lyf
高亮

lyf
高亮

We need a way to pick a random point in a unit radius sphere. We’ll use what is usually the
easiest algorithm: a rejection method. First, pick a random point in the unit cube where x, y, and
z all range from −1 to +1. Reject this point and try again if the point is outside the sphere.

class vec3 {
 public:
 ...
 inline static vec3 random() {
 return vec3(random_double(), random_double(), random_double());
 }

 inline static vec3 random(double min, double max) {
 return vec3(random_double(min,max), random_double(min,max),
random_double(min,max));
 }

Listing 31: [vec3.h] vec3 random utility functions

vec3 random_in_unit_sphere() {
 while (true) {
 auto p = vec3::random(-1,1);
 if (p.length_squared() >= 1) continue;
 return p;
 }
}

Listing 32: [vec3.h] The random_in_unit_sphere() function

Then update the ray_color() function to use the new random direction generator:

color ray_color(const ray& r, const hittable& world) {
 hit_record rec;

 if (world.hit(r, 0, infinity, rec)) {
 point3 target = rec.p + rec.normal + random_in_unit_sphere();
 return 0.5 * ray_color(ray(rec.p, target - rec.p), world);
 }

 vec3 unit_direction = unit_vector(r.direction());
 auto t = 0.5*(unit_direction.y() + 1.0);
 return (1.0-t)*color(1.0, 1.0, 1.0) + t*color(0.5, 0.7, 1.0);
}

Listing 33: [main.cc] ray_color() using a random ray direction

8.2. Limiting the Number of Child Rays

lyf
高亮

lyf
矩形

lyf
矩形

lyf
矩形

There's one potential problem lurking here. Notice that the ray_color function is recursive.
When will it stop recursing? When it fails to hit anything. In some cases, however, that may be a
long time — long enough to blow the stack. To guard against that, let's limit the maximum
recursion depth, returning no light contribution at the maximum depth:

color ray_color(const ray& r, const hittable& world, int depth) {
 hit_record rec;

 // If we've exceeded the ray bounce limit, no more light is gathered.
 if (depth <= 0)
 return color(0,0,0);

 if (world.hit(r, 0, infinity, rec)) {
 point3 target = rec.p + rec.normal + random_in_unit_sphere();
 return 0.5 * ray_color(ray(rec.p, target - rec.p), world, depth-1);
 }

 vec3 unit_direction = unit_vector(r.direction());
 auto t = 0.5*(unit_direction.y() + 1.0);
 return (1.0-t)*color(1.0, 1.0, 1.0) + t*color(0.5, 0.7, 1.0);
}

...

int main() {

 // Image

 const auto aspect_ratio = 16.0 / 9.0;
 const int image_width = 400;
 const int image_height = static_cast<int>(image_width / aspect_ratio);
 const int samples_per_pixel = 100;
 const int max_depth = 50;
 ...

 // Render

 std::cout << "P3\n" << image_width << " " << image_height << "\n255\n";

 for (int j = image_height-1; j >= 0; --j) {
 std::cerr << "\rScanlines remaining: " << j << ' ' << std::flush;
 for (int i = 0; i < image_width; ++i) {
 color pixel_color(0, 0, 0);
 for (int s = 0; s < samples_per_pixel; ++s) {
 auto u = (i + random_double()) / (image_width-1);
 auto v = (j + random_double()) / (image_height-1);
 ray r = cam.get_ray(u, v);
 pixel_color += ray_color(r, world, max_depth);
 }
 write_color(std::cout, pixel_color, samples_per_pixel);
 }
 }

 std::cerr << "\nDone.\n";
}

lyf
矩形

Listing 34: [main.cc] ray_color() with depth limiting

This gives us:

Image 7: First render of a diffuse sphere

8.3. Using Gamma Correction for Accurate Color
Intensity

https://raytracing.github.io/images/img-1.07-first-diffuse.png

Note the shadowing under the sphere. This picture is very dark, but our spheres only absorb
half the energy on each bounce, so they are 50% reflectors. If you can’t see the shadow,
don’t worry, we will fix that now. These spheres should look pretty light (in real life, a light
grey). The reason for this is that almost all image viewers assume that the image is “gamma
corrected”, meaning the 0 to 1 values have some transform before being stored as a byte.
There are many good reasons for that, but for our purposes we just need to be aware of it. To a
first approximation, we can use “gamma 2” which means raising the color to the power

, or in our simple case ½, which is just square-root:

void write_color(std::ostream &out, color pixel_color, int samples_per_pixel) {
 auto r = pixel_color.x();
 auto g = pixel_color.y();
 auto b = pixel_color.z();

 // Divide the color by the number of samples and gamma-correct for
gamma=2.0.
 auto scale = 1.0 / samples_per_pixel;
 r = sqrt(scale * r);
 g = sqrt(scale * g);
 b = sqrt(scale * b);

 // Write the translated [0,255] value of each color component.
 out << static_cast<int>(256 * clamp(r, 0.0, 0.999)) << ' '
 << static_cast<int>(256 * clamp(g, 0.0, 0.999)) << ' '
 << static_cast<int>(256 * clamp(b, 0.0, 0.999)) << '\n';
}

Listing 35: [color.h] write_color(), with gamma correction

That yields light grey, as we desire:

Image 8: Diffuse sphere, with gamma correction

8.4. Fixing Shadow Acne

1/gamma

https://raytracing.github.io/images/img-1.08-gamma-correct.png
lyf
高亮

lyf
高亮

lyf
矩形

There’s also a subtle bug in there. Some of the reflected rays hit the object they are reflecting
off of not at exactly , but instead at or or whatever
floating point approximation the sphere intersector gives us. So we need to ignore hits very
near zero:

if (world.hit(r, 0.001, infinity, rec)) {

Listing 36: [main.cc] Calculating reflected ray origins with tolerance

This gets rid of the shadow acne problem. Yes it is really called that.

8.5. True Lambertian Reflection

t = 0 t = −0.0000001 t = 0.00000001

lyf
矩形

lyf
矩形

The rejection method presented here produces random points in the unit ball offset along the
surface normal. This corresponds to picking directions on the hemisphere with high probability
close to the normal, and a lower probability of scattering rays at grazing angles. This
distribution scales by the where is the angle from the normal. This is useful since
light arriving at shallow angles spreads over a larger area, and thus has a lower contribution to
the final color.

However, we are interested in a Lambertian distribution, which has a distribution of .
True Lambertian has the probability higher for ray scattering close to the normal, but the
distribution is more uniform. This is achieved by picking random points on the surface of the
unit sphere, offset along the surface normal. Picking random points on the unit sphere can be
achieved by picking random points in the unit sphere, and then normalizing those.

inline vec3 random_in_unit_sphere() {
 ...
}
vec3 random_unit_vector() {
 return unit_vector(random_in_unit_sphere());
}

Listing 37: [vec3.h] The random_unit_vector() function

Figure 10: Generating a random unit vector

(ϕ)cos3 ϕ

cos(ϕ)

https://raytracing.github.io/images/fig-1.10-rand-unitvec.png
lyf
矩形

This random_unit_vector() is a drop-in replacement for the existing random_in_unit_sphere()
function.

color ray_color(const ray& r, const hittable& world, int depth) {
 hit_record rec;

 // If we've exceeded the ray bounce limit, no more light is gathered.
 if (depth <= 0)
 return color(0,0,0);

 if (world.hit(r, 0.001, infinity, rec)) {
 point3 target = rec.p + rec.normal + random_unit_vector();
 return 0.5 * ray_color(ray(rec.p, target - rec.p), world, depth-1);
 }

 vec3 unit_direction = unit_vector(r.direction());
 auto t = 0.5*(unit_direction.y() + 1.0);
 return (1.0-t)*color(1.0, 1.0, 1.0) + t*color(0.5, 0.7, 1.0);
}

Listing 38: [main.cc] ray_color() with replacement diffuse

After rendering we get a similar image:

Image 9: Correct rendering of Lambertian spheres

It's hard to tell the difference between these two diffuse methods, given that our scene of two
spheres is so simple, but you should be able to notice two important visual differences:

1. The shadows are less pronounced after the change
2. Both spheres are lighter in appearance after the change

Both of these changes are due to the more uniform scattering of the light rays, fewer rays are
scattering toward the normal. This means that for diffuse objects, they will appear lighter
because more light bounces toward the camera. For the shadows, less light bounces straight-
up, so the parts of the larger sphere directly underneath the smaller sphere are brighter.

https://raytracing.github.io/images/img-1.09-correct-lambertian.png
lyf
矩形

8.6. An Alternative Diffuse Formulation

The initial hack presented in this book lasted a long time before it was proven to be an
incorrect approximation of ideal Lambertian diffuse. A big reason that the error persisted for so
long is that it can be difficult to:

1. Mathematically prove that the probability distribution is incorrect
2. Intuitively explain why a distribution is desirable (and what it would look like)

Not a lot of common, everyday objects are perfectly diffuse, so our visual intuition of how these
objects behave under light can be poorly formed.

In the interest of learning, we are including an intuitive and easy to understand diffuse method.
For the two methods above we had a random vector, first of random length and then of unit
length, offset from the hit point by the normal. It may not be immediately obvious why the
vectors should be displaced by the normal.

A more intuitive approach is to have a uniform scatter direction for all angles away from the hit
point, with no dependence on the angle from the normal. Many of the first raytracing papers
used this diffuse method (before adopting Lambertian diffuse).

vec3 random_in_hemisphere(const vec3& normal) {
 vec3 in_unit_sphere = random_in_unit_sphere();
 if (dot(in_unit_sphere, normal) > 0.0) // In the same hemisphere as the
normal
 return in_unit_sphere;
 else
 return -in_unit_sphere;
}

Listing 39: [vec3.h] The random_in_hemisphere(normal) function

cos(ϕ)

lyf
高亮

lyf
矩形

Plugging the new formula into the ray_color() function:

color ray_color(const ray& r, const hittable& world, int depth) {
 hit_record rec;

 // If we've exceeded the ray bounce limit, no more light is gathered.
 if (depth <= 0)
 return color(0,0,0);

 if (world.hit(r, 0.001, infinity, rec)) {
 point3 target = rec.p + random_in_hemisphere(rec.normal);
 return 0.5 * ray_color(ray(rec.p, target - rec.p), world, depth-1);
 }

 vec3 unit_direction = unit_vector(r.direction());
 auto t = 0.5*(unit_direction.y() + 1.0);
 return (1.0-t)*color(1.0, 1.0, 1.0) + t*color(0.5, 0.7, 1.0);
}

Listing 40: [main.cc] ray_color() with hemispherical scattering

Gives us the following image:

Image 10: Rendering of diffuse spheres with hemispherical scattering

Scenes will become more complicated over the course of the book. You are encouraged to
switch between the different diffuse renderers presented here. Most scenes of interest will
contain a disproportionate amount of diffuse materials. You can gain valuable insight by
understanding the effect of different diffuse methods on the lighting of the scene.

9. Metal

https://raytracing.github.io/images/img-1.10-rand-hemispherical.png
lyf
矩形

9.1. An Abstract Class for Materials

If we want different objects to have different materials, we have a design decision. We could
have a universal material with lots of parameters and different material types just zero out some
of those parameters. This is not a bad approach. Or we could have an abstract material class
that encapsulates behavior. I am a fan of the latter approach. For our program the material
needs to do two things:

1. Produce a scattered ray (or say it absorbed the incident ray).
2. If scattered, say how much the ray should be attenuated.

This suggests the abstract class:

#ifndef MATERIAL_H
#define MATERIAL_H

#include "rtweekend.h"

struct hit_record;

class material {
 public:
 virtual bool scatter(
 const ray& r_in, const hit_record& rec, color& attenuation, ray&
scattered
) const = 0;
};

#endif

Listing 41: [material.h] The material class

9.2. A Data Structure to Describe Ray-Object
Intersections

lyf
下划线

lyf
下划线

lyf
矩形

lyf
矩形

The hit_record is to avoid a bunch of arguments so we can stuff whatever info we want in
there. You can use arguments instead; it’s a matter of taste. Hittables and materials need to
know each other so there is some circularity of the references. In C++ you just need to alert the
compiler that the pointer is to a class, which the “class material” in the hittable class below
does:

#include "rtweekend.h"

class material;

struct hit_record {
 point3 p;
 vec3 normal;
 shared_ptr<material> mat_ptr;
 double t;
 bool front_face;

 inline void set_face_normal(const ray& r, const vec3& outward_normal) {
 front_face = dot(r.direction(), outward_normal) < 0;
 normal = front_face ? outward_normal :-outward_normal;
 }
};

Listing 42: [hittable.h] Hit record with added material pointer

What we have set up here is that material will tell us how rays interact with the surface.
hit_record is just a way to stuff a bunch of arguments into a struct so we can send them as a
group. When a ray hits a surface (a particular sphere for example), the material pointer in the
hit_record will be set to point at the material pointer the sphere was given when it was set up
in main() when we start. When the ray_color() routine gets the hit_record it can call member
functions of the material pointer to find out what ray, if any, is scattered.

lyf
矩形

To achieve this, we must have a reference to the material for our sphere class to returned within
hit_record. See the highlighted lines below:

class sphere : public hittable {
 public:
 sphere() {}
 sphere(point3 cen, double r, shared_ptr<material> m)
 : center(cen), radius(r), mat_ptr(m) {};

 virtual bool hit(
 const ray& r, double t_min, double t_max, hit_record& rec) const
override;

 public:
 point3 center;
 double radius;
 shared_ptr<material> mat_ptr;
};

bool sphere::hit(const ray& r, double t_min, double t_max, hit_record& rec)
const {
 ...

 rec.t = root;
 rec.p = r.at(rec.t);
 vec3 outward_normal = (rec.p - center) / radius;
 rec.set_face_normal(r, outward_normal);
 rec.mat_ptr = mat_ptr;

 return true;
}

Listing 43: [sphere.h] Ray-sphere intersection with added material information

9.3. Modeling Light Scatter and Reflectance

lyf
矩形

For the Lambertian (diffuse) case we already have, it can either scatter always and attenuate by
its reflectance , or it can scatter with no attenuation but absorb the fraction of the rays,
or it could be a mixture of those strategies. For Lambertian materials we get this simple class:

class lambertian : public material {
 public:
 lambertian(const color& a) : albedo(a) {}

 virtual bool scatter(
 const ray& r_in, const hit_record& rec, color& attenuation, ray&
scattered
) const override {
 auto scatter_direction = rec.normal + random_unit_vector();
 scattered = ray(rec.p, scatter_direction);
 attenuation = albedo;
 return true;
 }

 public:
 color albedo;
};

Listing 44: [material.h] The lambertian material class

Note we could just as well only scatter with some probability and have attenuation be
. Your choice.

If you read the code above carefully, you'll notice a small chance of mischief. If the random unit
vector we generate is exactly opposite the normal vector, the two will sum to zero, which will
result in a zero scatter direction vector. This leads to bad scenarios later on (infinities and NaNs),
so we need to intercept the condition before we pass it on.

R 1 − R

p
albedo/p

lyf
矩形

In service of this, we'll create a new vector method — vec3::near_zero() — that returns true if
the vector is very close to zero in all dimensions.

class vec3 {
 ...
 bool near_zero() const {
 // Return true if the vector is close to zero in all dimensions.
 const auto s = 1e-8;
 return (fabs(e[0]) < s) && (fabs(e[1]) < s) && (fabs(e[2]) < s);
 }
 ...
};

Listing 45: [vec3.h] The vec3::near_zero() method

class lambertian : public material {
 public:
 lambertian(const color& a) : albedo(a) {}

 virtual bool scatter(
 const ray& r_in, const hit_record& rec, color& attenuation, ray&
scattered
) const override {
 auto scatter_direction = rec.normal + random_unit_vector();

 // Catch degenerate scatter direction
 if (scatter_direction.near_zero())
 scatter_direction = rec.normal;

 scattered = ray(rec.p, scatter_direction);
 attenuation = albedo;
 return true;
 }

 public:
 color albedo;
};

Listing 46: [material.h] Lambertian scatter, bullet-proof

9.4. Mirrored Light Reflection

lyf
矩形

lyf
矩形

For smooth metals the ray won’t be randomly scattered. The key math is: how does a ray get
reflected from a metal mirror? Vector math is our friend here:

Figure 11: Ray reflection

The reflected ray direction in red is just . In our design, is a unit vector, but may not
be. The length of should be . Because points in, we will need a minus sign, yielding:

vec3 reflect(const vec3& v, const vec3& n) {
 return v - 2*dot(v,n)*n;
}

Listing 47: [vec3.h] vec3 reflection function

v + 2b n v

b v ⋅ n v

https://raytracing.github.io/images/fig-1.11-reflection.jpg
lyf
矩形

lyf
矩形

The metal material just reflects rays using that formula:

class metal : public material {
 public:
 metal(const color& a) : albedo(a) {}

 virtual bool scatter(
 const ray& r_in, const hit_record& rec, color& attenuation, ray&
scattered
) const override {
 vec3 reflected = reflect(unit_vector(r_in.direction()),
rec.normal);
 scattered = ray(rec.p, reflected);
 attenuation = albedo;
 return (dot(scattered.direction(), rec.normal) > 0);
 }

 public:
 color albedo;
};

Listing 48: [material.h] Metal material with reflectance function

We need to modify the ray_color() function to use this:

color ray_color(const ray& r, const hittable& world, int depth) {
 hit_record rec;

 // If we've exceeded the ray bounce limit, no more light is gathered.
 if (depth <= 0)
 return color(0,0,0);

 if (world.hit(r, 0.001, infinity, rec)) {
 ray scattered;
 color attenuation;
 if (rec.mat_ptr->scatter(r, rec, attenuation, scattered))
 return attenuation * ray_color(scattered, world, depth-1);
 return color(0,0,0);
 }

 vec3 unit_direction = unit_vector(r.direction());
 auto t = 0.5*(unit_direction.y() + 1.0);
 return (1.0-t)*color(1.0, 1.0, 1.0) + t*color(0.5, 0.7, 1.0);
}

Listing 49: [main.cc] Ray color with scattered reflectance

9.5. A Scene with Metal Spheres

lyf
矩形

lyf
矩形

lyf
矩形

Now let’s add some metal spheres to our scene:

...

#include "material.h"

...

int main() {

 // Image

 const auto aspect_ratio = 16.0 / 9.0;
 const int image_width = 400;
 const int image_height = static_cast<int>(image_width / aspect_ratio);
 const int samples_per_pixel = 100;
 const int max_depth = 50;

 // World

 hittable_list world;

 auto material_ground = make_shared<lambertian>(color(0.8, 0.8, 0.0));
 auto material_center = make_shared<lambertian>(color(0.7, 0.3, 0.3));
 auto material_left = make_shared<metal>(color(0.8, 0.8, 0.8));
 auto material_right = make_shared<metal>(color(0.8, 0.6, 0.2));

 world.add(make_shared<sphere>(point3(0.0, -100.5, -1.0), 100.0,
material_ground));
 world.add(make_shared<sphere>(point3(0.0, 0.0, -1.0), 0.5,
material_center));
 world.add(make_shared<sphere>(point3(-1.0, 0.0, -1.0), 0.5,
material_left));
 world.add(make_shared<sphere>(point3(1.0, 0.0, -1.0), 0.5,
material_right));

 // Camera

 camera cam;

 // Render

 std::cout << "P3\n" << image_width << " " << image_height << "\n255\n";

 for (int j = image_height-1; j >= 0; --j) {
 std::cerr << "\rScanlines remaining: " << j << ' ' << std::flush;
 for (int i = 0; i < image_width; ++i) {
 color pixel_color(0, 0, 0);
 for (int s = 0; s < samples_per_pixel; ++s) {
 auto u = (i + random_double()) / (image_width-1);
 auto v = (j + random_double()) / (image_height-1);
 ray r = cam.get_ray(u, v);
 pixel_color += ray_color(r, world, max_depth);
 }
 write_color(std::cout, pixel_color, samples_per_pixel);
 }
 }

lyf
矩形

lyf
矩形

 std::cerr << "\nDone.\n";
}

Listing 50: [main.cc] Scene with metal spheres

Which gives:

Image 11: Shiny metal

9.6. Fuzzy Reflection

We can also randomize the reflected direction by using a small sphere and choosing a new
endpoint for the ray:

Figure 12: Generating fuzzed reflection rays

https://raytracing.github.io/images/img-1.11-metal-shiny.png
https://raytracing.github.io/images/fig-1.12-reflect-fuzzy.jpg
lyf
矩形

The bigger the sphere, the fuzzier the reflections will be. This suggests adding a fuzziness
parameter that is just the radius of the sphere (so zero is no perturbation). The catch is that for
big spheres or grazing rays, we may scatter below the surface. We can just have the surface
absorb those.

class metal : public material {
 public:
 metal(const color& a, double f) : albedo(a), fuzz(f < 1 ? f : 1) {}

 virtual bool scatter(
 const ray& r_in, const hit_record& rec, color& attenuation, ray&
scattered
) const override {
 vec3 reflected = reflect(unit_vector(r_in.direction()),
rec.normal);
 scattered = ray(rec.p, reflected + fuzz*random_in_unit_sphere());
 attenuation = albedo;
 return (dot(scattered.direction(), rec.normal) > 0);
 }

 public:
 color albedo;
 double fuzz;
};

Listing 51: [material.h] Metal material fuzziness

We can try that out by adding fuzziness 0.3 and 1.0 to the metals:

int main() {
 ...
 // World

 auto material_ground = make_shared<lambertian>(color(0.8, 0.8, 0.0));
 auto material_center = make_shared<lambertian>(color(0.7, 0.3, 0.3));
 auto material_left = make_shared<metal>(color(0.8, 0.8, 0.8), 0.3);
 auto material_right = make_shared<metal>(color(0.8, 0.6, 0.2), 1.0);
 ...
}

Listing 52: [main.cc] Metal spheres with fuzziness

lyf
矩形

lyf
矩形

Image 12: Fuzzed metal

10. Dielectrics
Clear materials such as water, glass, and diamonds are dielectrics. When a light ray hits them, it
splits into a reflected ray and a refracted (transmitted) ray. We’ll handle that by randomly
choosing between reflection or refraction, and only generating one scattered ray per
interaction.

10.1. Refraction

The hardest part to debug is the refracted ray. I usually first just have all the light refract if there
is a refraction ray at all. For this project, I tried to put two glass balls in our scene, and I got this
(I have not told you how to do this right or wrong yet, but soon!):

Image 13: Glass first

https://raytracing.github.io/images/img-1.12-metal-fuzz.png
https://raytracing.github.io/images/img-1.13-glass-first.png
lyf
下划线

lyf
下划线

Is that right? Glass balls look odd in real life. But no, it isn’t right. The world should be flipped
upside down and no weird black stuff. I just printed out the ray straight through the middle of
the image and it was clearly wrong. That often does the job.

10.2. Snell's Law

The refraction is described by Snell’s law:

Where and are the angles from the normal, and and (pronounced “eta” and “eta
prime”) are the refractive indices (typically air = 1.0, glass = 1.3–1.7, diamond = 2.4). The
geometry is:

Figure 13: Ray refraction

η ⋅ sin θ = ⋅ sinη′ θ′

θ θ′ η η′

https://raytracing.github.io/images/fig-1.13-refraction.jpg
lyf
下划线

lyf
矩形

In order to determine the direction of the refracted ray, we have to solve for :

On the refracted side of the surface there is a refracted ray and a normal , and there exists
an angle, , between them. We can split into the parts of the ray that are perpendicular to

 and parallel to :

If we solve for and we get:

You can go ahead and prove this for yourself if you want, but we will treat it as fact and move
on. The rest of the book will not require you to understand the proof.

We still need to solve for . It is well known that the dot product of two vectors can be
explained in terms of the cosine of the angle between them:

If we restrict and to be unit vectors:

We can now rewrite in terms of known quantities:

When we combine them back together, we can write a function to calculate :

vec3 refract(const vec3& uv, const vec3& n, double etai_over_etat) {
 auto cos_theta = fmin(dot(-uv, n), 1.0);
 vec3 r_out_perp = etai_over_etat * (uv + cos_theta*n);
 vec3 r_out_parallel = -sqrt(fabs(1.0 - r_out_perp.length_squared())) * n;
 return r_out_perp + r_out_parallel;
}

Listing 53: [vec3.h] Refraction function

sin θ′

sin = ⋅ sin θθ′ η

η′

R
′

n
′

θ′
R

′

n′ n′

= +R
′

R
′
⊥ R

′
∥

R′
⊥ R′

∥

= (R + cos θn)R
′
⊥

η

η′

= − nR
′
∥ 1 − |R′

⊥|2
− −−−−−−−

√

cos θ

a ⋅ b = |a||b| cos θ

a b

a ⋅ b = cos θ

R
′
⊥

= (R + (−R ⋅ n)n)R
′
⊥

η

η′

R′

lyf
矩形

lyf
矩形

lyf
矩形

lyf
矩形

lyf
矩形

lyf
矩形

lyf
矩形

lyf
矩形

lyf
矩形

And the dielectric material that always refracts is:

class dielectric : public material {
 public:
 dielectric(double index_of_refraction) : ir(index_of_refraction) {}

 virtual bool scatter(
 const ray& r_in, const hit_record& rec, color& attenuation, ray&
scattered
) const override {
 attenuation = color(1.0, 1.0, 1.0);
 double refraction_ratio = rec.front_face ? (1.0/ir) : ir;

 vec3 unit_direction = unit_vector(r_in.direction());
 vec3 refracted = refract(unit_direction, rec.normal,
refraction_ratio);

 scattered = ray(rec.p, refracted);
 return true;
 }

 public:
 double ir; // Index of Refraction
};

Listing 54: [material.h] Dielectric material class that always refracts

Now we'll update the scene to change the left and center spheres to glass:

auto material_ground = make_shared<lambertian>(color(0.8, 0.8, 0.0));
auto material_center = make_shared<dielectric>(1.5);
auto material_left = make_shared<dielectric>(1.5);
auto material_right = make_shared<metal>(color(0.8, 0.6, 0.2), 1.0);

Listing 55: [main.cc] Changing left and center spheres to glass

This gives us the following result:

lyf
矩形

lyf
矩形

lyf
矩形

Image 14: Glass sphere that always refracts

10.3. Total Internal Reflection

That definitely doesn't look right. One troublesome practical issue is that when the ray is in the
material with the higher refractive index, there is no real solution to Snell’s law, and thus there
is no refraction possible. If we refer back to Snell's law and the derivation of :

If the ray is inside glass and outside is air (and):

The value of cannot be greater than 1. So, if,

,

the equality between the two sides of the equation is broken, and a solution cannot exist. If a
solution does not exist, the glass cannot refract, and therefore must reflect the ray:

if (refraction_ratio * sin_theta > 1.0) {
 // Must Reflect
 ...
} else {
 // Can Refract
 ...
}

Listing 56: [material.h] Determining if the ray can refract

sin θ′

sin = ⋅ sin θθ′ η

η′

η = 1.5 = 1.0η′

sin = ⋅ sin θθ′ 1.5

1.0

sin θ′

⋅ sin θ > 1.0
1.5

1.0

https://raytracing.github.io/images/img-1.14-glass-always-refract.png
lyf
下划线

lyf
矩形

lyf
矩形

lyf
矩形

lyf
矩形

Here all the light is reflected, and because in practice that is usually inside solid objects, it is
called “total internal reflection”. This is why sometimes the water-air boundary acts as a
perfect mirror when you are submerged.

We can solve for sin_theta using the trigonometric qualities:

and

double cos_theta = fmin(dot(-unit_direction, rec.normal), 1.0);
double sin_theta = sqrt(1.0 - cos_theta*cos_theta);

if (refraction_ratio * sin_theta > 1.0) {
 // Must Reflect
 ...
} else {
 // Can Refract
 ...
}

Listing 57: [material.h] Determining if the ray can refract

sin θ = 1 − θcos2− −−−−−−−√

cos θ = R ⋅ n

lyf
下划线

lyf
矩形

lyf
矩形

lyf
矩形

lyf
矩形

And the dielectric material that always refracts (when possible) is:

class dielectric : public material {
 public:
 dielectric(double index_of_refraction) : ir(index_of_refraction) {}

 virtual bool scatter(
 const ray& r_in, const hit_record& rec, color& attenuation, ray&
scattered
) const override {
 attenuation = color(1.0, 1.0, 1.0);
 double refraction_ratio = rec.front_face ? (1.0/ir) : ir;

 vec3 unit_direction = unit_vector(r_in.direction());
 double cos_theta = fmin(dot(-unit_direction, rec.normal), 1.0);
 double sin_theta = sqrt(1.0 - cos_theta*cos_theta);

 bool cannot_refract = refraction_ratio * sin_theta > 1.0;
 vec3 direction;

 if (cannot_refract)
 direction = reflect(unit_direction, rec.normal);
 else
 direction = refract(unit_direction, rec.normal,
refraction_ratio);

 scattered = ray(rec.p, direction);
 return true;
 }

 public:
 double ir; // Index of Refraction
};

Listing 58: [material.h] Dielectric material class with reflection

lyf
矩形

lyf
矩形

Attenuation is always 1 — the glass surface absorbs nothing. If we try that out with these
parameters:

auto material_ground = make_shared<lambertian>(color(0.8, 0.8, 0.0));
auto material_center = make_shared<lambertian>(color(0.1, 0.2, 0.5));
auto material_left = make_shared<dielectric>(1.5);
auto material_right = make_shared<metal>(color(0.8, 0.6, 0.2), 0.0);

Listing 59: [main.cc] Scene with dielectric and shiny sphere

We get:

Image 15: Glass sphere that sometimes refracts

10.4. Schlick Approximation

https://raytracing.github.io/images/img-1.15-glass-sometimes-refract.png
lyf
矩形

Now real glass has reflectivity that varies with angle — look at a window at a steep angle and it
becomes a mirror. There is a big ugly equation for that, but almost everybody uses a cheap and
surprisingly accurate polynomial approximation by Christophe Schlick. This yields our full glass
material:

class dielectric : public material {
 public:
 dielectric(double index_of_refraction) : ir(index_of_refraction) {}

 virtual bool scatter(
 const ray& r_in, const hit_record& rec, color& attenuation, ray&
scattered
) const override {
 attenuation = color(1.0, 1.0, 1.0);
 double refraction_ratio = rec.front_face ? (1.0/ir) : ir;

 vec3 unit_direction = unit_vector(r_in.direction());
 double cos_theta = fmin(dot(-unit_direction, rec.normal), 1.0);
 double sin_theta = sqrt(1.0 - cos_theta*cos_theta);

 bool cannot_refract = refraction_ratio * sin_theta > 1.0;
 vec3 direction;
 if (cannot_refract || reflectance(cos_theta, refraction_ratio) >
random_double())
 direction = reflect(unit_direction, rec.normal);
 else
 direction = refract(unit_direction, rec.normal,
refraction_ratio);

 scattered = ray(rec.p, direction);
 return true;
 }

 public:
 double ir; // Index of Refraction

 private:
 static double reflectance(double cosine, double ref_idx) {
 // Use Schlick's approximation for reflectance.
 auto r0 = (1-ref_idx) / (1+ref_idx);
 r0 = r0*r0;
 return r0 + (1-r0)*pow((1 - cosine),5);
 }
};

Listing 60: [material.h] Full glass material

10.5. Modeling a Hollow Glass Sphere

lyf
下划线

lyf
矩形

An interesting and easy trick with dielectric spheres is to note that if you use a negative radius,
the geometry is unaffected, but the surface normal points inward. This can be used as a bubble
to make a hollow glass sphere:

world.add(make_shared<sphere>(point3(0.0, -100.5, -1.0), 100.0,
material_ground));
world.add(make_shared<sphere>(point3(0.0, 0.0, -1.0), 0.5,
material_center));
world.add(make_shared<sphere>(point3(-1.0, 0.0, -1.0), 0.5,
material_left));
world.add(make_shared<sphere>(point3(-1.0, 0.0, -1.0), -0.4,
material_left));
world.add(make_shared<sphere>(point3(1.0, 0.0, -1.0), 0.5,
material_right));

Listing 61: [main.cc] Scene with hollow glass sphere

This gives:

Image 16: A hollow glass sphere

11. Positionable Camera
Cameras, like dielectrics, are a pain to debug. So I always develop mine incrementally. First,
let’s allow an adjustable field of view (fov). This is the angle you see through the portal. Since
our image is not square, the fov is different horizontally and vertically. I always use vertical fov. I
also usually specify it in degrees and change to radians inside a constructor — a matter of
personal taste.

11.1. Camera Viewing Geometry

https://raytracing.github.io/images/img-1.16-glass-hollow.png
lyf
下划线

lyf
矩形

lyf
矩形

I first keep the rays coming from the origin and heading to the plane. We could make
it the plane, or whatever, as long as we made a ratio to that distance. Here is our
setup:

Figure 14: Camera viewing geometry

z = −1
z = −2 h

https://raytracing.github.io/images/fig-1.14-cam-view-geom.jpg

This implies . Our camera now becomes:

class camera {
 public:
 camera(
 double vfov, // vertical field-of-view in degrees
 double aspect_ratio
) {
 auto theta = degrees_to_radians(vfov);
 auto h = tan(theta/2);
 auto viewport_height = 2.0 * h;
 auto viewport_width = aspect_ratio * viewport_height;

 auto focal_length = 1.0;

 origin = point3(0, 0, 0);
 horizontal = vec3(viewport_width, 0.0, 0.0);
 vertical = vec3(0.0, viewport_height, 0.0);
 lower_left_corner = origin - horizontal/2 - vertical/2 - vec3(0, 0,
focal_length);
 }

 ray get_ray(double u, double v) const {
 return ray(origin, lower_left_corner + u*horizontal + v*vertical -
origin);
 }

 private:
 point3 origin;
 point3 lower_left_corner;
 vec3 horizontal;
 vec3 vertical;
};

Listing 62: [camera.h] Camera with adjustable field-of-view (fov)

h = tan()θ2

lyf
矩形

When calling it with camera cam(90, aspect_ratio) and these spheres:

int main() {
 ...
 // World

 auto R = cos(pi/4);
 hittable_list world;

 auto material_left = make_shared<lambertian>(color(0,0,1));
 auto material_right = make_shared<lambertian>(color(1,0,0));

 world.add(make_shared<sphere>(point3(-R, 0, -1), R, material_left));
 world.add(make_shared<sphere>(point3(R, 0, -1), R, material_right));

 // Camera

 camera cam(90.0, aspect_ratio);

 // Render

 std::cout << "P3\n" << image_width << " " << image_height << "\n255\n";

 for (int j = image_height-1; j >= 0; --j) {
 ...

Listing 63: [main.cc] Scene with wide-angle camera

gives:

Image 17: A wide-angle view

11.2. Positioning and Orienting the Camera

To get an arbitrary viewpoint, let’s first name the points we care about. We’ll call the position
where we place the camera lookfrom, and the point we look at lookat. (Later, if you want, you

https://raytracing.github.io/images/img-1.17-wide-view.png
lyf
矩形

could define a direction to look in instead of a point to look at.)

We also need a way to specify the roll, or sideways tilt, of the camera: the rotation around the
lookat-lookfrom axis. Another way to think about it is that even if you keep lookfrom and lookat
constant, you can still rotate your head around your nose. What we need is a way to specify an
“up” vector for the camera. This up vector should lie in the plane orthogonal to the view
direction.

Figure 15: Camera view direction

We can actually use any up vector we want, and simply project it onto this plane to get an up
vector for the camera. I use the common convention of naming a “view up” (vup) vector. A
couple of cross products, and we now have a complete orthonormal basis to describe
our camera’s orientation.

Figure 16: Camera view up direction

Remember that vup, v, and w are all in the same plane. Note that, like before when our fixed
camera faced -Z, our arbitrary view camera faces -w. And keep in mind that we can — but we
don’t have to — use world up to specify vup. This is convenient and will naturally
keep your camera horizontally level until you decide to experiment with crazy camera angles.

(u, v,w)

(0, 1, 0)

https://raytracing.github.io/images/fig-1.15-cam-view-dir.jpg
https://raytracing.github.io/images/fig-1.16-cam-view-up.jpg

class camera {
 public:
 camera(
 point3 lookfrom,
 point3 lookat,
 vec3 vup,
 double vfov, // vertical field-of-view in degrees
 double aspect_ratio
) {
 auto theta = degrees_to_radians(vfov);
 auto h = tan(theta/2);
 auto viewport_height = 2.0 * h;
 auto viewport_width = aspect_ratio * viewport_height;

 auto w = unit_vector(lookfrom - lookat);
 auto u = unit_vector(cross(vup, w));
 auto v = cross(w, u);

 origin = lookfrom;
 horizontal = viewport_width * u;
 vertical = viewport_height * v;
 lower_left_corner = origin - horizontal/2 - vertical/2 - w;
 }

 ray get_ray(double s, double t) const {
 return ray(origin, lower_left_corner + s*horizontal + t*vertical -
origin);
 }

 private:
 point3 origin;
 point3 lower_left_corner;
 vec3 horizontal;
 vec3 vertical;
};

Listing 64: [camera.h] Positionable and orientable camera

lyf
矩形

We'll change back to the prior scene, and use the new viewpoint:

hittable_list world;

auto material_ground = make_shared<lambertian>(color(0.8, 0.8, 0.0));
auto material_center = make_shared<lambertian>(color(0.1, 0.2, 0.5));
auto material_left = make_shared<dielectric>(1.5);
auto material_right = make_shared<metal>(color(0.8, 0.6, 0.2), 0.0);

world.add(make_shared<sphere>(point3(0.0, -100.5, -1.0), 100.0,
material_ground));
world.add(make_shared<sphere>(point3(0.0, 0.0, -1.0), 0.5,
material_center));
world.add(make_shared<sphere>(point3(-1.0, 0.0, -1.0), 0.5,
material_left));
world.add(make_shared<sphere>(point3(-1.0, 0.0, -1.0), -0.45,
material_left));
world.add(make_shared<sphere>(point3(1.0, 0.0, -1.0), 0.5,
material_right));

camera cam(point3(-2,2,1), point3(0,0,-1), vec3(0,1,0), 90, aspect_ratio);

Listing 65: [main.cc] Scene with alternate viewpoint

to get:

Image 18: A distant view

And we can change field of view:

camera cam(point3(-2,2,1), point3(0,0,-1), vec3(0,1,0), 20, aspect_ratio);

Listing 66: [main.cc] Change field of view

to get:

https://raytracing.github.io/images/img-1.18-view-distant.png
lyf
矩形

lyf
矩形

Image 19: Zooming in

12. Defocus Blur
Now our final feature: defocus blur. Note, all photographers will call it “depth of field” so be
aware of only using “defocus blur” among friends.

The reason we defocus blur in real cameras is because they need a big hole (rather than just a
pinhole) to gather light. This would defocus everything, but if we stick a lens in the hole, there
will be a certain distance where everything is in focus. You can think of a lens this way: all light
rays coming from a specific point at the focus distance — and that hit the lens — will be bent
back to a single point on the image sensor.

We call the distance between the projection point and the plane where everything is in perfect
focus the focus distance. Be aware that the focus distance is not the same as the focal length —
the focal length is the distance between the projection point and the image plane.

In a physical camera, the focus distance is controlled by the distance between the lens and the
film/sensor. That is why you see the lens move relative to the camera when you change what is
in focus (that may happen in your phone camera too, but the sensor moves). The “aperture”
is a hole to control how big the lens is effectively. For a real camera, if you need more light you
make the aperture bigger, and will get more defocus blur. For our virtual camera, we can have a
perfect sensor and never need more light, so we only have an aperture when we want defocus
blur.

12.1. A Thin Lens Approximation

https://raytracing.github.io/images/img-1.19-view-zoom.png
lyf
下划线

lyf
下划线

lyf
下划线

lyf
下划线

A real camera has a complicated compound lens. For our code we could simulate the order:
sensor, then lens, then aperture. Then we could figure out where to send the rays, and flip the
image after it's computed (the image is projected upside down on the film). Graphics people,
however, usually use a thin lens approximation:

Figure 17: Camera lens model

We don’t need to simulate any of the inside of the camera. For the purposes of rendering an
image outside the camera, that would be unnecessary complexity. Instead, I usually start rays
from the lens, and send them toward the focus plane (focus_dist away from the lens), where
everything on that plane is in perfect focus.

Figure 18: Camera focus plane

https://raytracing.github.io/images/fig-1.17-cam-lens.jpg
https://raytracing.github.io/images/fig-1.18-cam-film-plane.jpg

12.2. Generating Sample Rays

Normally, all scene rays originate from the lookfrom point. In order to accomplish defocus blur,
generate random scene rays originating from inside a disk centered at the lookfrom point. The
larger the radius, the greater the defocus blur. You can think of our original camera as having a
defocus disk of radius zero (no blur at all), so all rays originated at the disk center (lookfrom).

vec3 random_in_unit_disk() {
 while (true) {
 auto p = vec3(random_double(-1,1), random_double(-1,1), 0);
 if (p.length_squared() >= 1) continue;
 return p;
 }
}

Listing 67: [vec3.h] Generate random point inside unit disk

lyf
下划线

lyf
下划线

lyf
矩形

lyf
矩形

class camera {
 public:
 camera(
 point3 lookfrom,
 point3 lookat,
 vec3 vup,
 double vfov, // vertical field-of-view in degrees
 double aspect_ratio,
 double aperture,
 double focus_dist
) {
 auto theta = degrees_to_radians(vfov);
 auto h = tan(theta/2);
 auto viewport_height = 2.0 * h;
 auto viewport_width = aspect_ratio * viewport_height;

 w = unit_vector(lookfrom - lookat);
 u = unit_vector(cross(vup, w));
 v = cross(w, u);

 origin = lookfrom;
 horizontal = focus_dist * viewport_width * u;
 vertical = focus_dist * viewport_height * v;
 lower_left_corner = origin - horizontal/2 - vertical/2 -
focus_dist*w;

 lens_radius = aperture / 2;
 }

 ray get_ray(double s, double t) const {
 vec3 rd = lens_radius * random_in_unit_disk();
 vec3 offset = u * rd.x() + v * rd.y();

 return ray(
 origin + offset,
 lower_left_corner + s*horizontal + t*vertical - origin - offset
);
 }

 private:
 point3 origin;
 point3 lower_left_corner;
 vec3 horizontal;
 vec3 vertical;
 vec3 u, v, w;
 double lens_radius;
};

Listing 68: [camera.h] Camera with adjustable depth-of-field (dof)

lyf
矩形

Using a big aperture:

point3 lookfrom(3,3,2);
point3 lookat(0,0,-1);
vec3 vup(0,1,0);
auto dist_to_focus = (lookfrom-lookat).length();
auto aperture = 2.0;

camera cam(lookfrom, lookat, vup, 20, aspect_ratio, aperture, dist_to_focus);

Listing 69: [main.cc] Scene camera with depth-of-field

We get:

Image 20: Spheres with depth-of-field

13. Where Next?

13.1. A Final Render

https://raytracing.github.io/images/img-1.20-depth-of-field.png
lyf
矩形

First let’s make the image on the cover of this book — lots of random spheres:

hittable_list random_scene() {
 hittable_list world;

 auto ground_material = make_shared<lambertian>(color(0.5, 0.5, 0.5));
 world.add(make_shared<sphere>(point3(0,-1000,0), 1000, ground_material));

 for (int a = -11; a < 11; a++) {
 for (int b = -11; b < 11; b++) {
 auto choose_mat = random_double();
 point3 center(a + 0.9*random_double(), 0.2, b +
0.9*random_double());

 if ((center - point3(4, 0.2, 0)).length() > 0.9) {
 shared_ptr<material> sphere_material;

 if (choose_mat < 0.8) {
 // diffuse
 auto albedo = color::random() * color::random();
 sphere_material = make_shared<lambertian>(albedo);
 world.add(make_shared<sphere>(center, 0.2,
sphere_material));
 } else if (choose_mat < 0.95) {
 // metal
 auto albedo = color::random(0.5, 1);
 auto fuzz = random_double(0, 0.5);
 sphere_material = make_shared<metal>(albedo, fuzz);
 world.add(make_shared<sphere>(center, 0.2,
sphere_material));
 } else {
 // glass
 sphere_material = make_shared<dielectric>(1.5);
 world.add(make_shared<sphere>(center, 0.2,
sphere_material));
 }
 }
 }
 }

 auto material1 = make_shared<dielectric>(1.5);
 world.add(make_shared<sphere>(point3(0, 1, 0), 1.0, material1));

 auto material2 = make_shared<lambertian>(color(0.4, 0.2, 0.1));
 world.add(make_shared<sphere>(point3(-4, 1, 0), 1.0, material2));

 auto material3 = make_shared<metal>(color(0.7, 0.6, 0.5), 0.0);
 world.add(make_shared<sphere>(point3(4, 1, 0), 1.0, material3));

 return world;
}

int main() {

 // Image

 const auto aspect_ratio = 3.0 / 2.0;
 const int image_width = 1200;

lyf
矩形

 const int image_height = static_cast<int>(image_width / aspect_ratio);
 const int samples_per_pixel = 500;
 const int max_depth = 50;

 // World

 auto world = random_scene();

 // Camera

 point3 lookfrom(13,2,3);
 point3 lookat(0,0,0);
 vec3 vup(0,1,0);
 auto dist_to_focus = 10.0;
 auto aperture = 0.1;

 camera cam(lookfrom, lookat, vup, 20, aspect_ratio, aperture,
dist_to_focus);

 // Render

 std::cout << "P3\n" << image_width << ' ' << image_height << "\n255\n";

 for (int j = image_height-1; j >= 0; --j) {
 ...
}

Listing 70: [main.cc] Final scene

This gives:

Image 21: Final scene

An interesting thing you might note is the glass balls don’t really have shadows which makes
them look like they are floating. This is not a bug — you don’t see glass balls much in real life,

https://raytracing.github.io/images/img-1.21-book1-final.jpg
lyf
矩形

lyf
下划线

lyf
下划线

where they also look a bit strange, and indeed seem to float on cloudy days. A point on the big
sphere under a glass ball still has lots of light hitting it because the sky is re-ordered rather than
blocked.

13.2. Next Steps

You now have a cool ray tracer! What next?

1. Lights — You can do this explicitly, by sending shadow rays to lights, or it can be done
implicitly by making some objects emit light, biasing scattered rays toward them, and
then downweighting those rays to cancel out the bias. Both work. I am in the minority in
favoring the latter approach.

2. Triangles — Most cool models are in triangle form. The model I/O is the worst and
almost everybody tries to get somebody else’s code to do this.

3. Surface Textures — This lets you paste images on like wall paper. Pretty easy and a good
thing to do.

4. Solid textures — Ken Perlin has his code online. Andrew Kensler has some very cool info
at his blog.

5. Volumes and Media — Cool stuff and will challenge your software architecture. I favor
making volumes have the hittable interface and probabilistically have intersections based
on density. Your rendering code doesn’t even have to know it has volumes with that
method.

6. Parallelism — Run copies of your code on cores with different random seeds.
Average the runs. This averaging can also be done hierarchically where pairs can
be averaged to get images, and pairs of those can be averaged. That method of
parallelism should extend well into the thousands of cores with very little coding.

Have fun, and please send me your cool images!

14. Acknowledgments
Original Manuscript Help

Dave Hart Jean Buckley

Web Release

Berna Kabadayı
Lorenzo Mancini

Lori Whippler Hollasch
Ronald Wotzlaw

Corrections and Improvements

Aaryaman Vasishta
Andrew Kensler
Antonio Gamiz
Apoorva Joshi
Aras Pranckevičius
Becker
Ben Kerl

Benjamin Summerton
Bennett Hardwick
Dan Drummond
David Chambers
David Hart
Eric Haines
Fabio Sancinetti

Filipe Scur
Frank He
Gerrit Wessendorf
Grue Debry
Ingo Wald
Jason Stone
Jean Buckley

N N
N N/2

N/4

https://github.com/bernakabadayi
https://github.com/lmancini
https://github.com/lorihollasch
https://github.com/ronaldfw
https://github.com/jammm
https://github.com/antoniogamiz
https://github.com/aras-p
https://github.com/dafhi
https://github.com/erich666
https://github.com/celeph
lyf
下划线

lyf
高亮

Joey Cho
John Kilpatrick
Kaan Eraslan
Lorenzo Mancini
Manas Kale
Marcus Ottosson

Mark Craig
Matthew Heimlich
Nakata Daisuke
Paul Melis
Phil Cristensen
Ronald Wotzlaw

Shaun P. Lee
Shota Kawajiri
Tatsuya Ogawa
Thiago Ize
Vahan Sosoyan
ZeHao Chen

Special Thanks

Thanks to the team at Limnu for help on the figures.

These books are entirely written in Morgan McGuire's fantastic and free Markdeep library.
To see what this looks like, view the page source from your browser.

Thanks to Helen Hu for graciously donating her https://github.com/RayTracing/ GitHub
organization to this project.

15. Citing This Book
Consistent citations make it easier to identify the source, location and versions of this work. If
you are citing this book, we ask that you try to use one of the following forms if possible.

15.1. Basic Data

Title (series): “Ray Tracing in One Weekend Series”
Title (book): “Ray Tracing in One Weekend”
Author: Peter Shirley
Editors: Steve Hollasch, Trevor David Black
Version/Edition: v3.2.3
Date: 2020-12-07
URL (series): https://raytracing.github.io/
URL (book): https://raytracing.github.io/books/RayTracingInOneWeekend.html

15.2. Snippets

15.2.1 Markdown

[_Ray Tracing in One Weekend_]
(https://raytracing.github.io/books/RayTracingInOneWeekend.html)

15.2.2 HTML

 <cite>Ray Tracing in One Weekend</cite>

https://github.com/rjkilpatrick
https://github.com/D-K-E
https://github.com/lmancini
https://github.com/manas96
https://github.com/mrmcsoftware
https://github.com/ronaldfw
https://github.com/shaunplee
https://github.com/estshorter
https://github.com/oxine
https://limnu.com/
https://casual-effects.com/markdeep/
https://github.com/hhu
https://github.com/RayTracing/
https://raytracing.github.io/
https://raytracing.github.io/books/RayTracingInOneWeekend.html

15.2.3 LaTeX and BibTex

~\cite{Shirley2020RTW1}

@misc{Shirley2020RTW1,
 title = {Ray Tracing in One Weekend},
 author = {Peter Shirley},
 year = {2020},
 month = {December},
 note = {\small
\texttt{https://raytracing.github.io/books/RayTracingInOneWeekend.html}},
 url = {https://raytracing.github.io/books/RayTracingInOneWeekend.html}
}

15.2.4 BibLaTeX

\usepackage{biblatex}

~\cite{Shirley2020RTW1}

@online{Shirley2020RTW1,
 title = {Ray Tracing in One Weekend},
 author = {Peter Shirley},
 year = {2020},
 month = {December}
 url = {https://raytracing.github.io/books/RayTracingInOneWeekend.html}
}

15.2.5 IEEE

“Ray Tracing in One Weekend.”
raytracing.github.io/books/RayTracingInOneWeekend.html
(accessed MMM. DD, YYYY)

15.2.6 MLA:

Ray Tracing in One Weekend.
raytracing.github.io/books/RayTracingInOneWeekend.html
Accessed DD MMM. YYYY.

formatted by Markdeep 1.13
✒

https://casual-effects.com/markdeep

