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ABSTRACT

An important paradigm of natural language processing consists of large-scale pre-
training on general domain data and adaptation to particular tasks or domains. As
we pre-train larger models, full fine-tuning, which retrains all model parameters,
becomes less feasible. Using GPT-3 175B as an example – deploying indepen-
dent instances of fine-tuned models, each with 175B parameters, is prohibitively
expensive. We propose Low-Rank Adaptation, or LoRA, which freezes the pre-
trained model weights and injects trainable rank decomposition matrices into each
layer of the Transformer architecture, greatly reducing the number of trainable pa-
rameters for downstream tasks. Compared to GPT-3 175B fine-tuned with Adam,
LoRA can reduce the number of trainable parameters by 10,000 times and the
GPU memory requirement by 3 times. LoRA performs on-par or better than fine-
tuning in model quality on RoBERTa, DeBERTa, GPT-2, and GPT-3, despite hav-
ing fewer trainable parameters, a higher training throughput, and, unlike adapters,
no additional inference latency. We also provide an empirical investigation into
rank-deficiency in language model adaptation, which sheds light on the efficacy of
LoRA. We release a package that facilitates the integration of LoRA with PyTorch
models and provide our implementations and model checkpoints for RoBERTa,
DeBERTa, and GPT-2 at https://github.com/microsoft/LoRA.
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Figure 1: Our reparametriza-
tion. We only train A and B.

Many applications in natural language processing rely on adapt-
ing one large-scale, pre-trained language model to multiple down-
stream applications. Such adaptation is usually done via fine-tuning,
which updates all the parameters of the pre-trained model. The ma-
jor downside of fine-tuning is that the new model contains as many
parameters as in the original model. As larger models are trained
every few months, this changes from a mere “inconvenience” for
GPT-2 (Radford et al., b) or RoBERTa large (Liu et al., 2019) to a
critical deployment challenge for GPT-3 (Brown et al., 2020) with
175 billion trainable parameters.1

Many sought to mitigate this by adapting only some parameters or
learning external modules for new tasks. This way, we only need
to store and load a small number of task-specific parameters in ad-
dition to the pre-trained model for each task, greatly boosting the
operational efficiency when deployed. However, existing techniques

∗Equal contribution.
0Compared to V1, this draft includes better baselines, experiments on GLUE, and more on adapter latency.
1While GPT-3 175B achieves non-trivial performance with few-shot learning, fine-tuning boosts its perfor-

mance significantly as shown in Appendix A.
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often introduce inference latency (Houlsby et al., 2019; Rebuffi et al., 2017) by extending model
depth or reduce the model’s usable sequence length (Li & Liang, 2021; Lester et al., 2021; Ham-
bardzumyan et al., 2020; Liu et al., 2021) (Section 3). More importantly, these method often fail to
match the fine-tuning baselines, posing a trade-off between efficiency and model quality.

We take inspiration from Li et al. (2018a); Aghajanyan et al. (2020) which show that the learned
over-parametrized models in fact reside on a low intrinsic dimension. We hypothesize that the
change in weights during model adaptation also has a low “intrinsic rank”, leading to our proposed
Low-Rank Adaptation (LoRA) approach. LoRA allows us to train some dense layers in a neural
network indirectly by optimizing rank decomposition matrices of the dense layers’ change during
adaptation instead, while keeping the pre-trained weights frozen, as shown in Figure 1. Using GPT-3
175B as an example, we show that a very low rank (i.e., r in Figure 1 can be one or two) suffices even
when the full rank (i.e., d) is as high as 12,288, making LoRA both storage- and compute-efficient.

LoRA possesses several key advantages.

• A pre-trained model can be shared and used to build many small LoRA modules for dif-
ferent tasks. We can freeze the shared model and efficiently switch tasks by replacing the
matrices A and B in Figure 1, reducing the storage requirement and task-switching over-
head significantly.

• LoRA makes training more efficient and lowers the hardware barrier to entry by up to 3
times when using adaptive optimizers since we do not need to calculate the gradients or
maintain the optimizer states for most parameters. Instead, we only optimize the injected,
much smaller low-rank matrices.

• Our simple linear design allows us to merge the trainable matrices with the frozen weights
when deployed, introducing no inference latency compared to a fully fine-tuned model, by
construction.

• LoRA is orthogonal to many prior methods and can be combined with many of them, such
as prefix-tuning. We provide an example in Appendix E.

Terminologies and Conventions We make frequent references to the Transformer architecture
and use the conventional terminologies for its dimensions. We call the input and output di-
mension size of a Transformer layer dmodel. We use Wq , Wk, Wv , and Wo to refer to the
query/key/value/output projection matrices in the self-attention module. W or W0 refers to a pre-
trained weight matrix and ∆W its accumulated gradient update during adaptation. We use r to
denote the rank of a LoRA module. We follow the conventions set out by (Vaswani et al., 2017;
Brown et al., 2020) and use Adam (Loshchilov & Hutter, 2019; Kingma & Ba, 2017) for model
optimization and use a Transformer MLP feedforward dimension dffn = 4× dmodel.

2 PROBLEM STATEMENT

While our proposal is agnostic to training objective, we focus on language modeling as our motivat-
ing use case. Below is a brief description of the language modeling problem and, in particular, the
maximization of conditional probabilities given a task-specific prompt.

Suppose we are given a pre-trained autoregressive language model PΦ(y|x) parametrized by Φ.
For instance, PΦ(y|x) can be a generic multi-task learner such as GPT (Radford et al., b; Brown
et al., 2020) based on the Transformer architecture (Vaswani et al., 2017). Consider adapting this
pre-trained model to downstream conditional text generation tasks, such as summarization, machine
reading comprehension (MRC), and natural language to SQL (NL2SQL). Each downstream task is
represented by a training dataset of context-target pairs: Z = {(xi, yi)}i=1,..,N , where both xi and
yi are sequences of tokens. For example, in NL2SQL, xi is a natural language query and yi its
corresponding SQL command; for summarization, xi is the content of an article and yi its summary.
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During full fine-tuning, the model is initialized to pre-trained weights Φ0 and updated to Φ0 + ∆Φ
by repeatedly following the gradient to maximize the conditional language modeling objective:

max
Φ

∑
(x,y)∈Z

|y|∑
t=1

log (PΦ(yt|x, y<t)) (1)

One of the main drawbacks for full fine-tuning is that for each downstream task, we learn a different
set of parameters ∆Φ whose dimension |∆Φ| equals |Φ0|. Thus, if the pre-trained model is large
(such as GPT-3 with |Φ0| ≈ 175 Billion), storing and deploying many independent instances of
fine-tuned models can be challenging, if at all feasible.

In this paper, we adopt a more parameter-efficient approach, where the task-specific parameter
increment ∆Φ = ∆Φ(Θ) is further encoded by a much smaller-sized set of parameters Θ with
|Θ| � |Φ0|. The task of finding ∆Φ thus becomes optimizing over Θ:

max
Θ

∑
(x,y)∈Z

|y|∑
t=1

log
(
pΦ0+∆Φ(Θ)(yt|x, y<t)

)
(2)

In the subsequent sections, we propose to use a low-rank representation to encode ∆Φ that is both
compute- and memory-efficient. When the pre-trained model is GPT-3 175B, the number of train-
able parameters |Θ| can be as small as 0.01% of |Φ0|.

3 AREN’T EXISTING SOLUTIONS GOOD ENOUGH?

The problem we set out to tackle is by no means new. Since the inception of transfer learning, dozens
of works have sought to make model adaptation more parameter- and compute-efficient. See Sec-
tion 6 for a survey of some of the well-known works. Using language modeling as an example, there
are two prominent strategies when it comes to efficient adaptations: adding adapter layers (Houlsby
et al., 2019; Rebuffi et al., 2017; Pfeiffer et al., 2021; Rücklé et al., 2020) or optimizing some forms
of the input layer activations (Li & Liang, 2021; Lester et al., 2021; Hambardzumyan et al., 2020;
Liu et al., 2021). However, both strategies have their limitations, especially in a large-scale and
latency-sensitive production scenario.

Adapter Layers Introduce Inference Latency There are many variants of adapters. We focus
on the original design by Houlsby et al. (2019) which has two adapter layers per Transformer block
and a more recent one by Lin et al. (2020) which has only one per block but with an additional
LayerNorm (Ba et al., 2016). While one can reduce the overall latency by pruning layers or exploit-
ing multi-task settings (Rücklé et al., 2020; Pfeiffer et al., 2021), there is no direct ways to bypass
the extra compute in adapter layers. This seems like a non-issue since adapter layers are designed
to have few parameters (sometimes <1% of the original model) by having a small bottleneck di-
mension, which limits the FLOPs they can add. However, large neural networks rely on hardware
parallelism to keep the latency low, and adapter layers have to be processed sequentially. This makes
a difference in the online inference setting where the batch size is typically as small as one. In a
generic scenario without model parallelism, such as running inference on GPT-2 (Radford et al., b)
medium on a single GPU, we see a noticeable increase in latency when using adapters, even with a
very small bottleneck dimension (Table 1).

This problem gets worse when we need to shard the model as done in Shoeybi et al. (2020); Lep-
ikhin et al. (2020), because the additional depth requires more synchronous GPU operations such as
AllReduce and Broadcast, unless we store the adapter parameters redundantly many times.

Directly Optimizing the Prompt is Hard The other direction, as exemplified by prefix tuning (Li
& Liang, 2021), faces a different challenge. We observe that prefix tuning is difficult to optimize
and that its performance changes non-monotonically in trainable parameters, confirming similar
observations in the original paper. More fundamentally, reserving a part of the sequence length for
adaptation necessarily reduces the sequence length available to process a downstream task, which
we suspect makes tuning the prompt less performant compared to other methods. We defer the study
on task performance to Section 5.
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Batch Size 32 16 1
Sequence Length 512 256 128

|Θ| 0.5M 11M 11M

Fine-Tune/LoRA 1449.4±0.8 338.0±0.6 19.8±2.7

AdapterL 1482.0±1.0 (+2.2%) 354.8±0.5 (+5.0%) 23.9±2.1 (+20.7%)
AdapterH 1492.2±1.0 (+3.0%) 366.3±0.5 (+8.4%) 25.8±2.2 (+30.3%)

Table 1: Infernece latency of a single forward pass in GPT-2 medium measured in milliseconds, av-
eraged over 100 trials. We use an NVIDIA Quadro RTX8000. “|Θ|” denotes the number of trainable
parameters in adapter layers. AdapterL and AdapterH are two variants of adapter tuning, which we
describe in Section 5.1. The inference latency introduced by adapter layers can be significant in an
online, short-sequence-length scenario. See the full study in Appendix B.

4 OUR METHOD

We describe the simple design of LoRA and its practical benefits. The principles outlined here apply
to any dense layers in deep learning models, though we only focus on certain weights in Transformer
language models in our experiments as the motivating use case.

4.1 LOW-RANK-PARAMETRIZED UPDATE MATRICES

A neural network contains many dense layers which perform matrix multiplication. The weight
matrices in these layers typically have full-rank. When adapting to a specific task, Aghajanyan et al.
(2020) shows that the pre-trained language models have a low “instrisic dimension” and can still
learn efficiently despite a random projection to a smaller subspace. Inspired by this, we hypothe-
size the updates to the weights also have a low “intrinsic rank” during adaptation. For a pre-trained
weight matrix W0 ∈ Rd×k, we constrain its update by representing the latter with a low-rank de-
composition W0 + ∆W = W0 + BA, where B ∈ Rd×r, A ∈ Rr×k, and the rank r � min(d, k).
During training,W0 is frozen and does not receive gradient updates, whileA andB contain trainable
parameters. Note both W0 and ∆W = BA are multiplied with the same input, and their respective
output vectors are summed coordinate-wise. For h = W0x, our modified forward pass yields:

h = W0x+ ∆Wx = W0x+BAx (3)

We illustrate our reparametrization in Figure 1. We use a random Gaussian initialization for A and
zero for B, so ∆W = BA is zero at the beginning of training. We then scale ∆Wx by α

r , where α
is a constant in r. When optimizing with Adam, tuning α is roughly the same as tuning the learning
rate if we scale the initialization appropriately. As a result, we simply set α to the first r we try
and do not tune it. This scaling helps to reduce the need to retune hyperparameters when we vary
r (Yang & Hu, 2021).

A Generalization of Full Fine-tuning. A more general form of fine-tuning allows the training of
a subset of the pre-trained parameters. LoRA takes a step further and does not require the accumu-
lated gradient update to weight matrices to have full-rank during adaptation. This means that when
applying LoRA to all weight matrices and training all biases2, we roughly recover the expressive-
ness of full fine-tuning by setting the LoRA rank r to the rank of the pre-trained weight matrices. In
other words, as we increase the number of trainable parameters 3, training LoRA roughly converges
to training the original model, while adapter-based methods converges to an MLP and prefix-based
methods to a model that cannot take long input sequences.

No Additional Inference Latency. When deployed in production, we can explicitly compute and
store W = W0 + BA and perform inference as usual. Note that both W0 and BA are in Rd×k.
When we need to switch to another downstream task, we can recover W0 by subtracting BA and
then adding a different B′A′, a quick operation with very little memory overhead. Critically, this

2They represent a negligible number of parameters compared to weights.
3An inevitability when adapting to hard tasks.
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guarantees that we do not introduce any additional latency during inference compared to a fine-tuned
model by construction.

4.2 APPLYING LORA TO TRANSFORMER

In principle, we can apply LoRA to any subset of weight matrices in a neural network to reduce the
number of trainable parameters. In the Transformer architecture, there are four weight matrices in
the self-attention module (Wq,Wk,Wv,Wo) and two in the MLP module. We treatWq (orWk,Wv)
as a single matrix of dimension dmodel×dmodel, even though the output dimension is usually sliced
into attention heads. We limit our study to only adapting the attention weights for downstream
tasks and freeze the MLP modules (so they are not trained in downstream tasks) both for simplicity
and parameter-efficiency.We further study the effect on adapting different types of attention weight
matrices in a Transformer in Section 7.1. We leave the empirical investigation of adapting the MLP
layers, LayerNorm layers, and biases to a future work.

Practical Benefits and Limitations. The most significant benefit comes from the reduction in
memory and storage usage. For a large Transformer trained with Adam, we reduce that VRAM
usage by up to 2/3 if r � dmodel as we do not need to store the optimizer states for the frozen
parameters. On GPT-3 175B, we reduce the VRAM consumption during training from 1.2TB to
350GB. With r = 4 and only the query and value projection matrices being adapted, the checkpoint
size is reduced by roughly 10,000× (from 350GB to 35MB)4. This allows us to train with signifi-
cantly fewer GPUs and avoid I/O bottlenecks. Another benefit is that we can switch between tasks
while deployed at a much lower cost by only swapping the LoRA weights as opposed to all the
parameters. This allows for the creation of many customized models that can be swapped in and out
on the fly on machines that store the pre-trained weights in VRAM. We also observe a 25% speedup
during training on GPT-3 175B compared to full fine-tuning5 as we do not need to calculate the
gradient for the vast majority of the parameters.

LoRA also has its limitations. For example, it is not straightforward to batch inputs to different tasks
with differentA andB in a single forward pass, if one chooses to absorbA andB intoW to eliminate
additional inference latency. Though it is possible to not merge the weights and dynamically choose
the LoRA modules to use for samples in a batch for scenarios where latency is not critical.

5 EMPIRICAL EXPERIMENTS

We evaluate the downstream task performance of LoRA on RoBERTa (Liu et al., 2019), De-
BERTa (He et al., 2021), and GPT-2 (Radford et al., b), before scaling up to GPT-3 175B (Brown
et al., 2020). Our experiments cover a wide range of tasks, from natural language understanding
(NLU) to generation (NLG). Specifically, we evaluate on the GLUE (Wang et al., 2019) benchmark
for RoBERTa and DeBERTa. We follow the setup of Li & Liang (2021) on GPT-2 for a direct com-
parison and add WikiSQL (Zhong et al., 2017) (NL to SQL queries) and SAMSum (Gliwa et al.,
2019) (conversation summarization) for large-scale experiments on GPT-3. See Appendix C for
more details on the datasets we use. We use NVIDIA Tesla V100 for all experiments.

5.1 BASELINES

To compare with other baselines broadly, we replicate the setups used by prior work and reuse their
reported numbers whenever possible. This, however, means that some baselines might only appear
in certain experiments.

Fine-Tuning (FT) is a common approach for adaptation. During fine-tuning, the model is initialized
to the pre-trained weights and biases, and all model parameters undergo gradient updates.A simple
variant is to update only some layers while freezing others. We include one such baseline reported
in prior work (Li & Liang, 2021) on GPT-2, which adapts just the last two layers (FTTop2).

4We still need the 350GB model during deployment; however, storing 100 adapted models only requires
350GB + 35MB * 100 ≈ 354GB as opposed to 100 * 350GB ≈ 35TB.

5For GPT-3 175B, the training throughput for full fine-tuning is 32.5 tokens/s per V100 GPU; with the same
number of weight shards for model parallelism, the throughput is 43.1 tokens/s per V100 GPU for LoRA.
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Model & Method # Trainable
Parameters MNLI SST-2 MRPC CoLA QNLI QQP RTE STS-B Avg.

RoBbase (FT)* 125.0M 87.6 94.8 90.2 63.6 92.8 91.9 78.7 91.2 86.4
RoBbase (BitFit)* 0.1M 84.7 93.7 92.7 62.0 91.8 84.0 81.5 90.8 85.2
RoBbase (AdptD)* 0.3M 87.1±.0 94.2±.1 88.5±1.1 60.8±.4 93.1±.1 90.2±.0 71.5±2.7 89.7±.3 84.4
RoBbase (AdptD)* 0.9M 87.3±.1 94.7±.3 88.4±.1 62.6±.9 93.0±.2 90.6±.0 75.9±2.2 90.3±.1 85.4
RoBbase (LoRA) 0.3M 87.5±.3 95.1±.2 89.7±.7 63.4±1.2 93.3±.3 90.8±.1 86.6±.7 91.5±.2 87.2

RoBlarge (FT)* 355.0M 90.2 96.4 90.9 68.0 94.7 92.2 86.6 92.4 88.9
RoBlarge (LoRA) 0.8M 90.6±.2 96.2±.5 90.9±1.2 68.2±1.9 94.9±.3 91.6±.1 87.4±2.5 92.6±.2 89.0

RoBlarge (AdptP)† 3.0M 90.2±.3 96.1±.3 90.2±.7 68.3±1.0 94.8±.2 91.9±.1 83.8±2.9 92.1±.7 88.4
RoBlarge (AdptP)† 0.8M 90.5±.3 96.6±.2 89.7±1.2 67.8±2.5 94.8±.3 91.7±.2 80.1±2.9 91.9±.4 87.9
RoBlarge (AdptH)† 6.0M 89.9±.5 96.2±.3 88.7±2.9 66.5±4.4 94.7±.2 92.1±.1 83.4±1.1 91.0±1.7 87.8
RoBlarge (AdptH)† 0.8M 90.3±.3 96.3±.5 87.7±1.7 66.3±2.0 94.7±.2 91.5±.1 72.9±2.9 91.5±.5 86.4
RoBlarge (LoRA)† 0.8M 90.6±.2 96.2±.5 90.2±1.0 68.2±1.9 94.8±.3 91.6±.2 85.2±1.1 92.3±.5 88.6

DeBXXL (FT)* 1500.0M 91.8 97.2 92.0 72.0 96.0 92.7 93.9 92.9 91.1
DeBXXL (LoRA) 4.7M 91.9±.2 96.9±.2 92.6±.6 72.4±1.1 96.0±.1 92.9±.1 94.9±.4 93.0±.2 91.3

Table 2: RoBERTabase, RoBERTalarge, and DeBERTaXXL with different adaptation methods on the
GLUE benchmark. We report the overall (matched and mismatched) accuracy for MNLI, Matthew’s
correlation for CoLA, Pearson correlation for STS-B, and accuracy for other tasks. Higher is better
for all metrics. * indicates numbers published in prior works. † indicates runs configured in a setup
similar to Houlsby et al. (2019) for a fair comparison.

Bias-only or BitFit is a baseline where we only train the bias vectors while freezing everything else.
Contemporarily, this baseline has also been studied by BitFit (Zaken et al., 2021).

Prefix-embedding tuning (PreEmbed) inserts special tokens among the input tokens. These spe-
cial tokens have trainable word embeddings and are generally not in the model’s vocabulary. Where
to place such tokens can have an impact on performance. We focus on “prefixing”, which prepends
such tokens to the prompt, and “infixing”, which appends to the prompt; both are discussed in Li &
Liang (2021). We use lp (resp. li) denote the number of prefix (resp. infix) tokens. The number of
trainable parameters is |Θ| = dmodel × (lp + li).

Prefix-layer tuning (PreLayer) is an extension to prefix-embedding tuning. Instead of just learning
the word embeddings (or equivalently, the activations after the embedding layer) for some special
tokens, we learn the activations after every Transformer layer. The activations computed from pre-
vious layers are simply replaced by trainable ones. The resulting number of trainable parameters is
|Θ| = L× dmodel × (lp + li), where L is the number of Transformer layers.

Adapter tuning as proposed in Houlsby et al. (2019) inserts adapter layers between the self-
attention module (and the MLP module) and the subsequent residual connection. There are two
fully connected layers with biases in an adapter layer with a nonlinearity in between. We call this
original design AdapterH. Recently, Lin et al. (2020) proposed a more efficient design with the
adapter layer applied only after the MLP module and after a LayerNorm. We call it AdapterL. This
is very similar to another deign proposed in Pfeiffer et al. (2021), which we call AdapterP. We also
include another baseline call AdapterDrop (Rücklé et al., 2020) which drops some adapter layers for
greater efficiency (AdapterD). We cite numbers from prior works whenever possible to maximize
the number of baselines we compare with; they are in rows with an asterisk (*) in the first column.
In all cases, we have |Θ| = L̂Adpt×(2×dmodel×r+r+dmodel)+2× L̂LN ×dmodel where L̂Adpt
is the number of adapter layers and L̂LN the number of trainable LayerNorms (e.g., in AdapterL).

LoRA adds trainable pairs of rank decomposition matrices in parallel to existing weight matrices.
As mentioned in Section 4.2, we only apply LoRA toWq andWv in most experiments for simplicity.
The number of trainable parameters is determined by the rank r and the shape of the original weights:
|Θ| = 2× L̂LoRA× dmodel× r, where L̂LoRA is the number of weight matrices we apply LoRA to.
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Model & Method # Trainable E2E NLG Challenge
Parameters BLEU NIST MET ROUGE-L CIDEr

GPT-2 M (FT)* 354.92M 68.2 8.62 46.2 71.0 2.47
GPT-2 M (AdapterL)* 0.37M 66.3 8.41 45.0 69.8 2.40
GPT-2 M (AdapterL)* 11.09M 68.9 8.71 46.1 71.3 2.47
GPT-2 M (AdapterH) 11.09M 67.3±.6 8.50±.07 46.0±.2 70.7±.2 2.44±.01

GPT-2 M (FTTop2)* 25.19M 68.1 8.59 46.0 70.8 2.41
GPT-2 M (PreLayer)* 0.35M 69.7 8.81 46.1 71.4 2.49
GPT-2 M (LoRA) 0.35M 70.4±.1 8.85±.02 46.8±.2 71.8±.1 2.53±.02

GPT-2 L (FT)* 774.03M 68.5 8.78 46.0 69.9 2.45
GPT-2 L (AdapterL) 0.88M 69.1±.1 8.68±.03 46.3±.0 71.4±.2 2.49±.0
GPT-2 L (AdapterL) 23.00M 68.9±.3 8.70±.04 46.1±.1 71.3±.2 2.45±.02
GPT-2 L (PreLayer)* 0.77M 70.3 8.85 46.2 71.7 2.47
GPT-2 L (LoRA) 0.77M 70.4±.1 8.89±.02 46.8±.2 72.0±.2 2.47±.02

Table 3: GPT-2 medium (M) and large (L) with different adaptation methods on the E2E NLG
Challenge. For all metrics, higher is better. LoRA outperforms several baselines with comparable
or fewer trainable parameters. Confidence intervals are shown for experiments we ran. * indicates
numbers published in prior works.

5.2 ROBERTA BASE/LARGE

RoBERTa (Liu et al., 2019) optimized the pre-training recipe originally proposed in BERT (Devlin
et al., 2019a) and boosted the latter’s task performance without introducing many more trainable
parameters. While RoBERTa has been overtaken by much larger models on NLP leaderboards
such as the GLUE benchmark (Wang et al., 2019) in recent years, it remains a competitive and
popular pre-trained model for its size among practitioners. We take the pre-trained RoBERTa base
(125M) and RoBERTa large (355M) from the HuggingFace Transformers library (Wolf et al., 2020)
and evaluate the performance of different efficient adaptation approaches on tasks from the GLUE
benchmark. We also replicate Houlsby et al. (2019) and Pfeiffer et al. (2021) according to their
setup. To ensure a fair comparison, we make two crucial changes to how we evaluate LoRA when
comparing with adapters. First, we use the same batch size for all tasks and use a sequence length
of 128 to match the adapter baselines. Second, we initialize the model to the pre-trained model for
MRPC, RTE, and STS-B, not a model already adapted to MNLI like the fine-tuning baseline. Runs
following this more restricted setup from Houlsby et al. (2019) are labeled with †. The result is
presented in Table 2 (Top Three Sections). See Section D.1 for details on the hyperparameters used.

5.3 DEBERTA XXL

DeBERTa (He et al., 2021) is a more recent variant of BERT that is trained on a much larger
scale and performs very competitively on benchmarks such as GLUE (Wang et al., 2019) and Su-
perGLUE (Wang et al., 2020). We evaluate if LoRA can still match the performance of a fully
fine-tuned DeBERTa XXL (1.5B) on GLUE. The result is presented in Table 2 (Bottom Section).
See Section D.2 for details on the hyperparameters used.

5.4 GPT-2 MEDIUM/LARGE

Having shown that LoRA can be a competitive alternative to full fine-tuning on NLU, we hope to
answer if LoRA still prevails on NLG models, such as GPT-2 medium and large (Radford et al.,
b). We keep our setup as close as possible to Li & Liang (2021) for a direct comparison. Due
to space constraint, we only present our result on E2E NLG Challenge (Table 3) in this section.
See Section F.1 for results on WebNLG (Gardent et al., 2017) and DART (Nan et al., 2020). We
include a list of the hyperparameters used in Section D.3.
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Model&Method # Trainable WikiSQL MNLI-m SAMSum
Parameters Acc. (%) Acc. (%) R1/R2/RL

GPT-3 (FT) 175,255.8M 73.8 89.5 52.0/28.0/44.5
GPT-3 (BitFit) 14.2M 71.3 91.0 51.3/27.4/43.5
GPT-3 (PreEmbed) 3.2M 63.1 88.6 48.3/24.2/40.5
GPT-3 (PreLayer) 20.2M 70.1 89.5 50.8/27.3/43.5
GPT-3 (AdapterH) 7.1M 71.9 89.8 53.0/28.9/44.8
GPT-3 (AdapterH) 40.1M 73.2 91.5 53.2/29.0/45.1

GPT-3 (LoRA) 4.7M 73.4 91.7 53.8/29.8/45.9
GPT-3 (LoRA) 37.7M 74.0 91.6 53.4/29.2/45.1

Table 4: Performance of different adaptation methods on GPT-3 175B. We report the logical form
validation accuracy on WikiSQL, validation accuracy on MultiNLI-matched, and Rouge-1/2/L on
SAMSum. LoRA performs better than prior approaches, including full fine-tuning. The results
on WikiSQL have a fluctuation around ±0.5%, MNLI-m around ±0.1%, and SAMSum around
±0.2/±0.2/±0.1 for the three metrics.

5.5 SCALING UP TO GPT-3 175B

As a final stress test for LoRA, we scale up to GPT-3 with 175 billion parameters. Due to the high
training cost, we only report the typical standard deviation for a given task over random seeds, as
opposed to providing one for every entry. See Section D.4 for details on the hyperparameters used.

As shown in Table 4, LoRA matches or exceeds the fine-tuning baseline on all three datasets. Note
that not all methods benefit monotonically from having more trainable parameters, as shown in Fig-
ure 2. We observe a significant performance drop when we use more than 256 special tokens for
prefix-embedding tuning or more than 32 special tokens for prefix-layer tuning. This corroborates
similar observations in Li & Liang (2021). While a thorough investigation into this phenomenon
is out-of-scope for this work, we suspect that having more special tokens causes the input distri-
bution to shift further away from the pre-training data distribution. Separately, we investigate the
performance of different adaptation approaches in the low-data regime in Section F.3.
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Figure 2: GPT-3 175B validation accuracy vs. number of trainable parameters of several adaptation
methods on WikiSQL and MNLI-matched. LoRA exhibits better scalability and task performance.
See Section F.2 for more details on the plotted data points.

6 RELATED WORKS

Transformer Language Models. Transformer (Vaswani et al., 2017) is a sequence-to-sequence
architecture that makes heavy use of self-attention. Radford et al. (a) applied it to autoregressive lan-
guage modeling by using a stack of Transformer decoders. Since then, Transformer-based language
models have dominated NLP, achieving the state-of-the-art in many tasks. A new paradigm emerged
with BERT (Devlin et al., 2019b) and GPT-2 (Radford et al., b) – both are large Transformer lan-
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guage models trained on a large amount of text – where fine-tuning on task-specific data after pre-
training on general domain data provides a significant performance gain compared to training on
task-specific data directly. Training larger Transformers generally results in better performance and
remains an active research direction. GPT-3 (Brown et al., 2020) is the largest single Transformer
language model trained to-date with 175B parameters.

Prompt Engineering and Fine-Tuning. While GPT-3 175B can adapt its behavior with just a
few additional training examples, the result depends heavily on the input prompt (Brown et al.,
2020). This necessitates an empirical art of composing and formatting the prompt to maximize a
model’s performance on a desired task, which is known as prompt engineering or prompt hacking.
Fine-tuning retrains a model pre-trained on general domains to a specific task Devlin et al. (2019b);
Radford et al. (a). Variants of it include learning just a subset of the parameters Devlin et al. (2019b);
Collobert & Weston (2008), yet practitioners often retrain all of them to maximize the downstream
performance. However, the enormity of GPT-3 175B makes it challenging to perform fine-tuning in
the usual way due to the large checkpoint it produces and the high hardware barrier to entry since it
has the same memory footprint as pre-training.

Parameter-Efficient Adaptation. Many have proposed inserting adapter layers between existing
layers in a neural network (Houlsby et al., 2019; Rebuffi et al., 2017; Lin et al., 2020). Our method
uses a similar bottleneck structure to impose a low-rank constraint on the weight updates. The
key functional difference is that our learned weights can be merged with the main weights during
inference, thus not introducing any latency, which is not the case for the adapter layers (Section 3).
A comtenporary extension of adapter is COMPACTER (Mahabadi et al., 2021), which essentially
parametrizes the adapter layers using Kronecker products with some predetermined weight sharing
scheme. Similarly, combining LoRA with other tensor product-based methods could potentially
improve its parameter efficiency, which we leave to future work. More recently, many proposed
optimizing the input word embeddings in lieu of fine-tuning, akin to a continuous and differentiable
generalization of prompt engineering (Li & Liang, 2021; Lester et al., 2021; Hambardzumyan et al.,
2020; Liu et al., 2021). We include comparisons with Li & Liang (2021) in our experiment section.
However, this line of works can only scale up by using more special tokens in the prompt, which
take up available sequence length for task tokens when positional embeddings are learned.

Low-Rank Structures in Deep Learning. Low-rank structure is very common in machine learn-
ing. A lot of machine learning problems have certain intrinsic low-rank structure (Li et al., 2016;
Cai et al., 2010; Li et al., 2018b; Grasedyck et al., 2013). Moreover, it is known that for many
deep learning tasks, especially those with a heavily over-parametrized neural network, the learned
neural network will enjoy low-rank properties after training (Oymak et al., 2019). Some prior works
even explicitly impose the low-rank constraint when training the original neural network (Sainath
et al., 2013; Povey et al., 2018; Zhang et al., 2014; Jaderberg et al., 2014; Zhao et al., 2016; Kho-
dak et al., 2021; Denil et al., 2014); however, to the best of our knowledge, none of these works
considers low-rank update to a frozen model for adaptation to downstream tasks. In theory liter-
ature, it is known that neural networks outperform other classical learning methods, including the
corresponding (finite-width) neural tangent kernels (Allen-Zhu et al., 2019; Li & Liang, 2018) when
the underlying concept class has certain low-rank structure (Ghorbani et al., 2020; Allen-Zhu & Li,
2019; Allen-Zhu & Li, 2020a). Another theoretical result in Allen-Zhu & Li (2020b) suggests that
low-rank adaptations can be useful for adversarial training. In sum, we believe that our proposed
low-rank adaptation update is well-motivated by the literature.

7 UNDERSTANDING THE LOW-RANK UPDATES

Given the empirical advantage of LoRA, we hope to further explain the properties of the low-rank
adaptation learned from downstream tasks. Note that the low-rank structure not only lowers the
hardware barrier to entry which allows us to run multiple experiments in parallel, but also gives
better interpretability of how the update weights are correlated with the pre-trained weights. We
focus our study on GPT-3 175B, where we achieved the largest reduction of trainable parameters
(up to 10,000×) without adversely affecting task performances.

We perform a sequence of empirical studies to answer the following questions: 1) Given a parameter
budget constraint, which subset of weight matrices in a pre-trained Transformer should we adapt
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to maximize downstream performance? 2) Is the “optimal” adaptation matrix ∆W really rank-
deficient? If so, what is a good rank to use in practice? 3) What is the connection between ∆W and
W ? Does ∆W highly correlate with W ? How large is ∆W comparing to W ?

We believe that our answers to question (2) and (3) shed light on the fundamental principles of using
pre-trained language models for downstream tasks, which is a critical topic in NLP.

7.1 WHICH WEIGHT MATRICES IN TRANSFORMER SHOULD WE APPLY LORA TO?

Given a limited parameter budget, which types of weights should we adapt with LoRA to obtain
the best performance on downstream tasks? As mentioned in Section 4.2, we only consider weight
matrices in the self-attention module. We set a parameter budget of 18M (roughly 35MB if stored
in FP16) on GPT-3 175B, which corresponds to r = 8 if we adapt one type of attention weights or
r = 4 if we adapt two types, for all 96 layers. The result is presented in Table 5.

# of Trainable Parameters = 18M

Weight Type Wq Wk Wv Wo Wq,Wk Wq,Wv Wq,Wk,Wv,Wo

Rank r 8 8 8 8 4 4 2

WikiSQL (±0.5%) 70.4 70.0 73.0 73.2 71.4 73.7 73.7
MultiNLI (±0.1%) 91.0 90.8 91.0 91.3 91.3 91.3 91.7

Table 5: Validation accuracy on WikiSQL and MultiNLI after applying LoRA to different types of
attention weights in GPT-3, given the same number of trainable parameters. Adapting both Wq and
Wv gives the best performance overall. We find the standard deviation across random seeds to be
consistent for a given dataset, which we report in the first column.

Note that putting all the parameters in ∆Wq or ∆Wk results in significantly lower performance,
while adapting both Wq and Wv yields the best result. This suggests that even a rank of four
captures enough information in ∆W such that it is preferable to adapt more weight matrices than
adapting a single type of weights with a larger rank.

7.2 WHAT IS THE OPTIMAL RANK r FOR LORA?

We turn our attention to the effect of rank r on model performance. We adapt {Wq,Wv},
{Wq,Wk,Wv,Wc}, and just Wq for a comparison.

Weight Type r = 1 r = 2 r = 4 r = 8 r = 64

WikiSQL(±0.5%) Wq 68.8 69.6 70.5 70.4 70.0
Wq,Wv 73.4 73.3 73.7 73.8 73.5

Wq,Wk,Wv,Wo 74.1 73.7 74.0 74.0 73.9

MultiNLI (±0.1%)
Wq 90.7 90.9 91.1 90.7 90.7

Wq,Wv 91.3 91.4 91.3 91.6 91.4
Wq,Wk,Wv,Wo 91.2 91.7 91.7 91.5 91.4

Table 6: Validation accuracy on WikiSQL and MultiNLI with different rank r. To our surprise, a
rank as small as one suffices for adapting bothWq andWv on these datasets while trainingWq alone
needs a larger r. We conduct a similar experiment on GPT-2 in Section H.2.

Table 6 shows that, surprisingly, LoRA already performs competitively with a very small r (more
so for {Wq,Wv} than just Wq). This suggests the update matrix ∆W could have a very small
“intrinsic rank”.6 To further support this finding, we check the overlap of the subspaces learned by
different choices of r and by different random seeds. We argue that increasing r does not cover a
more meaningful subspace, which suggests that a low-rank adaptation matrix is sufficient.

6However, we do not expect a small r to work for every task or dataset. Consider the following thought
experiment: if the downstream task were in a different language than the one used for pre-training, retraining
the entire model (similar to LoRA with r = dmodel) could certainly outperform LoRA with a small r.
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Subspace similarity between different r. Given Ar=8 and Ar=64 which are the learned adapta-
tion matrices with rank r = 8 and 64 using the same pre-trained model, we perform singular value
decomposition and obtain the right-singular unitary matrices UAr=8

and UAr=64
.7 We hope to an-

swer: how much of the subspace spanned by the top i singular vectors in UAr=8
(for 1 ≤ i ≤ 8) is

contained in the subspace spanned by top j singular vectors of UAr=64
(for 1 ≤ j ≤ 64)? We mea-

sure this quantity with a normalized subspace similarity based on the Grassmann distance (See Ap-
pendix G for a more formal discussion)

φ(Ar=8, Ar=64, i, j) =
||U i>Ar=8

U jAr=64
||2F

min(i, j)
∈ [0, 1] (4)

where U iAr=8
represents the columns of UAr=8 corresponding to the top-i singular vectors.

φ(·) has a range of [0, 1], where 1 represents a complete overlap of subspaces and 0 a complete
separation. See Figure 3 for how φ changes as we vary i and j. We only look at the 48th layer
(out of 96) due to space constraint, but the conclusion holds for other layers as well, as shown
in Section H.1.

0.0

0.2

0.4

0.6

0.8

1.0

1 6 12 18 23 29 35 40 46 52 58

j

1
2

3
4

5
6

7
8

i

Wq

1 6 12 18 23 29 35 40 46 52 58

j

Wv

1 2 3 4 5 6 7 8
j

Wq

1 2 3 4 5 6 7 8
j

Wv

(Ar = 64, Ar = 8, i, j)

Figure 3: Subspace similarity between column vectors ofAr=8 andAr=64 for both ∆Wq and ∆Wv .
The third and the fourth figures zoom in on the lower-left triangle in the first two figures. The top
directions in r = 8 are included in r = 64, and vice versa.

We make an important observation from Figure 3.

Directions corresponding to the top singular vector overlap significantly between
Ar=8 and Ar=64, while others do not. Specifically, ∆Wv (resp. ∆Wq) of Ar=8

and ∆Wv (resp. ∆Wq) of Ar=64 share a subspace of dimension 1 with normalized
similarity > 0.5, providing an explanation of why r = 1 performs quite well in our
downstream tasks for GPT-3.

Since both Ar=8 and Ar=64 are learned using the same pre-trained model, Figure 3 indicates that
the top singular-vector directions of Ar=8 and Ar=64 are the most useful, while other directions
potentially contain mostly random noises accumulated during training. Hence, the adaptation matrix
can indeed have a very low rank.

Subspace similarity between different random seeds. We further confirm this by plotting the
normalized subspace similarity between two randomly seeded runs with r = 64, shown in Figure 4.
∆Wq appears to have a higher “intrinsic rank” than ∆Wv , since more common singular value direc-
tions are learned by both runs for ∆Wq , which is in line with our empirical observation in Table 6.
As a comparison, we also plot two random Gaussian matrices, which do not share any common
singular value directions with each other.

7.3 HOW DOES THE ADAPTATION MATRIX ∆W COMPARE TO W ?

We further investigate the relationship between ∆W andW . In particular, does ∆W highly correlate
with W ? (Or mathematically, is ∆W mostly contained in the top singular directions of W ?) Also,

7Note that a similar analysis can be carried out withB and the left-singular unitary matrices – we stick with
A for our experiments.
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how “large” is ∆W comparing to its corresponding directions in W ? This can shed light on the
underlying mechanism for adapting pre-trained language models.

To answer these questions, we project W onto the r-dimensional subspace of ∆W by comput-
ing U>WV >, with U /V being the left/right singular-vector matrix of ∆W . Then, we com-
pare the Frobenius norm between ‖U>WV >‖F and ‖W‖F . As a comparison, we also compute
‖U>WV >‖F by replacing U, V with the top r singular vectors of W or a random matrix.

r = 4 r = 64
∆Wq Wq Random ∆Wq Wq Random

||U>WqV
>||F = 0.32 21.67 0.02 1.90 37.71 0.33

||Wq||F = 61.95 ||∆Wq||F = 6.91 ||∆Wq||F = 3.57

Table 7: The Frobenius norm of U>WqV
> where U and V are the left/right top r singular vector

directions of either (1) ∆Wq , (2) Wq , or (3) a random matrix. The weight matrices are taken from
the 48th layer of GPT-3.

We draw several conclusions from Table 7. First, ∆W has a stronger correlation with W compared
to a random matrix, indicating that ∆W amplifies some features that are already in W . Second,
instead of repeating the top singular directions of W , ∆W only amplifies directions that are not
emphasized in W . Third, the amplification factor is rather huge: 21.5 ≈ 6.91/0.32 for r = 4.
See Section H.4 for why r = 64 has a smaller amplification factor. We also provide a visualization
in Section H.3 for how the correlation changes as we include more top singular directions from Wq .
This suggests that the low-rank adaptation matrix potentially amplifies the important features for
specific downstream tasks that were learned but not emphasized in the general pre-training model.

8 CONCLUSION AND FUTURE WORK

Fine-tuning enormous language models is prohibitively expensive in terms of the hardware required
and the storage/switching cost for hosting independent instances for different tasks. We propose
LoRA, an efficient adaptation strategy that neither introduces inference latency nor reduces input
sequence length while retaining high model quality. Importantly, it allows for quick task-switching
when deployed as a service by sharing the vast majority of the model parameters. While we focused
on Transformer language models, the proposed principles are generally applicable to any neural
networks with dense layers.

There are many directions for future works. 1) LoRA can be combined with other efficient adapta-
tion methods, potentially providing orthogonal improvement. 2) The mechanism behind fine-tuning
or LoRA is far from clear – how are features learned during pre-training transformed to do well
on downstream tasks? We believe that LoRA makes it more tractable to answer this than full fine-
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tuning. 3) We mostly depend on heuristics to select the weight matrices to apply LoRA to. Are
there more principled ways to do it? 4) Finally, the rank-deficiency of ∆W suggests that W could
be rank-deficient as well, which can also be a source of inspiration for future works.
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A LARGE LANGUAGE MODELS STILL NEED PARAMETER UPDATES

Few-shot learning, or prompt engineering, is very advantageous when we only have a handful of
training samples. However, in practice, we can often afford to curate a few thousand or more training
examples for performance-sensitive applications. As shown in Table 8, fine-tuning improves the
model performance drastically compared to few-shot learning on datasets large and small. We take
the GPT-3 few-shot result on RTE from the GPT-3 paper (Brown et al., 2020). For MNLI-matched,
we use two demonstrations per class and six in-context examples in total.
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Method MNLI-m (Val. Acc./%) RTE (Val. Acc./%)

GPT-3 Few-Shot 40.6 69.0
GPT-3 Fine-Tuned 89.5 85.4

Table 8: Fine-tuning significantly outperforms few-shot learning on GPT-3 (Brown et al., 2020).

B INFERENCE LATENCY INTRODUCED BY ADAPTER LAYERS

Adapter layers are external modules added to a pre-trained model in a sequential manner, whereas
our proposal, LoRA, can be seen as external modules added in a parallel manner. Consequently,
adapter layers must be computed in addition to the base model, inevitably introducing additional
latency. While as pointed out in Rücklé et al. (2020), the latency introduced by adapter layers can
be mitigated when the model batch size and/or sequence length is large enough to full utilize the
hardware parallelism. We confirm their observation with a similar latency study on GPT-2 medium
and point out that there are scenarios, notably online inference where the batch size is small, where
the added latency can be significant.

We measure the latency of a single forward pass on an NVIDIA Quadro RTX8000 by averaging
over 100 trials. We vary the input batch size, sequence length, and the adapter bottleneck dimension
r. We test two adapter designs: the original one by Houlsby et al. (2019), which we call AdapterH,
and a recent, more efficient variant by Lin et al. (2020), which we call AdapterL. See Section 5.1
for more details on the designs. We plot the slow-down in percentage compared to the no-adapter
baseline in Figure 5.

0

5

10

15

20

25

30

35

0
10

10
0

25
0

Ad
ap

te
rH

 r

Seq Len = 128 Seq Len = 256 Seq Len = 512

1 2 4 8 16 32
Batch Size

0
10

10
0

25
0

Ad
ap

te
rL  r

1 2 4 8 16 32
Batch Size

1 2 4 8 16 32
Batch Size

Figure 5: Percentage slow-down of inference latency compared to the no-adapter (r = 0) baseline.
The top row shows the result for AdapterH and the bottom row AdapterL. Larger batch size and
sequence length help to mitigate the latency, but the slow-down can be as high as over 30% in an
online, short-sequence-length scenario. We tweak the colormap for better visibility.

C DATASET DETAILS

GLUE Benchmark is a wide-ranging collection of natural language understanding tasks. It includes
MNLI (inference, Williams et al. (2018)), SST-2 (sentiment analysis, Socher et al. (2013)), MRPC
(paraphrase detection, Dolan & Brockett (2005)), CoLA (linguistic acceptability, Warstadt et al.
(2018)), QNLI (inference, Rajpurkar et al. (2018)), QQP8 (question-answering), RTE (inference),

8https://quoradata.quora.com/First-Quora-Dataset-Release-Question-Pairs
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and STS-B (textual similarity, Cer et al. (2017)). The broad coverage makes GLUE benchmark a
standard metric to evaluate NLU models such as RoBERTa and DeBERTa. The individual datasets
are released under different permissive licenses.

WikiSQL is introduced in Zhong et al. (2017) and contains 56, 355/8, 421 training/validation ex-
amples. The task is to generate SQL queries from natural language questions and table schemata.
We encode context as x = {table schema, query} and target as y = {SQL}. The dataset is release
under the BSD 3-Clause License.

SAMSum is introduced in Gliwa et al. (2019) and contains 14, 732/819 training/test examples. It
consists of staged chat conversations between two people and corresponding abstractive summaries
written by linguists. We encode context as ”\n” concatenated utterances followed by a ”\n\n”,
and target as y = {summary}. The dataset is released under the non-commercial licence: Creative
Commons BY-NC-ND 4.0.

E2E NLG Challenge was first introduced in Novikova et al. (2017) as a dataset for training end-to-
end, data-driven natural language generation systems and is commonly used for data-to-text evalua-
tion. The E2E dataset consists of roughly 42, 000 training, 4, 600 validation, and 4, 600 test exam-
ples from the restaurant domain. Each source table used as input can have multiple references. Each
sample input (x, y) consists of a sequence of slot-value pairs, along with a corresponding natural
language reference text. The dataset is released under Creative Commons BY-NC-SA 4.0.

DART is an open-domain data-to-text dataset described in Nan et al. (2020). DART inputs are
structured as sequences of ENTITY — RELATION — ENTITY triples. With 82K examples in
total, DART is a significantly larger and more complex data-to-text task compared to E2E. The
dataset is released under the MIT license.

WebNLG is another commonly used dataset for data-to-text evaluation (Gardent et al., 2017). With
22K examples in total WebNLG comprises 14 distinct categories, nine of which are seen during
training. Since five of the 14 total categories are not seen during training, but are represented in
the test set, evaluation is typically broken out by “seen” categories (S), “unseen” categories (U)
and “all” (A). Each input example is represented by a sequence of SUBJECT — PROPERTY —
OBJECT triples. The dataset is released under Creative Commons BY-NC-SA 4.0.

D HYPERPARAMETERS USED IN EXPERIMENTS

D.1 ROBERTA

We train using AdamW with a linear learning rate decay schedule. We sweep learning rate, number
of training epochs, and batch size for LoRA. Following Liu et al. (2019), we initialize the LoRA
modules to our best MNLI checkpoint when adapting to MRPC, RTE, and STS-B, instead of the
usual initialization; the pre-trained model stays frozen for all tasks. We report the median over 5
random seeds; the result for each run is taken from the best epoch. For a fair comparison with the
setup in Houlsby et al. (2019) and Pfeiffer et al. (2021), we restrict the model sequence length to 128
and used a fixed batch size for all tasks. Importantly, we start with the pre-trained RoBERTa large
model when adapting to MRPC, RTE, and STS-B, instead of a model already adapted to MNLI.
The runs with this restricted setup are marked with †. See the hyperparameters used in our runs
in Table 9.

D.2 DEBERTA

We again train using AdamW with a linear learning rate decay schedule. Following He et al. (2021),
we tune learning rate, dropout probability, warm-up steps, and batch size. We use the same model
sequence length used by (He et al., 2021) to keep our comparison fair. Following He et al. (2021),
we initialize the LoRA modules to our best MNLI checkpoint when adapting to MRPC, RTE, and
STS-B, instead of the usual initialization; the pre-trained model stays frozen for all tasks. We report
the median over 5 random seeds; the result for each run is taken from the best epoch. See the
hyperparameters used in our runs in Table 10.

18



Method Dataset MNLI SST-2 MRPC CoLA QNLI QQP RTE STS-B

Optimizer AdamW
Warmup Ratio 0.06
LR Schedule Linear

RoBERTa base
LoRA

Batch Size 16 16 16 32 32 16 32 16
# Epochs 30 60 30 80 25 25 80 40
Learning Rate 5E-04 5E-04 4E-04 4E-04 4E-04 5E-04 5E-04 4E-04
LoRA Config. rq = rv = 8
LoRA α 8
Max Seq. Len. 512

RoBERTa large
LoRA

Batch Size 4 4 4 4 4 4 8 8
# Epochs 10 10 20 20 10 20 20 30
Learning Rate 3E-04 4E-04 3E-04 2E-04 2E-04 3E-04 4E-04 2E-04
LoRA Config. rq = rv = 8
LoRA α 16
Max Seq. Len. 128 128 512 128 512 512 512 512

RoBERTa large
LoRA†

Batch Size 4
# Epochs 10 10 20 20 10 20 20 10
Learning Rate 3E-04 4E-04 3E-04 2E-04 2E-04 3E-04 4E-04 2E-04
LoRA Config. rq = rv = 8
LoRA α 16
Max Seq. Len. 128

RoBERTa large
AdptP (3M)†

Batch Size 32
# Epochs 10 20 20 20 10 20 20 20
Learning Rate 3E-05 3E-05 3E-04 3E-04 3E-04 3E-04 3E-04 3E-04
Bottleneck r 64
Max Seq. Len. 128

RoBERTa large
AdptP (0.8M)†

Batch Size 32
# Epochs 5 20 20 20 10 20 20 20
Learning Rate 3E-04 3E-04 3E-04 3E-04 3E-04 3E-04 3E-04 3E-04
Bottleneck r 16
Max Seq. Len. 128

RoBERTa large
AdptH (6M)†

Batch Size 32
# Epochs 10 5 10 10 5 20 20 10
Learning Rate 3E-05 3E-04 3E-04 3E-04 3E-04 3E-04 3E-04 3E-04
Bottleneck r 64
Max Seq. Len. 128

RoBERTa large
AdptH (0.8M)†

Batch Size 32
# Epochs 10 5 10 10 5 20 20 10
Learning Rate 3E-04 3E-04 3E-04 3E-04 3E-04 3E-04 3E-04 3E-04
Bottleneck r 8
Max Seq. Len. 128

Table 9: The hyperparameters we used for RoBERTa on the GLUE benchmark.

D.3 GPT-2

We train all of our GPT-2 models using AdamW (Loshchilov & Hutter, 2017) with a linear learning
rate schedule for 5 epochs. We use the batch size, learning rate, and beam search beam size described
in Li & Liang (2021). Accordingly, we also tune the above hyperparameters for LoRA. We report the
mean over 3 random seeds; the result for each run is taken from the best epoch. The hyperparameters
used for LoRA in GPT-2 are listed in Table 11. For those used for other baselines, see Li & Liang
(2021).

D.4 GPT-3

For all GPT-3 experiments, we train using AdamW (Loshchilov & Hutter, 2017) for 2 epochs with
a batch size of 128 samples and a weight decay factor of 0.1. We use a sequence length of 384 for
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Method Dataset MNLI SST-2 MRPC CoLA QNLI QQP RTE STS-B

Optimizer AdamW
Warmup Ratio 0.1
LR Schedule Linear

DeBERTa XXL
LoRA

Batch Size 8 8 32 4 6 8 4 4
# Epochs 5 16 30 10 8 11 11 10
Learning Rate 1E-04 6E-05 2E-04 1E-04 1E-04 1E-04 2E-04 2E-04
Weight Decay 0 0.01 0.01 0 0.01 0.01 0.01 0.1
CLS Dropout 0.15 0 0 0.1 0.1 0.2 0.2 0.2
LoRA Config. rq = rv = 8
LoRA α 8
Max Seq. Len. 256 128 128 64 512 320 320 128

Table 10: The hyperparameters for DeBERTa XXL on tasks included in the GLUE benchmark.

Dataset E2E WebNLG DART

Training

Optimizer AdamW
Weight Decay 0.01 0.01 0.0
Dropout Prob 0.1 0.1 0.0
Batch Size 8
# Epoch 5
Warmup Steps 500
Learning Rate Schedule Linear
Label Smooth 0.1 0.1 0.0
Learning Rate 0.0002
Adaptation rq = rv = 4
LoRA α 32

Inference

Beam Size 10
Length Penalty 0.9 0.8 0.8
no repeat ngram size 4

Table 11: The hyperparameters for GPT-2 LoRA on E2E, WebNLG and DART.

WikiSQL (Zhong et al., 2017), 768 for MNLI (Williams et al., 2018), and 2048 for SAMSum (Gliwa
et al., 2019). We tune learning rate for all method-dataset combinations. See Section D.4 for more
details on the hyperparameters used. For prefix-embedding tuning, we find the optimal lp and li
to be 256 and 8, respectively, totalling 3.2M trainable parameters. We use lp = 8 and li = 8 for
prefix-layer tuning with 20.2M trainable parameters to obtain the overall best performance. We
present two parameter budgets for LoRA: 4.7M (rq = rv = 1 or rv = 2) and 37.7M (rq = rv = 8
or rq = rk = rv = ro = 2). We report the best validation performance from each run. The training
hyperparameters used in our GPT-3 experiments are listed in Table 12.

E COMBINING LORA WITH PREFIX TUNING

LoRA can be naturally combined with existing prefix-based approaches. In this section, we evaluate
two combinations of LoRA and variants of prefix-tuning on WikiSQL and MNLI.

LoRA+PrefixEmbed (LoRA+PE) combines LoRA with prefix-embedding tuning, where we insert
lp + li special tokens whose embeddings are treated as trainable parameters. For more on prefix-
embedding tuning, see Section 5.1.

LoRA+PrefixLayer (LoRA+PL) combines LoRA with prefix-layer tuning. We also insert lp + li
special tokens; however, instead of letting the hidden representations of these tokens evolve natu-
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Hyperparameters Fine-Tune PreEmbed PreLayer BitFit AdapterH LoRA

Optimizer AdamW
Batch Size 128
# Epoch 2
Warmup Tokens 250,000
LR Schedule Linear

Learning Rate 5.00E-06 5.00E-04 1.00E-04 1.6E-03 1.00E-04 2.00E-04

Table 12: The training hyperparameters used for different GPT-3 adaption methods. We use the
same hyperparameters for all datasets after tuning learning rate.

rally, we replace them after every Transformer block with an input agnostic vector. Thus, both the
embeddings and subsequent Transformer block activations are treated as trainable parameters. For
more on prefix-layer tuning, see Section 5.1.

In Table 15, we show the evaluation results of LoRA+PE and LoRA+PL on WikiSQL and MultiNLI.
First of all, LoRA+PE significantly outperforms both LoRA and prefix-embedding tuning on
WikiSQL, which indicates that LoRA is somewhat orthogonal to prefix-embedding tuning. On
MultiNLI, the combination of LoRA+PE doesn’t perform better than LoRA, possibly because LoRA
on its own already achieves performance comparable to the human baseline. Secondly, we notice
that LoRA+PL performs slightly worse than LoRA even with more trainable parameters. We at-
tribute this to the fact that prefix-layer tuning is very sensitive to the choice of learning rate and thus
makes the optimization of LoRA weights more difficult in LoRA+PL.

F ADDITIONAL EMPIRICAL EXPERIMENTS

F.1 ADDITIONAL EXPERIMENTS ON GPT-2

We also repeat our experiment on DART (Nan et al., 2020) and WebNLG (Gardent et al., 2017)
following the setup of Li & Liang (2021). The result is shown in Table 13. Similar to our result
on E2E NLG Challenge, reported in Section 5, LoRA performs better than or at least on-par with
prefix-based approaches given the same number of trainable parameters.

Method # Trainable DART
Parameters BLEU↑ MET↑ TER↓

GPT-2 Medium
Fine-Tune 354M 46.2 0.39 0.46
AdapterL 0.37M 42.4 0.36 0.48
AdapterL 11M 45.2 0.38 0.46
FTTop2 24M 41.0 0.34 0.56
PrefLayer 0.35M 46.4 0.38 0.46
LoRA 0.35M 47.1±.2 0.39 0.46

GPT-2 Large
Fine-Tune 774M 47.0 0.39 0.46
AdapterL 0.88M 45.7±.1 0.38 0.46
AdapterL 23M 47.1±.1 0.39 0.45
PrefLayer 0.77M 46.7 0.38 0.45
LoRA 0.77M 47.5±.1 0.39 0.45

Table 13: GPT-2 with different adaptation methods on DART. The variances of MET and TER are
less than 0.01 for all adaption approaches.
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Method WebNLG
BLEU↑ MET↑ TER↓

U S A U S A U S A

GPT-2 Medium
Fine-Tune (354M) 27.7 64.2 46.5 .30 .45 .38 .76 .33 .53
AdapterL (0.37M) 45.1 54.5 50.2 .36 .39 .38 .46 .40 .43
AdapterL (11M) 48.3 60.4 54.9 .38 .43 .41 .45 .35 .39
FTTop2 (24M) 18.9 53.6 36.0 .23 .38 .31 .99 .49 .72
Prefix (0.35M) 45.6 62.9 55.1 .38 .44 .41 .49 .35 .40
LoRA (0.35M) 46.7±.4 62.1±.2 55.3±.2 .38 .44 .41 .46 .33 .39

GPT-2 Large
Fine-Tune (774M) 43.1 65.3 55.5 .38 .46 .42 .53 .33 .42
AdapterL (0.88M) 49.8±.0 61.1±.0 56.0±.0 .38 .43 .41 .44 .35 .39
AdapterL (23M) 49.2±.1 64.7±.2 57.7±.1 .39 .46 .43 .46 .33 .39
Prefix (0.77M) 47.7 63.4 56.3 .39 .45 .42 .48 .34 .40
LoRA (0.77M) 48.4±.3 64.0±.3 57.0±.1 .39 .45 .42 .45 .32 .38

Table 14: GPT-2 with different adaptation methods on WebNLG. The variances of MET and TER
are less than 0.01 for all the experiments we ran. “U” indicates unseen categories, “S” indicates seen
categories, and “A” indicates all categories in the test set of WebNLG.

F.2 ADDITIONAL EXPERIMENTS ON GPT-3

We present additional runs on GPT-3 with different adaptation methods in Table 15. The focus is on
identifying the trade-off between performance and the number of trainable parameters.

F.3 LOW-DATA REGIME

To evaluate the performance of different adaptation approaches in the low-data regime. we randomly
sample 100, 1k and 10k training examples from the full training set of MNLI to form the low-data
MNLI-n tasks. In Table 16, we show the performance of different adaptation approaches on MNLI-
n. To our surprise, PrefixEmbed and PrefixLayer performs very poorly on MNLI-100 dataset, with
PrefixEmbed performing only slightly better than random chance (37.6% vs. 33.3%). PrefixLayer
performs better than PrefixEmbed but is still significantly worse than Fine-Tune or LoRA on MNLI-
100. The gap between prefix-based approaches and LoRA/Fine-tuning becomes smaller as we in-
crease the number of training examples, which might suggest that prefix-based approaches are not
suitable for low-data tasks in GPT-3. LoRA achieves better performance than fine-tuning on both
MNLI-100 and MNLI-Full, and comparable results on MNLI-1k and MNLI-10K considering the
(±0.3) variance due to random seeds.

The training hyperparameters of different adaptation approaches on MNLI-n are reported in Ta-
ble 17. We use a smaller learning rate for PrefixLayer on the MNLI-100 set, as the training loss does
not decrease with a larger learning rate.

G MEASURING SIMILARITY BETWEEN SUBSPACES

In this paper we use the measure φ(A,B, i, j) = ψ(U iA, U
j
B) =

‖Ui>
A UB‖2F

min{i,j} to measure the subspace

similarity between two column orthonormal matrices U iA ∈ Rd×i and U jB ∈ Rd×j , obtained by
taking columns of the left singular matrices of A and B. We point out that this similarity is simply
a reverse of the standard Projection Metric that measures distance between subspaces Ham & Lee
(2008).
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Method Hyperparameters # Trainable Parameters WikiSQL MNLI-m

Fine-Tune - 175B 73.8 89.5

PrefixEmbed

lp = 32, li = 8 0.4 M 55.9 84.9
lp = 64, li = 8 0.9 M 58.7 88.1
lp = 128, li = 8 1.7 M 60.6 88.0
lp = 256, li = 8 3.2 M 63.1 88.6
lp = 512, li = 8 6.4 M 55.9 85.8

PrefixLayer

lp = 2, li = 2 5.1 M 68.5 89.2
lp = 8, li = 0 10.1 M 69.8 88.2
lp = 8, li = 8 20.2 M 70.1 89.5
lp = 32, li = 4 44.1 M 66.4 89.6
lp = 64, li = 0 76.1 M 64.9 87.9

AdapterH

r = 1 7.1 M 71.9 89.8
r = 4 21.2 M 73.2 91.0
r = 8 40.1 M 73.2 91.5
r = 16 77.9 M 73.2 91.5
r = 64 304.4 M 72.6 91.5

LoRA

rv = 2 4.7 M 73.4 91.7
rq = rv = 1 4.7 M 73.4 91.3
rq = rv = 2 9.4 M 73.3 91.4

rq = rk = rv = ro = 1 9.4 M 74.1 91.2
rq = rv = 4 18.8 M 73.7 91.3

rq = rk = rv = ro = 2 18.8 M 73.7 91.7
rq = rv = 8 37.7 M 73.8 91.6

rq = rk = rv = ro = 4 37.7 M 74.0 91.7
rq = rv = 64 301.9 M 73.6 91.4

rq = rk = rv = ro = 64 603.8 M 73.9 91.4

LoRA+PE
rq = rv = 8, lp = 8, li = 4 37.8 M 75.0 91.4
rq = rv = 32, lp = 8, li = 4 151.1 M 75.9 91.1
rq = rv = 64, lp = 8, li = 4 302.1 M 76.2 91.3

LoRA+PL rq = rv = 8, lp = 8, li = 4 52.8 M 72.9 90.2

Table 15: Hyperparameter analysis of different adaptation approaches on WikiSQL and MNLI. Both
prefix-embedding tuning (PrefixEmbed) and prefix-layer tuning (PrefixLayer) perform worse as we
increase the number of trainable parameters, while LoRA’s performance stabilizes. Performance is
measured in validation accuracy.

Method MNLI(m)-100 MNLI(m)-1k MNLI(m)-10k MNLI(m)-392K

GPT-3 (Fine-Tune) 60.2 85.8 88.9 89.5
GPT-3 (PrefixEmbed) 37.6 75.2 79.5 88.6
GPT-3 (PrefixLayer) 48.3 82.5 85.9 89.6
GPT-3 (LoRA) 63.8 85.6 89.2 91.7

Table 16: Validation accuracy of different methods on subsets of MNLI using GPT-3 175B. MNLI-
n describes a subset with n training examples. We evaluate with the full validation set. LoRA
performs exhibits favorable sample-efficiency compared to other methods, including fine-tuning.

To be concrete, let the singular values of U i>A U jB to be σ1, σ2, · · · , σp where p = min{i, j}. We
know that the Projection Metric Ham & Lee (2008) is defined as:

d(U iA, U
j
B) =

√√√√p−
p∑
i=1

σ2
i ∈ [0,

√
p]
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Hyperparameters Adaptation MNLI-100 MNLI-1k MNLI-10K MNLI-392K

Optimizer - AdamW
Warmup Tokens - 250,000
LR Schedule - Linear
Batch Size - 20 20 100 128
# Epoch - 40 40 4 2

Learning Rate

FineTune 5.00E-6
PrefixEmbed 2.00E-04 2.00E-04 4.00E-04 5.00E-04
PrefixLayer 5.00E-05 5.00E-05 5.00E-05 1.00E-04

LoRA 2.00E-4

PrefixEmbed lp 16 32 64 256
Adaptation- PrefixEmbed li 8
Specific PrefixTune lp = li = 8

LoRA rq = rv = 8

Table 17: The hyperparameters used for different GPT-3 adaptation methods on MNLI(m)-n.

where our similarity is defined as:

φ(A,B, i, j) = ψ(U iA, U
j
B) =

∑p
i=1 σ

2
i

p
=

1

p

(
1− d(U iA, U

j
B)2
)

This similarity satisfies that if U iA and U jB share the same column span, then φ(A,B, i, j) = 1. If
they are completely orthogonal, then φ(A,B, i, j) = 0. Otherwise, φ(A,B, i, j) ∈ (0, 1).

H ADDITIONAL EXPERIMENTS ON LOW-RANK MATRICES

We present additional results from our investigation into the low-rank update matrices.

H.1 CORRELATION BETWEEN LORA MODULES

See Figure 6 and Figure 7 for how the results presented in Figure 3 and Figure 4 generalize to other
layers.

H.2 EFFECT OF r ON GPT-2

We repeat our experiment on the effect of r (Section 7.2) in GPT-2. Using the E2E NLG Challenge
dataset as an example, we report the validation loss and test metrics achieved by different choices
of r after training for 26,000 steps. We present our result in Table 18. The optimal rank for GPT-2
Medium is between 4 and 16 depending on the metric used, which is similar to that for GPT-3 175B.
Note that the relationship between model size and the optimal rank for adaptation is still an open
question.

H.3 CORRELATION BETWEEN W AND ∆W

See Figure 8 for the normalized subspace similarity between W and ∆W with varying r.

Note again that ∆W does not contain the top singular directions of W , since the similarity between
the top 4 directions in ∆W and the top-10% of those in W barely exceeds 0.2. This gives evidence
that ∆W contains those “task-specific” directions that are otherwise not emphasized in W .

An interesting next question to answer, is how “strong” do we need to amplify those task-specific
directions, in order for the model adaptation to work well?
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Figure 6: Normalized subspace similarity between the column vectors of Ar=8 and Ar=64 for both
∆Wq and ∆Wv from the 1st, 32nd, 64th, and 96th layers in a 96-layer Transformer.

H.4 AMPLIFICATION FACTOR

One can naturally consider a feature amplification factor as the ratio ‖∆W‖F
‖U>WV >‖F , where U and V

are the left- and right-singular matrices of the SVD decomposition of ∆W . (Recall UU>WV >V
gives the “projection” of W onto the subspace spanned by ∆W .)

Intuitively, when ∆W mostly contains task-specific directions, this quantity measures how much of
them are amplified by ∆W . As shown in Section 7.3, for r = 4, this amplification factor is as large
as 20. In other words, there are (generally speaking) four feature directions in each layer (out of the
entire feature space from the pre-trained model W ), that need to be amplified by a very large factor
20, in order to achieve our reported accuracy for the downstream specific task. And, one should
expect a very different set of feature directions to be amplified for each different downstream task.

One may notice, however, for r = 64, this amplification factor is only around 2, meaning that
most directions learned in ∆W with r = 64 are not being amplified by much. This should not
be surprising, and in fact gives evidence (once again) that the intrinsic rank needed to represent
the “task-specific directions” (thus for model adaptation) is low. In contrast, those directions in the
rank-4 version of ∆W (corresponding to r = 4) are amplified by a much larger factor 20.
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Figure 7: Normalized subspace similarity between the column vectors of Ar=64 from two randomly
seeded runs, for both ∆Wq and ∆Wv from the 1st, 32nd, 64th, and 96th layers in a 96-layer Trans-
former.

Rank r val loss BLEU NIST METEOR ROUGE L CIDEr

1 1.23 68.72 8.7215 0.4565 0.7052 2.4329
2 1.21 69.17 8.7413 0.4590 0.7052 2.4639
4 1.18 70.38 8.8439 0.4689 0.7186 2.5349
8 1.17 69.57 8.7457 0.4636 0.7196 2.5196
16 1.16 69.61 8.7483 0.4629 0.7177 2.4985
32 1.16 69.33 8.7736 0.4642 0.7105 2.5255
64 1.16 69.24 8.7174 0.4651 0.7180 2.5070

128 1.16 68.73 8.6718 0.4628 0.7127 2.5030
256 1.16 68.92 8.6982 0.4629 0.7128 2.5012
512 1.16 68.78 8.6857 0.4637 0.7128 2.5025

1024 1.17 69.37 8.7495 0.4659 0.7149 2.5090

Table 18: Validation loss and test set metrics on E2E NLG Challenge achieved by LoRA with
different rank r using GPT-2 Medium. Unlike on GPT-3 where r = 1 suffices for many tasks, here
the performance peaks at r = 16 for validation loss and r = 4 for BLEU, suggesting the GPT-2
Medium has a similar intrinsic rank for adaptation compared to GPT-3 175B. Note that some of our
hyperparameters are tuned on r = 4, which matches the parameter count of another baseline, and
thus might not be optimal for other choices of r.
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Figure 8: Normalized subspace similarity between the singular directions of Wq and those of ∆Wq

with varying r and a random baseline. ∆Wq amplifies directions that are important but not empha-
sized in W . ∆W with a larger r tends to pick up more directions that are already emphasized in
W .
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