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Abstract

Prompt tuning, which only tunes continuous
prompts with a frozen language model, sub-
stantially reduces per-task storage and mem-
ory usage at training. However, in the con-
text of NLU, prior work reveals that prompt
tuning does not perform well for normal-sized
pretrained models. We also find that exist-
ing methods of prompt tuning cannot handle
hard sequence labeling tasks, indicating a lack
of universality. We present a novel empiri-
cal finding that properly optimized prompt tun-
ing can be universally effective across a wide
range of model scales and NLU tasks. It
matches the performance of finetuning while
having only 0.1%-3% tuned parameters. Our
method P-Tuning v2 is an implementation of
Deep Prompt Tuning (Li and Liang, 2021; Qin
and Eisner, 2021) optimized and adapted for
NLU. Given the universality and simplicity of
P-Tuning v2, we believe it can serve as an al-
ternative to finetuning and a strong baseline for
future research.1

1 Introduction

Pretrained language models (Radford et al., 2019;
Devlin et al., 2018; Yang et al., 2019; Raffel et al.,
2019) improve performance on a wide range of
natural language understanding (NLU) tasks. A
widely-used method, fine-tuning, updates the en-
tire set of model parameters for a target task.
While fine-tuning obtains good performance, it is
memory-consuming during training because gradi-
ents and optimizer states for all parameters must be
stored. Moreover, keeping a copy of model param-
eters for each task during inference is inconvenient
since pre-trained models are usually large.

Prompting, on the other hand, freezes all param-
eters of a pre-trained model and uses a natural lan-
† corresponding to: Zhilin Yang (zhiliny@tsinghua.edu.cn)
and Jie Tang (jietang@tsinghua.edu.cn)
∗ indicates equal contribution.
1Our code and data are released at https://github.
com/THUDM/P-tuning-v2.
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Figure 1: Average scores on RTE, BoolQ and CB of
SuperGLUE dev. With 0.1% task-specific parameters,
P-tuning v2 can match fine-tuning across wide scales
of pre-trained models, while Lester et al. (2021) & P-
tuning can make it conditionally at 10B scale.

guage prompt to query a language model (Brown
et al., 2020). For example, for sentiment analy-
sis, we can concatenate a sample (e.g., "Amazing
movie!") with a prompt “This movie is [MASK]”
and ask the pre-trained language model to predict
the probabilities of masked token being “good” and
“bad” to decide the sample’s label. Prompting re-
quires no training at all and stores one single copy
of model parameters. However, discrete prompt-
ing (Shin et al., 2020; Gao et al., 2020) can lead to
suboptimal performance in many cases compared
to fine-tuning.

Prompt tuning2 is an idea of tuning only the
continuous prompts. Specifically, Liu et al. (2021);
Lester et al. (2021) proposed to add trainable
continuous embeddings (also called continuous
prompts) to the original sequence of input word
embeddings. Only the continuous prompts are up-
dated during training. While prompt tuning im-
proves over prompting on many tasks (Liu et al.,
2021; Lester et al., 2021; Zhong et al., 2021), it still
underperforms fine-tuning when the model size is
not large, specifically less than 10 billion parame-
ters (Lester et al., 2021). Moreover, as shown in
our experiments, prompt tuning performs poorly
compared to fine-tuning on several hard sequence
labeling tasks such as extractive question answer-
2We use “prompt tuning” to refer to a class of methods rather
than a particular method.
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ing (Cf. Section 4.2).
Our main contribution in this paper is a novel

empirical finding that properly optimized prompt
tuning can be comparable to fine-tuning universally
across various model scales and NLU tasks. In con-
trast to observations in prior work, our discovery
reveals the universality and potential of prompt
tuning for NLU.

Technically, our approach P-tuning v2 is not con-
ceptually novel. It can be viewed as an optimized
and adapted implementation of Deep Prompt Tun-
ing (Li and Liang, 2021; Qin and Eisner, 2021)
designed for generation and knowledge probing.
The most significant improvement originates from
appling continuous prompts for every layer of the
pretrained model, instead of the mere input layer.
Deep prompt tuning increases the capacity of con-
tinuous prompts and closes the gap to fine-tuning
across various settings, especially for small models
and hard tasks. Moreover, we present a series of
critical details of optimization and implementation
to ensure finetuning-comparable performance.

Experimental results show that P-tuning v2
matches the performance of fine-tuning at differ-
ent model scales ranging from 300M to 10B pa-
rameters and on various hard sequence tagging
tasks such as extractive question answering and
named entity recognition. P-tuning v2 has 0.1%
to 3% trainable parameters per task compared to
fine-tuning, which substantially reduces training
time memory cost and per-task storage cost.

2 Preliminaries

NLU Tasks. In this work, we categorize NLU chal-
lenges into two families: simple classification tasks
and hard sequence labeling tasks.3 Simple clas-
sification tasks involve classification over a label
space. Most datasets from GLUE (Wang et al.,
2018) and SuperGLUE (Wang et al., 2019) are in
this category. Hard sequence labeling tasks involve
classification over a sequence of tokens, such as
named entity recognition and extractive question
answering.

Prompt Tuning. Let V be the vocabulary of
a language model M and let e be the em-
bedding layer of M. In the case of discrete
prompting (Schick and Schütze, 2020), prompt
tokens {"It", "is", "[MASK]"} ⊂ V can be
3Note that the notions of “simple” and “hard” are specific to
prompt tuning, because we find sequence labeling tasks are
more challenging for prompt tuning.

used to classify a movie review. For exam-
ple, given the input text x ="Amazing movie!",
the input embedding sequence is formulated as
[e(x), e("It"), e("is"), e("[MASK]")].

Lester et al. (2021) and Liu et al. (2021) in-
troduce trainable continuous prompts as a sub-
stitution to natural language prompts for NLU
with the parameters of pretrained language mod-
els frozen. Given the trainable continuous embed-
dings [h0, ..., hi], the input embedding sequence
is written as [e(x), h0, ..., hi, e("[MASK]")], as il-
lustrated in Figure 2. Prompt tuning has been
proved to be comparable to fine-tuning on 10-
billion-parameter models on simple classification
tasks (Lester et al., 2021; Kim et al., 2021; Liu
et al., 2021).

3 P-Tuning v2

3.1 Lack of Universality

Lester et al. (2021); Liu et al. (2021) have been
proved quite effective in many NLP applica-
tions (Wang et al., 2021a,b; Chen et al., 2021;
Zheng et al., 2021; Min et al., 2021), but still fall
short at replacing fine-tuning due to lack of univer-
sality, as discussed below.

Lack of universality across scales. Lester et al.
(2021) shows that prompt tuning can be comparable
to fine-tuning when the model scales to over 10 bil-
lion parameters. However, for medium-sized mod-
els (from 100M to 1B) that are widely used, prompt
tuning performs much worse than fine-tuning.

Lack of universality across tasks. Though Lester
et al. (2021); Liu et al. (2021) have shown superior-
ity on some of the NLU benchmarks, the effective-
ness of prompt tuning on hard sequence tagging
tasks is not verified. Sequence tagging predicts a se-
quence of labels for each input token, which can be
harder and incompatible with verbalizers (Schick
and Schütze, 2020). In our experiments (Cf. Sec-
tion 4.2 and Table 3), we show that Lester et al.
(2021); Liu et al. (2021) perform poorly on typical
sequence tagging tasks compared to fine-tuning.

Considering these challenges, we propose P-
tuning v2, which adapts deep prompt tuning (Li
and Liang, 2021; Qin and Eisner, 2021) as a uni-
versal solution across scales and NLU tasks.

3.2 Deep Prompt Tuning

In (Lester et al., 2021) and (Liu et al., 2021), con-
tinuous prompts are only inserted into the input
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Figure 2: From Lester et al. (2021) & P-tuning to P-tuning v2. Orange blocks (i.e., h0, ..., hi) refer to trainable
prompt embeddings; blue blocks are embeddings stored or computed by frozen pre-trained language models.

embedding sequence (Cf. Figure 2 (a)). This leads
to two challenges. First, the number of tunable
parameters is limited due to the constraints of se-
quence length. Second, the input embeddings have
relatively indirect impact on model predictions.

To address these challenges, P-tuning v2 em-
ploys the idea of deep prompt tuning (Li and Liang,
2021; Qin and Eisner, 2021). As illustrated in Fig-
ure 2, prompts in different layers are added as pre-
fix tokens. On one hand, P-tuning v2 have more
tunable task-specific parameters (from 0.01% to
0.1%-3%) to allow more per-task capacity while be-
ing parameter-efficient; on the other hand, prompts
added to deeper layers have more direct impact on
model predictions (see analysis in Appendix B).

3.3 Optimization and Implementation

There are a few useful details of optimization and
implementation for achieving the best performance.

Reparameterization. Prior works usually lever-
age a reparameterization encoder such as an MLP
(Li and Liang, 2021; Liu et al., 2021) to trans-
form trainable embeddings. However, for NLU,
we discover that its usefulness depends on tasks
and datasets. For some datasets (e.g., RTE and
CoNLL04), MLP brings a consistent improvement;
for the others, MLP leads to minimal or even
negative effects on the results (e.g., BoolQ and
CoNLL12). See Appendix B for more analysis.

Prompt Length. The prompt length plays a crit-
ical role in P-Tuning v2. We find that different
NLU tasks usually achieve their best performance
with different prompt lengths (Cf. Appendix B).
Generally, simple classification tasks prefer shorter
prompts (less than 20); hard sequence labeling
tasks prefer longer ones (around 100).

Multi-task Learning. Multi-task learning jointly
optimizes multiple tasks with shared continuous
prompts before fine-tuning for individual tasks.

Method Task Re-
param.

Deep
PT

Multi-
task

No
verb.

P-tuning
(Liu et al., 2021)

KP
NLU LSTM - - -

PROMPTTUNING
(Lester et al., 2021) NLU - - X -

Prefix Tuning
(Li and Liang, 2021) NLG MLP X - -

SOFT PROMPTS
(Qin and Eisner, 2021) KP - X - -

P-tuning v2
(Ours)

NLU
SeqTag (depends) X X X

Table 1: Conceptual comparison between P-tuning v2
and existing Prompt Tuning approaches (KP: Knowl-
edge Probe; SeqTag: Sequence Tagging; Re-param.:
Reparameterization; No verb.: No verbalizer).

Multi-task is optional for P-Tuning v2 but can be
used for further boost performance by providing a
better initialization (Gu et al., 2021).

Classification Head. Using a language modeling
head to predict verbalizers (Schick and Schütze,
2020) has been central for prompt tuning (Liu et al.,
2021), but we find it unnecessary in a full-data
setting and incompatible with sequence labeling.
P-tuning v2 instead applies a randomly-initialized
classification head on top of the tokens as in BERT
(Devlin et al., 2018) (Cf. Figure 2).

To clarify P-tuning v2’s major contribution, we
present a conceptual comparison to existing prompt
tuning approaches in Table 1.

4 Experiments

We conduct extensive experiments over different
commonly-used pre-trained models and NLU tasks
to verify the effectiveness of P-tuning v2. In this
work, all methods except for fine-tuning are con-
ducted with frozen language model backbones,
which accords with (Lester et al., 2021)’s setting
but differs from (Liu et al., 2021)’s tuned setting.



#Size BoolQ CB COPA MultiRC (F1a)

FT PT PT-2 FT PT PT-2 FT PT PT-2 FT PT PT-2

BERTlarge 335M 77.7 67.2 75.8 94.6 80.4 94.6 69.0 55.0 73.0 70.5 59.6 70.6
RoBERTalarge 355M 86.9 62.3 84.8 98.2 71.4 100 94.0 63.0 93.0 85.7 59.9 82.5

GLMxlarge 2B 88.3 79.7 87.0 96.4 76.4 96.4 93.0 92.0 91.0 84.1 77.5 84.4
GLMxxlarge 10B 88.7 88.8 88.8 98.7 98.2 96.4 98.0 98.0 98.0 88.1 86.1 88.1

#Size ReCoRD (F1) RTE WiC WSC

FT PT PT-2 FT PT PT-2 FT PT PT-2 FT PT PT-2

BERTlarge 335M 70.6 44.2 72.8 70.4 53.5 78.3 74.9 63.0 75.1 68.3 64.4 68.3
RoBERTalarge 355M 89.0 46.3 89.3 86.6 58.8 89.5 75.6 56.9 73.4 63.5 64.4 63.5

GLMxlarge 2B 91.8 82.7 91.9 90.3 85.6 90.3 74.1 71.0 72.0 95.2 87.5 92.3
GLMxxlarge 10B 94.4 87.8 92.5 93.1 89.9 93.1 75.7 71.8 74.0 95.2 94.2 93.3

Table 2: Results on SuperGLUE development set. P-tuning v2 surpasses P-tuning & Lester et al. (2021) on models
smaller than 10B, matching the performance of fine-tuning across different model scales. (FT: fine-tuning; PT:
Lester et al. (2021) & P-tuning; PT-2: P-tuning v2; bold: the best; underline: the second best).

#Size CoNLL03 OntoNotes 5.0 CoNLL04

FT PT PT-2 MPT-2 FT PT PT-2 MPT-2 FT PT PT-2 MPT-2

BERTlarge 335M 92.8 81.9 90.2 91.0 89.2 74.6 86.4 86.3 85.6 73.6 84.5 86.6
RoBERTalarge 355M 92.6 86.1 92.8 92.8 89.8 80.8 89.8 89.8 88.8 76.2 88.4 90.6
DeBERTaxlarge 750M 93.1 90.2 93.1 93.1 90.4 85.1 90.4 90.5 89.1 82.4 86.5 90.1

#Size
SQuAD 1.1 dev (EM / F1) SQuAD 2.0 dev (EM / F1)

FT PT PT-2 MPT-2 FT PT PT-2 MPT-2

BERTlarge 335M 84.2 91.1 1.0 8.5 77.8 86.0 82.3 89.6 78.7 81.9 50.2 50.2 69.7 73.5 72.7 75.9
RoBERTalarge 355M 88.9 94.6 1.2 12.0 88.5 94.4 88.0 94.1 86.5 89.4 50.2 50.2 82.1 85.5 83.4 86.7
DeBERTaxlarge 750M 90.1 95.5 2.4 19.0 90.4 95.7 89.6 95.4 88.3 91.1 50.2 50.2 88.4 91.1 88.1 90.8

#Size CoNLL12 CoNLL05 WSJ CoNLL05 Brown

FT PT PT-2 MPT-2 FT PT PT-2 MPT-2 FT PT PT-2 MPT-2

BERTlarge 335M 84.9 64.5. 83.2 85.1 88.5 76.0 86.3 88.5 82.7 70.0 80.7 83.1
RoBERTalarge 355M 86.5 67.2 84.6 86.2 90.2 76.8 89.2 90.0 85.6 70.7 84.3 85.7
DeBERTaxlarge 750M 86.5 74.1 85.7 87.1 91.2 82.3 90.6 91.2 86.9 77.7 86.3 87.0

Table 3: Results on Named Entity Recognition (NER), Question Answering (Extractive QA), and Semantic Role
Labeling (SRL). All metrics in NER and SRL are micro-f1 score. (FT: fine-tuning; PT: P-tuning & Lester et al.
(2021); PT-2: P-tuning v2; MPT-2: Multi-task P-tuning v2; bold: the best; underline: the second best).

Ratios of task-specific parameters (e.g., 0.1%) are
derived from comparing continuous prompts’ pa-
rameters with transformers’ parameters. Another
thing to notice is that our experiments are all con-
ducted in the fully-supervised setting rather than
few-shot setting.

NLU Tasks. First, we include datasets from Su-
perGLUE (Wang et al., 2019) to test P-tuning v2’s
general NLU ability. Additionally, we introduce a
suite of sequence labeling tasks, including named
entity recognition (Sang and De Meulder, 2003;
Weischedel et al., 2013; Carreras and Màrquez,
2004), extractive Question Answering (Rajpurkar
et al., 2016), and semantic role labeling (Carreras

and Màrquez, 2005; Pradhan et al., 2012)).

Pre-trained Models. We include BERT-large (De-
vlin et al., 2018), RoBERTa-large (Liu et al.,
2019), DeBERTa-xlarge (He et al., 2020), GLM-
xlarge/xxlarge (Du et al., 2021) for evaluation.
They are all bidirectional models designed for NLU
tasks, covering a wide range of sizes from about
300M to 10B.

Multitask Learning. For the multi-task setting,
we combine the training sets of the datasets in each
task type (e.g., combing all training sets of seman-
tic role labeling). We use separate linear classi-
fiers for each dataset while sharing the continuous
prompts (Cf. Appendix A).



SST-2 RTE BoolQ CB

CLS & linear head 96.3 88.4 84.8 96.4
Verbalizer & LM head 95.8 86.6 84.6 94.6

Table 4: Comparison between [CLS] label with linear
head and verbalizer with LM head on RoBERTa-large.

4.1 P-tuning v2: Across Scales
Table 2 presents P-tuning v2’s performances across
model scales. In SuperGLUE, performances of
Lester et al. (2021) and P-tuning at smaller scales
can be quite poor. On the contrary, P-tuning v2
matches the fine-tuning performance in all the tasks
at a smaller scale. P-tuning v2 even significantly
outperforms fine-tuning on RTE.

In terms of larger scales (2B to 10B) with
GLM (Du et al., 2021), the gap between Lester
et al. (2021); Liu et al. (2021) and fine-tuning is
gradually narrowed down. On 10B scale, we have
a similar observation as Lester et al. (2021) re-
ports, that prompt tuning becomes competitive to
fine-tuning. That said, P-tuning v2 is always com-
parable to fine-tuning at all scales but with only
0.1% task-specific parameters needed comparing
to fine-tuning.

4.2 P-tuning v2: Across Tasks
From Table 3, we observe that P-tuning v2 can be
generally comparable to fine-tuning on all tasks. P-
tuning and Lester et al. (2021) show much poorer
performance, especially on QA, which might be the
most challenging of the three tasks. We also notice
that there are some abnormal results of Lester et al.
(2021) and P-tuning on SQuAD 2.0. This is prob-
ably because SQuAD 2.0 contains unanswerable
questions, which causes optimization challenges
for single-layer prompt tuning. Multi-task learn-
ing generally brings significant improvements to
P-Tuning v2 over most tasks except for QA.

4.3 Ablation Study

Verbalizer with LM head v.s. [CLS] label with
linear head. Verbalizer with LM head has been a
central component in previous prompt tuning ap-
proaches. However, for P-tuning v2 in a supervised
setting, it is affordable to tune a linear head with
about several thousand parameters. We present our
comparison in Table 4, where we keep other hyper-
parameters and only change [CLS] label with linear
head to verbalizer with LM head. Here, for simplic-
ity, we use “true” and “false” for SST-2, RTE and

(a) RTE (b) BoolQ

Figure 3: Ablation study on prompt depth using BERT-
large. “[x-y]" refers to the layer-interval we add contin-
uous prompts (e.g., “21-24” means we are add prompts
to transformer layers from 21 to 24). Same amount of
continuous prompts added to deeper transformer layers
(i.e., more close to the output layer) can yield a better
performance than those added to beginning layers.

BoolQ; “true”, “false” and “neutral” for CB. Re-
sults indicate that there is no significant difference
between performances of verbalizer and [CLS].

Prompt depth. The main difference between
Lester et al. (2021); (Liu et al., 2021) and P-tuning
v2 is the multi-layer continuous prompts. To ver-
ify its exact influence, given a certain number of k
layers to add prompts, we select them in both as-
cending and descending order to add prompts; for
the rest layers, we left them untouched. As shown
in Figure 3, with the same amount of parameters
(i.e., num of transformer layers to add prompts),
adding them in the descending order is always bet-
ter than in the ascending order. In the RTE case,
only adding prompts to layers 17-24 can yield a
very close performance to all layers.

5 Conclusions

We present P-tuning v2, a prompt tuning method.
Despite its relatively limited technical novelty, it
contributes to a novel finding that prompt tuning
can be comparable to fine-tuning universally across
scales (from 330M to 10B parameters) and tasks.
With high accuracy and parameter efficiency, P-
Tuning v2 can be a potential alternative for fine-
tuning and a strong baseline for future work.
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A Problem Formulation on Sequence
Tagging

Name entity recognition (NER). NER aims to
predict all spans of words that represent some
given classes of entity with a sentence. We
adopted CoNLL03 (Sang and De Meulder, 2003),
OntoNotes 5.0 (Weischedel et al., 2013) and
CoNLL04 (Carreras and Màrquez, 2004). For
CoNLL03 and CoNLL04, we trained our model on
the standard train-develop-test split. For OntoNotes
5.0, we use the same train, develop, test split as (Xu
et al., 2021). All the datasets are labeled in IOB2
format. We use sequence tagging to solve NER
tasks by assigning labels marking the beginning
and inside some classes of entity. The language
models generate a representation for each token,
and we use a linear classifier to predict the labels.
We use the official scripts to evaluate the results.
For the multi-task setting, we combine the training
set of the three datasets for pre-training. We use
different linear classifiers for each dataset while
sharing the continuous prompts.

(Extractive) Question Answering (QA). Extrac-
tive QA is designed to extract the answer from the
context given the context and a question. We use
SQuAD (Rajpurkar et al., 2016) 1.1 and 2.0, in
which each answer is within a continuous span of
the context. Following tradition, we formulate the
problem as sequence tagging by assigning one of
the two labels: ‘start’ or ‘end’ to each token and at
last selecting the span of the most confident start-
end pair as the extracted answer. If the probability
of the most confident pair is lower than a threshold,
the model will assume the question unanswerable.
For the multi-task setting, our training set for pre-
training combines the training sets of SQuAD 1.1
and 2.0. When pre-training, we assume that all the
questions, regardless of their origin, are possibly
unanswerable.

Semantic Role Labeling (SRL). SRL assigns la-
bels to words or phrases in a sentence that indicate
their semantic roles in the sentence. We evaluate
P-tuning v2 on CoNLL05 (Carreras and Màrquez,
2005) and CoNLL12 (Pradhan et al., 2012). Since a
sentence can have multiple verbs, we add the target
verb token to the end of each sentence to help recog-
nize which verb is used for prediction. We classify
each word with a linear classifier based on the cor-
responding semantic role representation. For multi-
task setting, the pre-train training set is a combina-



(a) NLI: RTE (b) NER: CoNLL04 (c) MQA: BoolQ (d) SRL: CoNLL12

Figure 4: Ablation study on prompt length and reparamerization using RoBERTa-large. The conclusion can be
very different given certain NLU task and dataset. (MQA: Multiple-choice QA)

tion of the training set of CoNLL05 (Carreras and
Màrquez, 2005), CoNLL12 (Pradhan et al., 2012)
and propbank-release (a common extend data used
for training SRL). The multi-task training strategy
is similar to NER.

B More Ablation Study

Due to the page limit, we present hyper-parameters
and architecture designs ablations regarding repa-
rameterization and prompt length in this section.

Embedding v.s. MLP reparameterization. In
both prefix-tuning (Li and Liang, 2021) and P-
tuning (Liu et al., 2021), authors discover the repa-
rameterization to be useful in improving training
speed, robustness and performance. However, we
conduct experiments to show that the reparameteri-
zation effect is inconsistent across different NLU
tasks and datasets.

As shown in Figure 4, in RTE and CoNLL04,
MLP reparameterization generally indicates better
performance than embedding for almost all prompt
lengths. However, in BoolQ, MLP and embed-
ding’s results are competitive; in CoNLL12, the
embedding consistently outperforms MLP.

Prompt Length. Prompt length is yet another in-
fluential hyper-parameter for P-tuning v2, and its
optimal value varies from task to task. From Fig-
ure 4, we observe that for simple NLU tasks, usu-
ally, a shorter prompt is enough for the best perfor-
mance; for hard sequence tasks, usually, a longer
prompt than 100 would be helpful.

We also discover that reparameterization has a
close bond with optimal prompt length. For exam-
ple, in RTE, CoNLL04, and BoolQ, MLP reparam-
eterization achieves its optimal result earlier than
embedding. This conclusion may contribute some
thoughts on P-tuning’s optimization properties.


