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Abstract

In this technical report, we introduce OpenR, an open-source framework designed
to integrate key components for enhancing the reasoning capabilities of large
language models (LLMs). OpenR unifies data acquisition, reinforcement learning
training (both online and offline), and non-autoregressive decoding into a cohesive
software platform. Our goal is to establish an open-source platform and community
to accelerate the development of LLM reasoning. Inspired by the success of
OpenATI’s ol model, which demonstrated improved reasoning abilities through step-
by-step reasoning and reinforcement learning, OpenR integrates test-time compute,
reinforcement learning, and process supervision to improve reasoning in LLMs.
Our work is the first to provide an open-source framework that explores the core
techniques of OpenAlI’s ol model with reinforcement learning, achieving advanced
reasoning capabilities beyond traditional autoregressive methods. We demonstrate
the efficacy of OpenR by evaluating it on the MATH dataset, utilising publicly
available data and search methods. Our initial experiments confirm substantial
gains, with relative improvements in reasoning and performance driven by test-
time computation and reinforcement learning through process reward models.
The OpenR framework, including code, models, and datasets, is accessible at
https://openreasoner.github.iol

1 Introduction

OpenAl has recently unveiled ol [[OpenAll|2024], a groundbreaking large language model (LLM)
that represents a giant leap forward in strong Al. The model is reported to be five times more
proficient in math and coding compared to the previous GPT-4o, specifically displaying exceptional
performance across various domains: it ranks in the 89th percentile for competitive programming,
places among the top 500 students in a prestigious US math olympiad qualifier, and surpasses human
PhD-level accuracy in physics, biology, and chemistry benchmarks. Trained using reinforcement
learning techniques, ol excels in complex reasoning tasks by explicitly embedding a native “Chain-of-
Thought” (NCoT) process in LLMs, which allows it to “deep think” through step-by-step reasoning
before generating responses. A key innovation of ol is that it allows spending more time reasoning
during the inference process, marking a shift from fast, direct responses to slow, deliberate, multi-step
inference-time computation, as illustrated in Figure

Interestingly, in human cognition, two correlated yet distinct modes of cognitive processing are
presented to guide human decision-making and behaviours [Kahneman} 2011, each of which has the
partial distinction between brain circuits and neural pathways. System 1 thinking is fast, automatic,
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Figure 1: Inference-time computation. (a) An autoregressive LLM directly generates an answer (A)
by conditioning the given question (Q). (b) The concept of chain of thought, or step-by-step thinking,
involves incorporating intermediate reasoning steps (R) before arriving at the final answer (A). These
repeated operations allow for 1) revisiting and revising prior outputs, 2) progressing to subsequent
reasoning stages, and 3) exploring multiple reasoning paths or trajectories.

and intuitive, operating effortlessly and often unconsciously. It relies on neural pathways that enable
rapid processing, especially in situations needing quick reactions or when cognitive resources are
constrained. System 2 thinking is deliberate, effortful, and conscious, involving focused attention and
analytical reasoning. It processes information more slowly and is used for complex problem-solving,
logical reasoning, and decision-making tasks.

ol model is an exciting development for Al, as LLMs can now not only generate rapid responses using
learned patterns but, more significantly, simulate complex reasoning processes through mechanisms
like chain-of-thought or other forms of search, similar to how humans engage in deeper, step-by-
step thinking. ol’s improved reasoning skills induce implications for multiple fields, including
science, coding, and mathematics. In coding competitions, a specialised version of ol achieved
impressive results, scoring in the 49th percentlle in the 2024 International Olympiad in Informatics
and outperformmg 93% of human compe ated Codeforces contests. Beyond its technical

1) and subsequcntly improve problem-gotving; especially in tasks like mathrand coding [|Wei
ese approaches-build on-existing LLMs without truly

inherently learfrthisreasor ing capability, leading to active research on how to 1ntegrate it directly into
model training. Proposed methods range from collecting specialised training data to building reward
models [Ouyang et al.| 2022} |Li et al., 2022} |Luo et al.||2024| and increasing the computational
complexity of decoding [Snell et al.;|2024,|Wu et al.||2024], but none have yet achieved significant
performance breakthroughs at scale.

It remains unclear whether o1’s innovation is rooted in the model itself, rather than relying on external
prompting systems. If it indeed involves explicitly embedding step-by-step reasoning natively within
the architecture, this would represent a significant breakthrough. Building on substantial performance
gains, ol has shown that the scaling principles traditionally applied during training [Kaplan et al.,|2020}
Snell et al.;|2024|] are now relevant to the inference phase. We should reallocate our computational
focus, balancing pre-training efforts with efficient use of inference-time computation. Allowing LLMs
to enhance their outputs with increased test-time computing is an essential step towards creating
generally self-improving agents capable of managing open-ended strong reasoning and decision-
making tasks. This direction, which we refer to as LLM-Native Chain-of-Thought (NativeCoT),
should be able to inherently mirror the deliberate, analytical process possessed by human’s System 2
thinking [Kahneman|2011].

In this report, we present OpenR, an open-source framework built on the principles behind OpenAI’s
ol model, designed to replicate and extend its reasoning capabilities. Our approach focuses on
improving LLM reasoning by integrating process supervision, reinforcement learning (RL), and



inference-time computation strategies such as guided search. OpenR implements key components
such as data augmentation for process supervision, policy learning via RL, and efficient decoding
algorithms. By doing so, it shifts the focus from merely scaling model parameters during pre-training
to leveraging smarter inference strategies at test time. These techniques help the model refine its
reasoning step by step, allowing it to pause, evaluate intermediate reasoning, and select better solution
pathways during test-time computation. Through experiments on publicly available benchmarks,
such as the MATH dataset, we show that the combination of process reward models and guided
search improves test-time reasoning performance by approximately 10%.

In summary, we introduce OpenR, an open-source framework that integrates test-time computation
and process supervision to enhance reasoning in LLMs, providing an open platform with models,
data, and code to foster collaboration and accelerate research in LLM reasoning. To our knowledge,
OpenR is the first open-source framework to explore the core methods of OpenAl’s ol model with
reinforcement learning techniques. The framework includes reinforcement learning algorithms
designed to optimize decision-making during training, enabling more accurate and deliberate step-
by-step reasoning. Additionally, OpenR provides tools for generating synthetic process reward data,
reducing dependence on costly human annotations and supporting scalable process supervision.
Through experiments, we demonstrate the effectiveness of process reward models and test-time
guided search.

2 Related Work

Key references in the field of improving reasoning capabilities in large language models (LLMs)
highlight several innovative approaches, including inference-time computing, process reward models,
and data acquisition methods.

Inference-time Computing. To discuss the role of inference-time computation in large language
models (LLMs), recent studies have focused on optimizing the efficiency and effectiveness of
reasoning during the inference process rather than merely relying on the scaling law of training-time
computing. A pivotal study, |[Feng et al.|[2024] demonstrate the benefits of using MCTS as a decoding
mechanism, which enhances inference computation by actively planning and selecting higher-quality
responses. This approach aligns with the reasoning-as-planning approach proposed in|Hao et al.
[2023], where reasoning is viewed as a process similar to planning in decision-making processes,
further underscoring the centrality of step-wise reasoning at inference time. In recent, the work [Snell
et al.||2024] reinforces that optimizing inference strategies can yield superior performance gains
compared to simply increasing model size, underscoring the critical role of test-time computation.
Finally, this is complemented by the findings of work [Goyal et al.} 2023], which introduces an
implicit reasoning model by incorporating pause tokens to encourage deliberate reasoning during
generation. Collectively, these recent advances suggest the growing recognition of inference-time
optimisation — whether through planning-based reasoning models or computational optimisation —
as a critical factor in improving LLM capabilities, advocating for strategies that enhance reasoning,
planning, and compute efficiency beyond mere training-time scaling.

From Qutcome Supervision to Process Supervision. The shift from Outcome Supervision to
Process Supervision in language model training has gained prominence in recent research, particularly
with respect to enhancing reasoning capabilities. The foundational work by |Cobbe et al. [2021a]
introduces Outcome-supervised Reward Models (ORM) and the widely used math reasoning dataset,
GSMSK, where verifiers are trained to assess the final correctness of generated solutions. While
ORM plays a crucial role in the early stage, it primarily focuses on evaluating the end result rather
than the reasoning steps leading to the final output.

Building on this, the concept of process reward models (PRM) is introduced as a more granular
and transparent approach. With both ORM and PRM, DeepMind proposes the idea of supervising
intermediate reasoning steps alongside the final outcome, allowing for more detailed feedback during
the reasoning process |Uesato et al.}|2022]]. This research laid the groundwork for subsequent
developments in process-based verification. On the other hand, OpenAI’s work [Lightman et al.|
2023] continues this trend by refining PRM through a follow-up study that emphasizes verifying each
intermediate step in reasoning tasks by providing a high-quality human-labelled process-supervision
dataset, namely PRM8O0OK, which has been enriched in our work.
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Figure 2: In this MDP formulation, the LLM is tasked with generating reasoning steps and the final
answer to a question in a step-by-step manner. The LLM policy operates by generating tokens, which
form higher-level reasoning constructs. The states represent the sequence of reasoning steps so far,
and actions correspond to the selection of new reasoning steps or the final answer. The LLM policy
governs the choice of actions, and the process reward model (PRM) provides feedback on the quality
of reasoning steps and the final answer. By optimising the policy to maximise the reward, the LLM
can be guided by PRM to generate accurate and meaningful reasoning processes.

Similarly, the integration of verifier models with majority voting schemes, as highlighted in|Li
et al.|[2022], showcases the practical application of PRM. This method uses a verifier to scrutinize
each reasoning step while incorporating majority voting to increase the reliability of the final result.
Furthermore,|Yu et al.|[2024] introduce another approach using reinforcement learning to enhance
the planning and reasoning process in LLMs, providing a hybrid of both outcome- and process-
supervised techniques. Besides the traditional scalar-based reward models, the recently proposed
generative reward model (GenRM) [Zhang et al.,|2024] attracts significant attention since the verifier
and generator can interact with each other in a more information-dense text-based manner. When the
reward model monitors the policy, it not only outputs the score of each answer but also details the
reason for the error. This trend in recent research reflects a broader move toward more sophisticated
process-supervision methods, which has been fully covered in this project.

Data Acquisition. The problem of Data Acquisition for PRM has evolved significantly, focusing on
automating the extraction of step-by-step reasoning data, which is crucial for training models capable
of complex reasoning tasks. The STaR technique |Zelikman et al.;|2022] presents a novel self-taught
reasoning approach where models generate and bootstrap their own reasoning processes for further
training, thus improving reasoning capabilities without extensive labelled datasets. Building upon
the foundation laid by STaR, Zelikman et al.|[2024] demonstrate how these techniques could be
generalized beyond specific domains like mathematical problem-solving. By extending the reasoning
process to arbitrary tasks and incorporating the methodology into pre-training, Quiet-STaR highlights
the versatility of automated process supervision across various tasks, marking a significant step
in scaling data acquisition for reasoning tasks. In addition,|Luo et al.|[2024] represent the latest
advancement in the field, specifically focusing on mathematical reasoning. This work refines the
methods for automated data acquisition, making the process more robust and applicable to increasingly
complex problem-solving scenarios. Moreover, Wang et al.|[2024a] take the concept of automatic
process supervision a step further by proposing a practical solution for training models without
relying on human-labelled data. Finally, the empirical results in|Wang et al.|[2024b] extend these
approaches by testing their applicability on coding tasks, demonstrating that process supervision
can be effectively induced by the model itself. These works underscore the increasing reliance on
automated data acquisition methods, where models are equipped to extract and verify their self-
reasoning processes. To facilitate the research in this direction, we make the generated dataset and
code publicly available.

In summary, advanced reasoning in models such as OpenAI’s ol relies heavily on careful data
selection, sophisticated PRM training, and enhanced decoding methods. Approaches such as tree-
based search, reinforcement learning, and step-aware verifiers enable these models to tackle more
complex tasks. As research progresses, LLMs are expected to further enhance their autonomous
reasoning, planning, and problem-solving capabilities. Our project aims to serve as a starting point
for transparently investigating and evaluating the potential of inference-time computation.
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Figure 3: The OpenR framework for LLM reasoning. Combining the value function from the
PRM with the LLM’s policy generation ensures guided and controlled results. During training, the
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3 The OpenR LLM Reasoning Framework

To model the process of reasoning in tasks such as question-answering or problem-solving, we
structure the reasoning task using the @ — { R} — A sequence, where:

* () represents the question or prompt that initiates the reasoning process;

* R represents the sequence of intermediate reasoning steps the model generates to build
toward the solution;

A represents the final answer or solution produced after the reasoning steps.

This structure allows the LLM to generate a sequence of reasoning steps that logically connect
the question @ to the final answer A. We can define the reasoning process as a Markov Decision
Process (MDP) |Bellman}|1958]. An MDP representation offers a flexible framework for modelling
reasoning. It allows the model to generate sequential reasoning steps toward the final answer step
by step while also enabling a tree structure by sampling multiple paths at each step for alternative
reasoning trajectories. By combining both approaches - sequential and branching reasoning - the
model can explore diverse solutions, creating a versatile and comprehensive reasoning process.

In an MDP (as illustrated in Figure, the LLM policy functions by generating tokens that combine
to form higher-level reasoning constructs. States represent the sequence of reasoning steps taken up
to the current point, while actions involve selecting the next reasoning step or the final answer. The
LLM policy generates these action choices, and the process reward model (PRM) [Lightman et al.}
2023||Uesato et al.,|2022] offers feedback on the quality of both the reasoning steps and the final
answer. The PRM guides the LLM toward producing accurate and meaningful reasoning processes
by optimising the policy to maximise the reward.

3.1 System Design

The process reward model (PRM) plays a crucial role in enhancing the LLM’s policy in two key ways.
First, during training, the PRM improves the LLM policy through policy optimisation techniques
(Policy Iteration as shown in Figure. Second, during the decoding phase, the PRM guides the
LLM’s search process, steering the reasoning toward more effective outcomes (as shown in Figure .
As we will show next, the LLM policy also helps identify missing intermediate reasoning steps,
which in return enables further training and refinement of the PRM. As shown in Figure |3| this
iterative interaction allows the LLM and PRM to unlock each other’s potential for improved reasoning
continuously.



3.2 Data Augmentation

For a solution or chain-of-thought provided by large language models (LLMs), we use more precise
and fine-grained feedback instead of relying solely on the final answers. We collect data for process
supervision, which provides step-wise feedback for a given solution. Formally, a PRM computes
p+ = PRM([q, 21.4—1], x+), where 1.4 = [z1,- -+ , 2] represents the first ¢ steps of the solution.
This method provides more precise and fine-grained feedback compared to outcome reward models
(ORMs), as it identifies the exact location of errors within the problem-solving process |[Lightman
et al.}|2023].

MATH-APS. We augment the data by automatically generating synthetic samples. In addition to
the PRM800k dataset [Lightman et al.;[2023|], which relies on costly human annotation and is difficult
to scale, we introduce a new dataset called MATH-APS, based on MATH |[Hendrycks et al.|[2021],
using automated methods such as OmegaPRM [Luo et al.||2024]. This approach reduces the reliance
on expensive human annotations, enabling more scalable data collection. Automatic methods such as
OmegaPRM, Math-Shepherd [Wang et al.,|2024a] and MiPS [Wang et al.|[2024b] efficiently collect
high-quality process supervision data. While Math-Shepherd and MiPS provide automatic annotation
for process supervision, they require lots of policy calls, making them computationally expensive.
OmegaPRM improves this process by iteratively dividing the solution, performing rollouts, and
identifying the first incorrect step in a model’s solution.

We follow OmegaPRM [Luo et al.;|2024] and collect PRM training examples by constructing a
state-action tree using LLMs. For each question, a tree is built where each node contains the question
q, the solution prefix s, and all previous rollouts {(s,r;)}*_, (with r; indicating the i-th rollout).
Each edge represents a single step or a sequence of steps from the node. For each node, we calculate
the Monte Carlo estimation M C'(s) and the value function Q(s, ) to guide the selection of rollouts

during tree traversal. The value function is defined as: Q(s,7) = a - 7= Mlc(s) -3 le“L(T), where

a, B, and L are constants, and len(r) is the length of the rollout. We also compute the exploration

term: U(S) = Cpuet - 7%]\&(;”), where N (s) is the visit count and ¢y is a constant encouraging
exploration. During the selection phase, a rollout is chosen using a variant of the PUCT algorithm:
(s,7) = argmax(s ) [Q(s,7) + U(s)]. This heuristic selects the most valuable rollouts. A binary
search is then used to identify the first error in the selected rollouts, and rollouts with 0 < M C(s)
are added to the candidate pool. All positions before the first error become new states for further

exploration.

3.3 Supervised Training for PRMs

In PRMs, the goal is to determine whether the sequence of the solution process is currently on the
right track, so it should output a binary indicator of correctness. Specifically, we assign a score y;
between 0 and 1 given a problem ¢ and a sequence of solution steps 1 — ;. This score represents
the correctness of the current problem-solving process. As a result, the problem is reframed as
y+ = PRM(q, 1,232, - ,2¢), which can be treated as a binary classification task. The PRM is
trained through supervised fine-tuning on a LLM, with the correct/incorrect distinction serving as the
classification label. We then use the LLM to predict the next token of the step token.

Math-psa. The PRM is trained through supervised fine-tuning on an LLM with the correct/incorrect
distinction servmg as the classification label. We train a PRM named-Math-psa-using datasets such

and label. The input consists efa concatenation of the guestion and the process. Inthe process, the

solution is divided into pwltiple steps, each separated by a specml step token \n\n\n"), marking
the end of each step i a classification of the entire
process, with each ste S

During training, the data is fed to the LLM as a-nex ned
to predict a positive or negative token immediately following each step token. As described in/the
data section, the input consists 0 ens
separate the steps in the pr p token,

the label is either a positive or negatlve token, while all other positions are ignored dufing the loss
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the step tokens themselves.

25K is set to 1 for all tokens except the step tok€n positions, ensuring
focuses only on the input sequence (¢.xr= x;) and does not attend to

3.4 Policy Learning for LLMs

We transform math problems into a language-augmented Markov Decision Process (MDP) M =
(W, S, A, T, R,v) [Van Otterlo and Wiering/[2012||Carta et al.;|2023]. Given V the vocabulary and
w € V the tokens, A C V¥, S C V¥ are action and state space, respectively, i.e., actions and
states are sequences of tokens. 7 : § x A — § is the state transition function. R : § x A — Riis
the reward function that responds to each action, and + is the discounted factor that typically less
than 1. An initial state sg represents a given problem in mathematical problem-solving scenarios.
A language model receives this input and generates an intermediate reasoning step, denoted as an
action ag. This action ay is then concatenated with the initial problem s, to form the subsequent state
s1, which is used to infer the next action a1, This iterative process continues, with each state-action
pair successively informing the following state, i.e., 7 : s;11 = {s¢, a;} at time step ¢, until the
model arrives at the final answer. After inferring each action a;, the model receives a reward signal
rPRM = R(sy,a;) from a well-trained PRM. Following this process with trajectories of a maximum

timestep 7', the agents earn a discounted cumulative return of R7 = 23:0 ytrPRM which is aimed
to be maximised by RL algorithms. We correspondingly implement this MDP as a reinforcement
learning environment like OpenAI’s Gym. In these environments, math problems are presented as
tasks where the model takes sequential actions to solve the problem, receiving rewards for correct
actions and penalties for incorrect ones, which enables the model to iteratively learn and refine its
problem-solving strategies through trial and error, ultimately enhancing its mathematical reasoning
skills.

RL Training. Training LLMs with reinforcement learning often involves Proximal Policy Opti-
misation (PPO) [Schulman et al.,|2017] to align generated language outputs with desired actions.
This approach bridges the gap between language understanding and actionable outputs by reinforcing
the generation of responses that are both contextually accurate and aligned with predefined goals,
effectively linking language comprehension with strategic planning. We provide both traditional PPO
and an efficient variant of PPO, i.e., Group Relative Policy Optimisation (GRPO) [Shao et al.}|2024]].
The primary distinction between these two lies in their approaches to advantage value estimation.
Specifically, PPO utilises a network to approximate the state value function, leveraging the Gener-
alized Advantage Estimation (GAE) technique [Schulman et al.}|2015] to derive the advantage. In

contrast, GRPO simplifies this process by directly employing a normalized reward signal to estimate
PRM

an action’s advantage, i.e., A(s¢, at) = WT”W))' Compared with PPO, GRPO bypasses
the need for an extra critic network and reduces the resources consumed during training, however, it
emphasizes the stability of PRMs more.

3.5 Decoding: Inference-Time Guided Search and Planning

Following |Snell et al.|[2024], we use PRMs to assess the accuracy of each solution step. Once a
high-quality process reward model is trained, we integrate it into the decoding process alongside the
language model, enabling guided search and scoring or voting across multiple generations.

To use PRMs as verifiers, we define a method for evaluating the correctness of LLM-generated
solutions. Specifically, we map the scores of individual steps { rf RM }tTZO to a final score. Following
the strategies outlined by|Lightman et al.||2023|] and|Snell et al.|[2024], we employ two approaches:

 PRM-Min: choose the minimum value among all scores, i.e., v = min{rZ BM}T .

* PRM-Last: choose the last step’s score as the final score, i.e., v = rTPRM

been shown to be as good as PRM-Min in|Snell et al.|[2024].

. This strategy has

Once multiple answers are generated by scaling test-time computations, we need strategies to select
the best answer based on their scores. We adopt three strategies from |Feng et al.|[2024]:

* Majority-Vote: Aggregate answers using majority vote: f* = argmaxy Zyj Lnal_ans(y9)=1>
where 1 is the indicator function.



* RM-Max: Given an outcome reward model, the aggregation can choose the answer f with
maximum final reward, f* = final_ans(arg maxy; v(y’[x)).

* RM-Vote: Given an outcome reward model, the aggregation can choose the answer f with
the sum of rewards, namely f* = argmaxs > g ans(ys)—s ¥(¥”[%)-

Combining these strategies, we can define multi-answer weighting methods, such as PRM-Last-Max,
which refers to using PRM-Last with RM-Max.

Our framework allows us to select among various search algorithms — such as beam search, best-of-N
selection, and others — each with unique advantages depending on the quality of PRMs. Complex
search algorithms may yield better performance on more difficult tasks, while simpler methods, such
as best-of-N, often perform adequately for less challenging cases [Snell et al.}|2024].

We mainly employ two strategies:

* Best-of-N: Given a base model, the best-of-N sampling approach generates N outputs in
parallel and selects the answer with the highest score according to a learned process using
PRMs. This method is similar to previous work that leverages verifiers or reward models
[Cobbe et al.||2021b}|Lightman et al.;,|2023]. While simple, it is an effective baseline that
leverages test-time computation to improve the performance of LLMs. PRMs can act as
dense verifiers [Lightman et al.|[2023||Wang et al.||2024a], and it is intuitive that providing
a strong signal can lead to improved outcomes. Since dense rewards can be obtained for
a base model’s solution, we need to consider how best to use this feedback to optimise
test-time computation.

* Beam Search: The LLM generates N different outputs for the first step, which are then
scored using PRMs. These N outputs are scored using PRMs, and the top N/m (% €Z)
highest-scoring outputs are retained. We then keep only these N/m outputs for the current
step. For each of these outputs, we sample M potential next steps via the base model,
returning to N total outputs. The process is repeated: new candidates are scored, filtered,
and sampled for subsequent steps. The scores from the PRMs are central to guiding this
search. As with the best-of-N approach, we use both last vote and majority vote strategies
to aggregate the scores, with the latter relying on the sum of scores across the PRMs as in
[Wang et al.||2022].

We are going to continuously work on developing more complicated inference-time guided search
decoding methods such as Monte Carlo Tree Search (MCTS), which has been already covered in the
codebase of OpenR and other methods like sequential revision [Snell et al.||2024].

4 Experiments

To demonstrate the capabilities of our OpenR framework, we present quantitative results on large
language model inference and training. We evaluate our open framework using the MATH dataset
[Hendrycks et al.;|2021]], which includes a wide range of high-school competition-level math problems.
This makes it an ideal benchmark for testing reasoning skills. To ensure fair comparisons with previous
work and reduce overfitting, we follow Lightman et al. [2023]] and use a subset of 500 problems for
evaluation, known as MATHS500, in which the problems are sampled randomly.

4.1 Scaling LLM Test-Time Compute

Setting. Our PRM model, Math-psa, is fine-tuned from the Qwen2.5-Math-7B-Instruct [Yang et al.,
2024] model using multiple datasets, including PRM500K [Lightman et al.}|2023], Math-Shepherd
[Wang et al.;|2024a], and our MATH-APS dataset (originally over 500k state-value pairs collected
from Qwen2.5 Math models, reduced to approximately 150k pairs after cleaning and preprocessing).
In the meantime, we also experiment with Math-Shepherd PRM for comparison purposes. Following
Snell et al.|[2024], we employ best-of-N and beam search algorithms for test-time computation. We
compare multiple test-time computation schemes across pre-defined budgets of token generation.
Among different aggregation strategies, we select PRM-Last as a representative. The LLM inference
server is implemented using FastChat [Zheng et al.,|2023].
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Figure 5: Performance on a single math problem and the MATHS500 dataset over training time.

Results. Figurecompares the performance of these search and voting methods during inference.
The y-axis represents testing accuracy on the MATHS00 dataset, while the x-axis shows the generation
budget (average tokens per question), reflecting the computational effort or token usage per question.
The figure indicates that both Best-of-N and Beam-Search methods significantly outperform Majority
Vote, especially as the generation budget increases, showing a similar pattern with previous findings
Snell et al.|[2024]. Under low test-time computation budgets (< 24), Best-of-N methods demonstrate
better performance compared to Beam Search, whereas Beam Search can reach matching performance
géven higher budgets, or even surpass Best-of-N with PRM-Last strategy used at budgets larger than
28

On the other hand, Figureinvestigates how different PRMs affect test-time computations. We
compare the performance of best-of-N methods with different PRM guidance. The figure shows that
our PRM (Math-aps) can achieve the highest testing accuracy across all tested computation budgets.
This indeed has verified that our PRM training pipeline can provide effective learning of process
supervision.

4.2 Online Policy Learning for LLM

Setting. In the policy learning experiment, we use the Qwen2.5-1.5B-Math-Instruct model as the
policy model for training, with the Math-Shepherd model [Wang et al.}|2024a] serving as the PRM
to provide feedback during RL. In addition to the MATHS00 dataset, we test the performance of
the model on a specific math problem: “How many positive whole-number divisors does 196 have?”
with the final answer being “9.”



Q&A Case 1

What is the remainder of 2004 divided by 12?

Step 1: To find the remainder of 2004 divided by 12, we can use the division algorithm, which
states that for any integers a and b (with b > 0), there exist unique integers ¢ (the quotient) and
7 (the remainder) such that a = bg + r and 0 < r < b. [0.958, 0.988]

Step 2: Here, a = 2004 and b = 12. We need to find g and 7 such that:
2004 = 12¢ + r
where 0 < r < 12. [0.924, 0.987]

Step 3: First, we perform the division of 2004 by 12:
2004 =12 = 167

This means the quotient ¢ is 167. Now, we can find the remainder r by multiplying the quotient
by the divisor and subtracting the result from the original number:

2004 — 12 x 167 = 2004 — 2004 = 0
[0.777,0.719]

Step 4: Thus, the remainder 7 is:
r=20
[0.777,0.378]

Step 5: Therefore, the remainder when 2004 is divided by 12 is: @ [0.622,0.349]

An integer is divisible by 12 if and only if it is divisible by both 3 and 4.
Because 2 + 0 4+ 0 + 4 = 6 is divisible by 3, 2004 is divisible by 3.
Also, the last two digits of 2004 form a multiple of 4, so 2004 is divisible by 4 as well.

Therefore, 2004 is divisible by 12 and hence leaves a remainder of @ when divided by 12.

Figure 6: PRM score comparison for a case with a correct answer.

Results. Figure illustrates the reward obtained by a reinforcement learning (RL) algorithm with
process reward models (PRM) on a single math problem. The rewards steadily increase over time,
showing consistent improvement, with performance stabilizing after around 6 hours of training. This
indicates that the model becomes more accurate in solving the specific problem as training progresses.

On the MATHS00 dataset, results exhibit more fluctuations in rewards. This suggests that the PPO
algorithm with PRM faces a more complex challenge due to the diversity of problems in the dataset.
Although the rewards increase over time, their variability highlights the difficulty of generalizing
across broader problems. This indicates the need for further improvements on the algorithm to
enhance its adaptability for diverse problem sets in future work.

4.3 Case Study

Comparison of PRMs. Figures |§| and compare the responses of the Math-psa PRM and the
Math-Shepherd PRM to a given reasoning step. The PRM scores for each step are represented as
“[Math-psa (ours) Score, Math-Shepherd PRM Score]”. Figure@shows Math-psa (ours) is able to
assign more reasonable scores to reasoning steps. Particularly at Step 4 and Step 5, Math-psa shows

10



Q&A Case 2

Let f be the function defined by f(z) = 2® — 492> + 6232 — 2015, and let g(z) = f(x + 5).
Compute the sum of the roots of g.

Step 1: To find the sum of the roots of the function g(x) = f(x + 5), we first need to
understand the relationship between the roots of g(x) and the roots of f(x). [0.905, 0.810]

Step 2: Given the function f(z) = 2® — 4922 4 623z — 2015, we know that the sum of the

roots of f(x) can be found using Vieta’s formulas. For a cubic polynomial az® + bx? 4+ cx + d,
the sum of the roots (denoted as o + 3 + ) is given by:

b
a-l—ﬁ-l—vz—;

In our case, a = 1 and b = —49. Therefore, the sum of the roots of f(x) is:
—49
a+pB+y= - =49

[0.706,0.715]

Step 3: Next, we consider the function g(z) = f(x + 5). This represents a horizontal shift
of the function f(x) by 5 units to the left horizontal shifts do not change the sum of the
roots of the polynomial; they only shift the positions of the roots along the x-axis. [0.593, 0.788|

Step 4: Thus, the sum of the roots of g(z) is the same as the sum of the roots of f(z). Therefore,
the sum of the roots of g(x) is:

[0.182,0.665)]

Let a, b, ¢ be the roots of 2> — 4922 + 6232 — 2015. Then by Vieta’s formulas, a + b+ ¢ = 49.
The roots of g(z) = f(x + 5) area — 5, b — 5, and ¢ — 5, and their sumisa + b+ ¢ — 15 =

49 — 15 =[34]

Figure 7: PRM score comparison for a case with an incorrect answer.

higher confidence in the output whereas the Math-Shepherd PRM appears to be less certain about the
given correct response. Figureshows the reasoning process leads to an incorrect answer. It shows
that Math-psa PRM assigns a lower score to Step 3 since horizontal shifts do affect the sum of the
roots of a polynomial. Math-psa PRM further discourages Step 4 whereas Math-Shepherd PRM still
holds high confidence.
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Q&A Case 3

A regular hexagon can be divided into six equilateral triangles. If the perimeter of one of the
triangles is 21 inches, what is the perimeter, in inches, of the regular hexagon?

Step 1: A regular hexagon can be divided into six equilateral triangles.
Step 2: The perimeter of one of the triangles is 21 inches.

Step 3: Since the hexagon is regular, all sides are equal.

Step 4: The perimeter of the hexagon is the sum of all six sides.

Step 5: The perimeter of the hexagon is 21 * 6 = 126 inches. [Wrong Step]

The answer is 126.

Figure 8: A case study from models before policy learning.

Q&A Case 4

Question:

A regular hexagon can be divided into six equilateral triangles. If the perimeter of one of the
triangles is 21 inches, what is the perimeter, in inches, of the regular hexagon?

Step 1: A regular hexagon can be divided into six equilateral triangles.

Step 2: The perimeter of one of the triangles is 21 inches.

Step 3: Since the hexagon is regular, all sides of the hexagon are equal.

Step 4: The perimeter of the hexagon is the sum of the lengths of all its sides.

Step S: Since the hexagon is divided into six equilateral triangles, each side of the hexagon is
equal to the side of one of the triangles.

Step 6: The perimeter of the hexagon is 6 times the length of one side of the triangle.

Step 7: The length of one side of the triangle is 21 / 3 = 7 inches.

Step 8: The perimeter of the hexagon is 6 * 7 = 42 inches.

The answer is 42.

Figure 9: A cases study from models after policy learning.

Comparison between LLMs Before and After Policy Learning. Figures@and@present cases
from models before and after policy learning, respectively. Figure|8|shows the results prior to policy
learning, collected from the vanilla policy of Qwen2.5-Math-1.5B-Instruct. In this instance, the
model makes an error by incorrectly using the perimeter of a triangle as the side length, resulting in
an incorrect answer. FigureEluses the same question as Figure and demonstrates the improvements
after applying the Math-psa PRM. The Math-psa PRM is able to correct the error, showing that the
RL training process with a well-designed PRM can improve reasoning accuracy.
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Q&A Case 5

Kathy needs money for her trip to Europe. If she has 300 US dollars in the bank but wants to
withdraw half of it in British pounds and half of it in euros, how many more euros than pounds
will she have? Assume 1 pound = 1.64 USD and 1 euro = 1.32 USD, and round to the nearest
whole number.

CoT Reasoning
Step 1: First, calculate the amount of money Cathy will withdraw in pounds and euros:
Amount withdrawn in pounds = ﬂzo = 150 USD
300

Amount withdrawn in euros = = 150 USD

Step 2: Next, convert the amounts from pounds and euros back to US dollars using the given
exchange rates:

Value of 150 pounds in USD = 150 x 1.64 = 246 USD

Value of 150 euros in USD = 150 x 1.32 = 198 USD
Step 3: Now, find the difference between the amounts in euros and pounds:

Difference = 198 — 246 = —48 USD

After Kathy has exchanged half of her money ($300 USD--2 = 150 USD) into pounds, she

So the answer is:

will have: ] ;
pound
150 USD x 1640SD ™~ 91.46 pounds
After exchanging the other half of her money into euros, she will have:
1 euro
150 USD x 1320SD ™~ 113.64 euros

Subtracting these two values, we have:
113.64 — 91.46 = 22.18

Since the question calls for the nearest whole number, we round 22.18 to the final answer of:

Figure 10: A case study of the CoT method with an incorrect answer.

Comparison of Different Search Methods. Figures and present examples that demon-
strate how different test-time compute methods impact the reasoning outputs. The three question-
and-answer sessions show that both Best-of-N and Beam Search reasoning accurately addressed
the questions, thoroughly understanding them and providing correct calculations. In contrast, CoT
reasoning misinterprets the question, leading to calculation errors starting from Step 2. This suggests
that Best-of-N and Beam Search reasoning benefit from a larger search space, enabling them to
explore more reasoning paths and converge on the correct solution.
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Q&A Case 6

Kathy needs money for her trip to Europe. If she has 300 US dollars in the bank but wants to
withdraw half of it in British pounds and half of it in euros, how many more euros than pounds
will she have? Assume 1 pound = 1.64 USD and 1 euro = 1.32 USD, and round to the nearest
whole number.

Best-of-N Reasoning
Step 1: Kathy has 300 US dollars in the bank. She wants to withdraw half of it in British
pounds and the other half in euros. First, we calculate the amount she will withdraw in each

currency:

Amount withdrawn in pounds = ﬂzo = 150 USD

300

Amount withdrawn in euros = = 150 USD

Step 2: Next, we convert these amounts into pounds and euros using the given exchange rates.
The exchange rate for pounds is 1 pound = 1.64 USD, so the amount in pounds is:

Amount in pounds = 11i6(z)1 ~ 91.50 pounds

Step 3: The exchange rate for euros is 1 euro = 1.32 USD, so the amount in euros is:

1
Amount in euros = % =~ 113.64 euros

Step 4: Now, we find the difference between the amounts in euros and pounds:
Difference = 113.64 — 91.50 = 22.14

Step 5: Rounding 22.14 to the nearest whole number, we get:

After Kathy has exchanged half of her money ($300 USD--2 = 150 USD) into pounds, she

will have: 1 d
poun
150 USD X ———— ~ 91.46 d
* 1.64USD e
After exchanging the other half of her money into euros, she will have:
1 euro
1 DX ———— &~ 113.64
50 USD x 132USD 3.64 euros

Subtracting these two values, we have:
113.64 — 91.46 = 22.18

Since the question calls for the nearest whole number, we round 22.18 to the final answer of:

Figure 11: A case study of the Best-of-N method with a correct answer.
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Q&A Case 7

Kathy needs money for her trip to Europe. If she has 300 US dollars in the bank but wants to
withdraw half of it in British pounds and half of it in euros, how many more euros than pounds
will she have? Assume 1 pound = 1.64 USD and 1 euro = 1.32 USD, and round to the nearest
whole number.

Beam Search Reasoning

Step 1: Kathy has 300 US dollars (USD) in the bank. She wants to withdraw half of it in British
pounds (GBP) and half of it in euros (EUR). Let’s calculate the amount of money she will
withdraw in each currency. First, we calculate the amount to be withdrawn in pounds:

Amount in GBP = ﬂQO = 150 USD

Step 2: Next, we convert this amount into pounds using the exchange rate (1 GBP = 1.64 USD):

Amount in GBP in pounds = 11i6(4)1 ~ 91.50 GBP

Rounding to the nearest whole number, she will withdraw 92 pounds.
Step 3: Now, we calculate the amount to be withdrawn in euros:

Amount in EUR = % = 150 USD
Step 4: Next, we convert this amount into euros using the exchange rate (1 EUR = 1.32 USD):

Amount in EUR in euros = % =~ 113.64 EUR

Rounding to the nearest whole number, she will withdraw 114 euros.
Step 5: Finally, we find the difference between the amount of euros and pounds she will have:

Difference = 114 — 92 = 22
So, she will have more euros than pounds.

Answer:

After Kathy has exchanged half of her money ($300 USD-=-2 = 150 USD) into pounds, she

will have: | i
poun
1 Dx ——— =~ 914
50 USD x 164USD 91.46 pounds
After exchanging the other half of her money into euros, she will have:
1 euro
1 DX ——— &~ 113.64
50 USD x 132 USD 3.64 euros

Subtracting these two values, we have:
113.64 — 91.46 = 22.18

Since the question calls for the nearest whole number, we round 22.18 to the final answer of:

Figure 12: A case study of the Beam Search method with a correct answer.
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5 Conclusion

In this work, we have introduced OpenR, an open-source framework designed to advance reasoning
capabilities in large language models (LLMs) through the integration of test-time computation,
reinforcement learning, and process supervision. Our framework provides an open and accessible
platform for experimenting with reasoning tasks in LLMs, showcasing how test-time compute, search
algorithms, and process reward models (PRMs) can be combined to improve reasoning performance.

We believe OpenR will serve as a valuable resource for the research community, offering a compre-
hensive platform for further exploration of reasoning in LLMs. By making our models, data, and
code publicly available, we aim to accelerate advancements in Al reasoning, fostering collaboration
and innovation in the field. In future work, we plan to extend the framework to support a wider range
of reasoning tasks and optimise inference-time computation for even more efficient and scalable
reasoning models.

6 Limitations

Limited Scale of Experiments: Due to restricted access to large-scale computing infrastructure, our
evaluations were conducted on relatively smaller models and datasets.

Model Size: We primarily utilised mid-sized models as our base LLMs. While these models
demonstrated substantial gains, larger models could further enhance reasoning capabilities.

Limited Process Supervision Data: While we leveraged datasets like PRM800K, Math-Shepherd, and
our generated MATH-APS dataset for training, the scale and diversity of process supervision data
remain limited.

Future work could focus on scaling up experiments, expanding the training datasets, and testing across
a broader range of models and domains to unlock further improvements in reasoning performance.
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