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Abstract

In this report, we introduce the Qwen2.5-Coder series, a significant up-
grade from its predecessor, CodeQwenl.5. This series includes six models:
Qwen2.5-Coder-(0.5B/1.5B/3B/7B/14B/32B). As a code-specific model,
Qwen2.5-Coder is built upon the Qwen2.5 architecture and continues pre-
trained on a vast corpus of over 5.5 trillion tokens. Through meticulous
data cleaning, scalable synthetic data generation, and balanced data mix-
ing, Qwen2.5-Coder demonstrates impressive code generation capabilities
while retaining general and math skills. These models have been evaluated
on a wide range of code-related tasks, achieving state-of-the-art (SOTA)
performance across more than 10 benchmarks, including code generation,
completion, reasoning, and repair, consistently outperforming larger mod-
els of the same model size. We believe that the release of the Qwen2.5-Coder
series will advance research in code intelligence and, with its permissive
licensing, support wider adoption by developers in real-world applications.
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1 Introduction

With the rapid development of large language models (LLMs) (Brown, 2020; Achiam et al.,
2023; Touvron et al., 2023; Dubey et al., 2024; Jiang et al., 2023; Bai et al., 2023; Yang et al., 2024;
Anthropic, 2024; OpenAl, 2024), code-specific language models have garnered significant
attention in the community. Built upon pre-trained LLMs, code LLMs such as the StarCoder
series (Li et al., 2023; Lozhkov et al., 2024), CodeLlama series (Roziere et al., 2023), DeepSeek-
Coder series (Guo et al., 2024a), CodeQwenl.5 (Qwen, 2024), and CodeStral (MistralAl,
2024), have demonstrated superior performance in coding evaluations (Chen et al., 2021;
Austin et al., 2021; Cassano et al., 2022; Jain et al., 2024; Liu et al., 2024a; Li et al., 2024b; Guo
et al., 2024b; Wu et al., 2024b). However, in comparison with the recently state-of-the-art
proprietary LLMs, Claude-3.5-Sonnet (Anthropic, 2024) and GPT-40 (OpenAl, 2024), the
code LLMs are still falling behind, either open-source or proprietary models.

Building upon our previous work, CodeQwen1.5, we are excited to introduce Qwen2.5-
Coder, a new series of language models designed to achieve top-tier performance in coding
tasks at various model sizes. Qwen2.5-Coder models are derived from the Qwen2.5 LLMs,
inheriting their advanced architecture and tokenizer. These models are trained on exten-
sive datasets and further fine-tuned on carefully curated instruction datasets specifically
designed for coding tasks. We are committed to fostering research and innovation in the
field of code LLMs, coding agents, and coding assistant applications. Therefore, we release
the Powerful, Diverse, and Practical Qwen2.5-Coder series, dedicated to continuously pro-
moting the development of Open CodeLLMs. (1) Powerful: Qwen2.5-Coder-32B-Instruct
has become the current SOTA open-source code model, matching the coding capabilities of
GPT-40. While demonstrating strong and comprehensive coding abilities, it also possesses
good general and mathematical skills. (2) Diverse: Qwen2.5-Coder series brings six model
sizes, including 0.5B/1.5B/3B/7B/14B/32B. Qwen2.5-Coder has covered six mainstream
model sizes to meet the needs of different developers. (3) Practical: We explore the practical-
ity of Qwen2.5-Coder in two scenarios, including code assistants and Artifacts, with some
examples showcasing the potential applications of Qwen2.5-Coder in real-world scenarios

Significant efforts have been dedicated to constructing a large-scale, coding-specific pretrain-
ing dataset comprising over 5.5 trillion tokens. This dataset is sourced from a broad range of
public code repositories, such as those on GitHub, as well as large-scale web-crawled data
containing code-related texts. We have implemented sophisticated procedures to recall and
clean potential code data and filter out low-quality content using weak model based classi-
fiers and scorers. Our approach encompasses both file-level and repository-level pretraining
to ensure comprehensive coverage. To optimize performance and balance coding expertise
with general language understanding, we have carefully curated a data mixture that in-
cludes code, mathematics, and general texts. To transform models into coding assistants for
downstream applications, we have developed a well-designed instruction-tuning dataset.
This dataset includes a wide range of coding-related problems and solutions, sourced from
real-world applications and synthetic data generated by code-focused LLMs, covering a
broad spectrum of coding tasks.

To evaluate the effectiveness of Qwen2.5-Coder, we conducted an extensive evaluation
on a suite of popular benchmarks. The results highlight Qwen2.5-Coder’s superior code
generation capabilities, achieving state-of-the-art performance across more than ten code-
focused benchmarks while maintaining robust general and mathematical reasoning abilities.
This model outperforms larger code models on a variety of tasks. The release of these
models aims to advance code intelligence research and promote widespread adoption in
real-world applications, facilitated by permissive licensing.

2 Model Architecture

Architecture The architecture of Qwen2.5-Coder is derived directly from Qwen2.5. Table 1
outlines the architecture of Qwen2.5-Coder across six different model sizes: 0.5B, 1.5B, 3B,
7B, 14B, and 32B parameters. While all sizes share the same architecture in terms of head
size, they differ in several other key aspects. With exceptions like the 1.5B model having a
larger intermediate size and the 3B model having more layers, most parameters generally
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increase as the model size scales up. Comparing the 7B and 32B models for instance: the 7B
model features a hidden size of 3,584, whereas the 32B model has a hidden size of 5,120. The
7B model uses 28 query heads and 4 key-value heads, while the 32B model uses 40 query
heads and 8 key-value heads, reflecting its enhanced capacity. Similarly, the intermediate
size scales with model size, being 18,944 for the 7B model and 27,648 for the 32B model.
Additionally, smaller models use embedding tying, while larger models do not. Both models
have a vocabulary size of 151,646 tokens and are trained on 5.5 trillion tokens.

Tokenization Qwen2.5-Coder inherits the vocabulary from Qwen2.5 but introduces
several special tokens to help the model better understand code. Table 2 presents an
overview of the special tokens added during training to better capture different forms
of code data. These tokens serve specific purposes in the code-processing pipeline. For
instance, <|endoftext|> marks the end of a text or sequence, while the <|fim_prefix|>,
<|fim_middle|>, and <|fim_suffix|> tokens are used to implement the Fill-in-the-Middle
(FIM) (Bavarian et al., 2022) technique, where a model predicts the missing parts of a code
block. Additionally, <|fim_pad|> is used for padding during FIM operations. Other tokens
include <|repo_name|>, which identifies repository names, and <|file_sep|>, used as a
file separator to better manage repository-level information. These tokens are essential in
helping the model learn from diverse code structures and enable it to handle longer and
more complex contexts during both file-level and repo-level pretraining.

Configuration 0.5B 1.5B 3B 7B 14B 32B
Hidden Size 896 1,536 2048 3,584 5120 5120
# Layers 24 28 36 28 48 64
# Query Heads 14 12 16 28 40 40
# KV Heads 2 2 2 4 8 8
Head Size 128 128 128 128 128 128

Intermediate Size 4,864 8,960 4,864 18,944 13824 27648
Embedding Tying v v v X X X
Vocabulary Size 151,646 151,646 151,646 151,646 151,646 151,646
# Trained Tokens 55T 55T 55T 55T 55T 55T

Table 1: Architecture of Qwen2.5-Coder.

Token Token ID Description

<|endoftext|> 151643 end of text/sequence
<|fim_prefix|> 151659 FIM prefix
<|fim_middle|> 151660 FIM middle
<|fim_suffix|> 151661 FIM suffix
<|fim_pad|> 151662 FIM pad
<|repo_name|> 151663 repository name
<|file_sep|> 151664 file separator

Table 2: Overview of the special tokens.

3 Pre-training

3.1 Pretraining Data

Large-scale, high-quality, and diverse data forms the foundation of pre-trained models. To
this end, we constructed a dataset named Qwen2.5-Coder-Data. This dataset comprises
five key data types: Source Code Data, Text-Code Grounding Data, Synthetic Data, Math
Data and Text Data. In this section, we provide a brief overview of the sources and cleaning
methods applied to these datasets.
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3.1.1 Data Composition

Source Code We collected public repositories from GitHub created before February 2024,
spanning 92 programming languages. Similar to StarCoder2 (Lozhkov et al., 2024) and
DS-Coder (Guo et al., 2024a), we applied a series of rule-based filtering methods. In addition
to raw code, we also collected data from Pull Requests, Commits, Jupyter Notebooks, and
Kaggle datasets, all of which were subjected to similar rule-based cleaning techniques.
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Figure 1: Number of data tokens across different cc-stages, and the validation effectiveness
of training Qwen?2.5-Coder using corresponding data.

Text-Code Grounding Data We curated a large-scale and high-quality text-code mixed
dataset from Common Crawl, which includes code-related documentation, tutorials, blogs,
and more. Instead of the conventional URL-based multi-stage recall method, we developed
a coarse-to-fine hierarchical filtering approach for raw data. This method offers two key
advantages:

1. It enables precise control over each filter’s responsibility, ensuring comprehensive
handling of each dimension.

2. Itnaturally assigns quality scores to the dataset, with data retained in the final stage
being of higher quality, providing valuable insights for quality-driven data mixing.

We designed a cleaning pipeline for the Text-Code Grounding Data, where each filter level is
built using smaller models, such as fastText. Although we experimented with larger models,
they did not yield significant benefits. A likely explanation is that smaller models focus
more on surface-level features, avoiding unnecessary semantic complexity.

In Qwen2.5-Coder, we applied this process iteratively. As shown in Figure 1, each iteration
resulted in improvement for Qwen2.5-Coder-1.5B. Through 4-stage filtering, the average
scores on HumanEval and MBPP increased from 41.6% to 46.8% compared to the baseline,
demonstrating the value of high-quality Text-Code Grounding Data for code generation.

Synthetic Data Synthetic data offers a promising way to address the anticipated scarcity
of training data. We used CodeQwenl.5, the predecessor of Qwen2.5-Coder, to generate
large-scale synthetic datasets. To mitigate the risk of hallucinations during this process, we
introduced an executor for validation, ensuring that only executable code was retained.

Math Data To enhance the mathematical capabilities of Qwen2.5-Coder, we integrated
the pre-training corpus from Qwen2.5-Math into the Qwen2.5-Coder dataset. Importantly,
the inclusion of mathematical data did not negatively impact the model’s performance on
code tasks. For further details on the collection and cleaning process, please refer to the
Qwen2.5-Math technical report.
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Text Data Similar to the Math Data, we included high-quality general natural language
data from the pre-training corpus of the Qwen2.5 model to preserve Qwen2.5-Coder’s
general capabilities. This data had already passed stringent quality checks during the
cleaning phase of Qwen2.5’s dataset, so no further processing was applied. However, all
code segments were removed from the general Text data to avoid overlap with our code
data, ensuring the independence of different data sources.

3.1.2 Data Mixture

Balancing Code, Math, and Text data is crucial for building a foundational model. Although
the research community has explored this balance before, there is limited evidence regarding
its scalability to large datasets. To address this, we conducted empirical experiments with
different ratios of Code, Math, and Text data, designing multiple experiments to identify an
optimal combination rapidly. Specifically, as shown in Table 3, we compared three different
Code for Qwen?2.5-Coder-7B: Text ratios — 100:0:0, 85:10:5, and 70:20:10.

Interestingly, we found that the 7:2:1 ratio outperformed the others, even surpassing the
performance of groups with a higher proportion of code. A possible explanation is that
Math and Text data may positively contribute to code performance, but only when their
concentration reaches a specific threshold. In future work, we plan to explore more efficient
ratio mechanisms and investigate the underlying causes of this phenomenon. Ultimately,
we selected a final mixture of 70% Code, 20% Text, and 10% Math. The final training dataset
comprises 5.2 trillion tokens.

Token Ratio Coding Math General Average
Code Text Math | Common BCB | MATH GSM8K | MMLU CEval HellaSwag 8
100 0 0 49.8 40.3 10.3 23.8 42.8 35.9 58.3 31.3
85 15 5 43.3 36.2 26.1 52.5 56.8 57.1 70.0 48.9
70 20 10 48.3 38.3 33.2 64.5 62.9 64.0 73.5 55.0

Table 3: The performance of Qwen2.5-Coder training on different data mixture policy.

3.2 Training Policy

o . Repo-Level Alignment
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Figure 2: The three-stage training pipeline for Qwen2.5-Coder.

As shown in 2, we employed a three-stage training approach to train Qwen2.5-Coder,
including file-level pretraining, repo-level pretraining, and instruction tuning.

3.2.1 File-Level Pretraining

File-level pretraining focuses on learning from individual code files. In this stage, the
maximum training sequence length is set to 8,192 tokens, covering 5.2T of high-quality data.
The training objectives include next token prediction and fill-in-the-middle (FIM) (Bavarian
et al., 2022). The specific FIM format is shown in Figure 3.

File-Level FIM format.

<|fim_prefix|>{code_pre}<|fim_suffix|>{code_suf}<|fim_middle|>{code_mid}<|endoftext|>

Figure 3: File-Level FIM format.
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3.2.2 Repo-Level Pretraining

After file-level pretraining, we turn to repo-level pretraining, aimed at enhancing the model’s
long-context capabilities. In this stage, the context length is extended from 8,192 tokens to
32,768 tokens, and RoPE’s base frequency is adjusted from 10,000 to 1,000,000. To further
leverage the model’s extrapolation potential, we applied the YARN mechanism (Peng et al.,
2023), enabling the model to handle sequences up to 131,072 (128K) tokens.

In this stage, we used a large amount of high-quality, long-context code data (~ 300B) and
extended file-level FIM to the repo-level FIM followed by methods described in Lozhkov
et al. (2024), with the specific format shown in Figure 4.

Repo-Level FIM format.

<|repo_name|>{repo_name}
<|file_sep|>{file_path1}
{file_content1}
<|file_sep|>{file_path2}
{file_content2}
<|file_sep|>{file_path3}

<|fim_prefix|>{code_pre}<|fim_suffix|>{code_suf}<|fim_middle|>{code_fim}<|endoftext|>

Figure 4: Repo-Level FIM format.

4 Post-training

4.1 A Recipe for Instruction Data

Multilingual Programming Code Identification We fine-tune a CodeBERT (Feng et al.,
2020) to perform the language identification model to categorize documents into nearly 100
programming languages. We keep the instruction data of the mainstream programming
languages and randomly discard a portion of the instruction data of the long-tail languages.
If a given sample contains very little code data or even no code snippets, the sample will
possibly be classified into “No Programming Language” tag. Since too many instruction
samples without code snippets hurt the model performance on code generation tasks (e.g.
MultiPL-E, McEval, and MdEval), we remove most of the samples without code snippets to
keep the code generation capability of our instruction model.

Instruction Synthesis from GitHub For the unsupervised data (code snippets) massively
existing in many websites (e.g. GitHub), we try to construct the supervised instruction
dataset using LLM. Specifically, we use the LLM to generate the instruction from the code
snippets within 1024 tokens and then we use the code LLM to generate the response (Wei
et al., 2024; Sun et al., 2024; Yu et al., 2024). Finally, we use the LLM scorer to filter the
low-quality ones to obtain the final pair. Given the code snippets of different programming
languages, we construct an instruction dataset from the code snippets. To fully unleash the
potential of our proposed method, we also include the open-source instruction dataset (e.g.
McEval-Instruct for massively multilingual code generation and debugging') in the seed
instruction dataset. Finally, we combine the instruction data from the GitHub code snippet
and open-source instructions for supervised fine-tuning.

Multilingual Code Instruction Data To bridge the gap among different programming
languages, we propose a multilingual multi-agent collaborative framework to synthesize
the multilingual instruction corpora. We introduce language-specific agents, where a set of

Ihttps://huggingface.co/datasets/Multilingual-Multimodal-NLP/McEval-Instruct
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specialized agents are created and each dedicated to a particular programming language.
These agents are initialized with language-specific instruction data derived from the limited
existing multilingual instruction corpora. The multilingual data generation process can be
split into: (1) Language-Specific Intelligent Agents: We create a set of specialized agents,
each dedicated to a particular programming language. These agents are initialized with
language-specific instruction data derived from curated code snippets. (2) Collaborative
Discussion Protocol: Multiple language-specific agents engage in a structured dialogue
to formulate new instructions and solutions. This process can result in either enhancing
existing language capabilities or generating instructions for a novel programming language.
(3) Adaptive Memory System: Each agent maintains a dynamic memory bank that stores its
generation history to avoid generating the similar samples. (4) Cross-Lingual Discussion:
We implement a novel knowledge distillation technique that allows agents to share insights
and patterns across language boundaries, fostering a more comprehensive understanding
of programming concepts. (5) Synergy Evaluation Metric: We develop a new metric to
quantify the degree of knowledge sharing and synergy between different programming
languages within the model. (6) Adaptive Instruction Generation: The framework includes
a mechanism to dynamically generate new instructions based on identified knowledge gaps
across languages.

Checklist-based Scoring for Instruction Data To completely evaluate the quality of the
created instruction pair, we introduce several scoring points for each sample: (1) Ques-
tion&Answer Consistency: Whether Q&A are consistent and correct for fine-tuning. (2)
Question&Answer Relevance: Whether Q&A are related to the computer field. (3) Ques-
tion&Answer Difficulty: Whether Q&A are sufficiently challenging. (4) Code Exist: Whether
the code is provided in question or answer. (5) Code Correctness: Evaluate whether the
provided code is free from syntax errors and logical flaws. (6) Consider factors like proper
variable naming, code indentation, and adherence to best practices. (7) Code Clarity: Assess
how clear and understandable the code is. Evaluate if it uses meaningful variable names,
proper comments, and follows a consistent coding style. (8) Code Comments: Evaluate
the presence of comments and their usefulness in explaining the code’s functionality. (9)
Easy to Learn: determine its educational value for a student whose goal is to learn ba-
sic coding concepts. After gaining all scores (sy,...,5,), we can get the final score with
§ = w1S1 + - - - + WySy, where (wy, ..., w,) are a series of pre-defined weights.

A multilingual sandbox for code verification To further verify the correctness of the code
syntax, we use the code static checking for all extracted code snippets of programming
languages (e.g. Python, Java, and C++). We parse the code snippet into the abstract syntax
tree and filter out the code snippet, where the parsed nodes in code snippet have parsing
errors. We create a multilingual sandbox to support the code static checking for the main
programming language. Further, the multilingual sandbox is a comprehensive platform
designed to validate code snippets across multiple programming languages. It automates the
process of generating relevant unit tests based on language-specific samples and evaluates
whether the provided code snippets can successfully pass these tests. Especially, only the
self-contained (e.g. algorithm problems) code snippet will be fed into the multilingual
sandbox. The multilingual verification sandbox is mainly comprised of five parts:

1. Language Support Module:
¢ Implements support for multiple languages (e.g., Python, Java, C++, JavaScript)
¢ Maintains language-specific parsing and execution environments
¢ Handles syntax and semantic analysis for each supported language

2. Sample Code Repository:
¢ Stores a diverse collection of code samples for each supported language
¢ Organizes samples by language, difficulty level, and programming concepts
¢ Regularly updated and curated by language experts

3. Unit Test Generator:

* Analyzes sample code to identify key functionalities and edge cases
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* Automatically generates unit tests based on the expected behavior
* Produces test cases covering various input scenarios and expected outputs

4. Code Execution Engine:

* Provides isolated environments for executing code snippets securely
¢ Supports parallel execution of multiple test cases
¢ Handles resource allocation and timeout mechanisms

5. Result Analyzer:

¢ Compares the output of code snippets against expected results from unit tests
* Generates detailed reports on test case successes and failures
¢ Provides suggestions for improvements based on failed test cases

4.2 Training Policy

Coarse-to-fine Fine-tuning We first synthesized tens of millions of low-quality but diverse
instruction samples to fine-tune the base model. In the second stage, we adopt millions
of high-quality instruction samples to improve the performance of the instruction model
with rejection sampling and supervised fine-tuning. For the same query, we use the LLM
to generate multiple candidates and then use the LLM to score the best one for supervised
fine-tuning.

Mixed Tuning Since most instruction data have a short length, we construct the instruction
pair with the FIM format to keep the long context capability of the base model. Inspired by
programming language syntax rules and user habits in practical scenarios, we leverage the

tree-sitter-languages? to parse the code snippets and extract the basic logic blocks as the
middle code to infill. For example, the abstract syntax tree (AST) represents the structure of
Python code in a tree format, where each node in the tree represents a construct occurring
in the source code. The tree’s hierarchical nature reflects the syntactic nesting of constructs
in the code and includes various elements such as expressions, statements, and functions.
By traversing and manipulating the AST, we can randomly extract the nodes of multiple
levels and use the code context of the same file to uncover the masked node. Finally, we
optimize the instruction model with a majority of standard SFT data and a small part of
FIM instruction samples.

Direct Preference Optimization for Code After obtaining the SFT model, we further align
the Qwen2.5-Coder with the help of offline direct preference optimization (DPO) (Rafailov
et al., 2023). Given that human feedback is highly labor-intensive, we use a multilingual
code sandbox to provide code execution feedback, while an LLM is utilized for human
judgment feedback. For the algorithm-like and self-contained code snippets, we generate
the test cases to check the correctness of the code as the code execution feedback, including
Python, Java, and other languages. For other complex code snippets, we use LLM-as-a-
judge (Zheng et al., 2023) to decide which code snippet is better. Further, we combine the
code DPO data and common data for offline DPO training.

5 Decontamination

To ensure that Qwen2.5-Coder does not produce inflated results due to test set leakage,
we performed decontamination on all data, including both pre-training and post-training
datasets. We removed key datasets such as HumanEval, MBPP, GSM8K, and MATH. The
filtering was done using a 10-gram overlap method, where any training data with a 10-gram
word-level overlap with the test data was removed.

thtps ://pypi.org/project/tree-sitter-languages/
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6 Evaluation on Base Models

For the base model, we conducted a comprehensive and fair evaluation in six key aspects, in-
cluding code generation, code completion, code reasoning, mathematical reasoning, general
natural language understanding and long-context modeling. To ensure the reproducibility
of all results, we made all evaluation codes publicly available®. For comparing models,
we chose the most popular and powerful open source language models, including the
StarCoder2 and DeepSeek-Coder series. Below is the list of artifacts used in the evaluation
for this section.

Artifact | Public link

Qwen2.5-Coder-0.5B https://hf.co/Qwen/Qwen2.5-Coder-0.5B
Qwen2.5-Coder-1.5B https://hf.co/Qwen/Qwen2.5-Coder-1.5B
Qwen2.5-Coder-3B https://hf.co/Qwen/Qwen2.5-Coder-3B
Qwen2.5-Coder-7B https://hf.co/Qwen/Qwen2.5-Coder-78B
Qwen2.5-Coder-14B https://hf.co/Qwen/Qwen2.5-Coder-14B
Qwen2.5-Coder-32B https://hf.co/Qwen/Qwen2.5-Coder-32B
CodeQwenl.5-7B https://hf.co/Qwen/CodeQwent.5-7B

StarCoder2-3B https://hf.co/bigcode/starcoder2-3b

StarCoder2-7B https://hf.co/bigcode/starcoder2-7b

StarCoder2-15B https://hf.co/bigcode/starcoder2-15b
DS-Coder-1.3B-Base https://hf.co/deepseek-ai/deepseek-coder-1.3b-base
DS-Coder-6.7B-Base https://hf.co/deepseek-ai/deepseek-coder-6.7b-base
DS-Coder-33B-Base https://hf.co/deepseek-ai/deepseek-coder-33b-base
DS-Coder-V2-Lite-Base | https://hf.co/deepseek-ai/DeepSeek-Coder-V2-Lite-Base
DS-Coder-V2-Base https://hf.co/deepseek-ai/DeepSeek-Coder-V2-Base

Table 4: All artifacts released and used in this section.

6.1 Code Generation

HumanEval and MBPP Code generation serves as a fundamental capability for code
models to handle more complex tasks. We selected two popular code generation benchmarks
to evaluate Qwen2.5-Coder, namely HumanEval (Chen et al., 2021) and MBPP (Austin et al.,
2021). HumanEval consists of 164 manually written programming tasks, each providing a
Python function signature and a docstring as input to the model. MBPP, on the other hand,
comprises 974 programming problems created by crowdsource contributors. Each problem
includes a problem statement (i.e., a docstring), a function signature, and three test cases.

To further ensure accurate evaluation, EvalPlus (Liu et al., 2023) extends HumanEval into
HumanEval+ by adding 80 times more unique test cases and correcting inaccurate ground-
truth solutions in HumanEval. Similarly, MBPP+ offers 35 times more test cases than the
original MBPP.

Additionally, we should notice that MBPP 3-shot is particularly suitable for monitoring
model convergence during training. Early in the convergence process, the model tends to be
unstable, causing significant fluctuation in metrics, and simple 3-shot examples effectively
mitigate it. Therefore, we also report the results of MBPP 3-shot performance.

As shown in Table 5, Qwen2.5-Coder have shown impressive performance in basic code
generation, achieving state-of-the-art results among open-source models of the same size
and surpassing even larger models. In particular, Qwen2.5-Coder-7B outperforms the
previous best dense model, DS-Coder-33B, across all five metrics.

BigCodeBench-Complete BigCodeBench (Zhuo et al., 2024) is a recent and more challeng-
ing benchmark for code generation, primarily aimed at evaluating the ability of tool-use
and complex instruction following. The base model generates the expected code through a

3https ://github.com/QwenLM/Qwen2.5-Coder
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Model Size HumanEval MBPP BigCodeBench
HE HE+ | MBPP MBPP+ 3-shot | Full Hard
0.5B+ Models
Qwen2.5-Coder-0.5B 0.5B | 28.0 23.8 | 52.9 47.1 404 | 16.1 4.7
1B+ Models
DS-Coder-1.3B 1.3B | 348 26.8 55.6 46.9 46.2 | 26.1 3.4
Qwen2.5-Coder-1.5B 1.5B | 43.9 36.6 69.2 58.6 59.2 | 34.6 9.5
3B+ Models
StarCoder2-3B 3B | 31.7 274 60.2 49.1 474 | 214 4.7
QOwen2.5-Coder-3B 3B | 524 42.7 72.2 61.4 65.2 41.1 11.5
6B+ Models
StarCoder2-7B 7B | 354 299 54.4 45.6 51.8 | 27.7 8.8
DS-Coder-6.7B-Base 6.7B | 476  39.6 70.2 56.6 60.6 | 41.1 115
DS-Coder-V2-Lite-Base 2.4/16B | 409 34.1 719 59.4 62.6 | 30.6 8.1
CodeQwen1.5-7B 7B | 51.8 457 72.2 60.2 61.8 | 45.6 15.5
Qwen2.5-Coder-7B 7B | 61.6 53.0 76.9 62.9 68.8 45.8 16.2
14B+ Models
StarCoder2-15B 15B | 46.3 378 66.2 53.1 57.0 | 38.4 12.2
Qwen2.5-Coder-14B 14B | 64.0 579 81.0 66.7 714 | 51.8 22.3
20B+ Models
DS-Coder-33B-Base 33B | 549 476 74.2 60.7 66.0 | 49.1 20.3
DS-Coder-V2-Base 21/236B | 50.0 43.3 82.5 65.7 712 | 48.7 21.6
Qwen2.5-Coder-32B 32B | 65.9 60.4 83.0 68.2 76.4 | 53.6 26.4

Table 5: Performance of various models on HumanEval, MBPP and the “complete” task of
BigCodeBench.

completion mode, given a function signature and documentation, which is referred to as
BigCodeBench-Complete. It consists of two subsets: the full set and the hard set. Compared
to HumanEval and MBPP, BigCodeBench is suited for out-of-distribution (OOD) evaluation.

Table 5 illustrates that Qwen2.5-Coder continues to show strong performance on
BigCodeBench-Complete, underscoring the model’s generalization potential.

Multi-Programming Language The evaluations mentioned above focus on the Python
language. However, we expect a strong code model to be not only proficient in Python but
also versatile across multiple programming languages to meet the complex and evolving
demands of software development. To more comprehensively evaluate Qwen2.5-Coder’s
proficiency in handling multiple programming languages, we selected the MultiPL-E (Cas-
sano et al., 2022) and chose to evaluate eight mainstream languages from this benchmark,
including Python, C++, Java, PHP, TypeScript, C#, Bash and JavaScript.

As shown in the table 6, Qwen2.5-Coder also achieved state-of-the-art results in the multi-
programming language evaluation, with its capabilities well-balanced across various lan-
guages. It scored over 60% in five out of the eight languages.

6.2 Code Completion

Many developer aid tools rely on the capability to autocomplete code based on preced-
ing and succeeding code snippets. Qwen2.5-Coder utilizes the Fill-In-the-Middle (FIM)
training strategy, as introduced in Bavarian et al. (2022), enabling the model to generate
code that is contextually coherent. To assess its code completion proficiency, we utilize the
HumanEval-FIM benchmark (Allal et al., 2023), CrossCodeEval (Ding et al., 2024), Cross-
CodeLongEval (Wu et al., 2024a), RepoEval (Zhang et al., 2023) and SAFIM (Gong et al.,
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Model Size | Python C++ Java PHP TS C# Bash JS | Average
0.5B+ Models
QOwen2.5-Coder-0.5B 0.5B ‘ 28.0 255 228 23.6 308 310 7.0 29.2 ‘ 24.7
1B+ Models
DS-Coder-1.3B-Base 1.3B 34.8 31.1 323 242 289 367 101 286 28.3
Owen2.5-Coder-1.5B 1.5B 42.1 429 38.6 41.0 491 46.2 203 49.1 411
3B+ Models
StarCoder2-3B 3B 31.7 304 298 329 396 348 139 354 31.1
Qwen2.5-Coder-3B 3B 524 52.8 449 49.1 554 513 24.7 534 48.0
6B+ Models
StarCoder2-7B 7B 35.4 404 380 304 340 462 139 36.0 34.3
DS-Coder-6.7B-Base 6.7B 494 50.3 43.0 385 49.7 50.0 285 484 447
DS-Coder-V2-Lite-Base  2.4/16B 40.9 459 348 472 484 417 19.6 447 40.4
CodeQwenl.5-7B 7B 51.8 522 424 46,6 522 557 367 49.7 484
Qwen2.5-Coder-7B 7B 61.6 621 53.2 59.0 642 608 38.6 603 57.5
14B+ Models
StarCoder2-15B 15B 46.3 472 462 391 421 532 158 435 41.7
Qwen2.5-Coder-14B 14B 64.0 69.6 468 64.6 692 633 399 615 59.9
20B+ Models
DS-Coder-33B-Base 33B 56.1 584 519 441 528 513 323 553 50.3
DS-Coder-V2-Base 21/236B 50.0 59.6 50.0 553 585 456 361 59.6 51.8
Qwen2.5-Coder-32B 32B 65.9 683 709 64.6 660 684 399 67.1 63.9

Table 6: Performance of different models on MultiPL-E.

2024). Figure 5 shows the overall evaluation results of Qwen2.5-Coder-32B on different code
completion benchmarks.

883, , -
712
67.7 67.2
57.1
, 51.6
48.8 17.8
13.7 434

36.9
I 319 304

Humaneval-FIM SAFIM CrossCodeEval RepoEval CrossCodeLongEval

I Qwen2.5-Coder-32B-Base DS-Coder-33B-Base DS-Coder-V2-Lite-Base

Figure 5: The code completion performance of competitive models on five benchmarks,
Humaneval-FIM, SAFIM, CrossCodeEval, RepoEval, CrossCodeLongEval.

Humaneval-FIM benchmark challenges the model to accurately predict missing sections
of code within tasks derived from Humaneval. We use the single-line infilling settings
across Python, Java, and JavaScript, focusing on predicting a single line of code within
given contexts. Performance was measured using the Exact Match metric, which determines
the proportion of the first generated code line that precisely match the ground truth. The
table 7 illustrates that Qwen2.5-Coder surpasses alternative models concerning model
size. Specifically, Qwen2.5-Coder-1.5B achieves an average performance improvement of
3.7%, rivaling the majority of models exceeding 6 billion parameters. Moreover, Qwen2.5-
Coder-7B stands as the leading model among those over 6 billion parameters, matching the
performance of the formidable 33 billion parameter model, DS-Coder-33B-Base. Notably,
we excluded DS-Coder-v2-236B from comparison due to its design focus not being on code
completion tasks.
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Humaneval-FIM

Model Size Python  Java  JavaScript  Average*
0.5B+ Models

Qwen2.5-Coder-0.5B 0.5B ‘ 70.3 78.1 81.2 77.7
1B+ Models

DS-Coder-1.3B-Base 1.3B 72.8 843 81.7 80.7

Qwen2.5-Coder-1.5B 1.5B 77.0 85.6 85.0 83.5
3B+ Models

StarCoder2-3B 3B 709 844 81.8 80.4

Qwen2.5-Coder-3B 3B 78.7  88.0 87.4 85.7
6B+ Models

StarCoder2-7B 7B 70.8 86.0 84.4 82.0

DS-Coder-6.7B-Base 6.7B 78.1 87.4 84.1 84.0

DS-Coder-V2-Lite-Base 2.4/16B 78.7 878 85.9 85.0

CodeQwenl.5-7B 7B 758 857 85.0 83.3

Qwen2.5-Coder-7B 7B 79.7 88.5 87.6 86.2
14B+ Models

StarCoder2-15B 15B 742  85.2 84.6 82.6

Qwen2.5-Coder-14B 14B 80.5 91.0 88.5 87.7
20B+ Models

CodeStral-22B 22B 76.7 825 86.0 82.7

DS-Coder-33B-Base 33B 80.1 89.0 86.8 86.2

Qwen2.5-Coder-32B 32B 81.5 91.0 89.4 88.3

Table 7: Performance of different approaches on the Humaneval-FIM Tasks. *Average refers
to a weighted mean calculated based on the number of samples for each language.

In real-world scenarios, code completion often depends on accessing cross-file context and
dependencies. CrossCodeEval is a benchmark that requires a deep understanding of this
cross-file context to accurately complete the code. In our evaluation, we set a maximum
sequence length of 8192 tokens, designate a maximum output length of 50 tokens, and
impose a limit of 2048 tokens for the cross-file context. For the cross-file context, we use
the official BM25 search results provided by Ding et al. (2024). We evaluate performance
using Exact Match (EM) and Edit Similarity (ES) metrics. Table 8 shows that the Qwen2.5-
Coder-32B achieves state-of-the-art performance with a 3.7% improvement. Qwen2.5-Coder
outperforms all the models with a comparable model size. Meanwhile, Qwen2.5-Coder-7B
has a comparable performance with other models exceeding 20 billion parameters.

CrossCodeLongEval is a long context benchmark on cross file code completion tasks. In
our evaluation, we set a maximum sequence length of 8192 tokens and set the maximum
output as 256 tokens for function completion and 50 tokens for other tasks. The cross-file
context is truncated to 2048 tokens. For the cross-file context, we use the official BM25 search
results provided by Wu et al. (2024a). We evaluate performance using Exact Match (EM)
and Edit Similarity (ES) metrics. Qwen2.5-Coder-32B achieves state-of-the-art performance,
as detailed in Table 9. The Qwen2.5-Coder series surpasses all other models of a similar size.
All models demonstrate low Exact Match (EM) results on function completion tasks, likely
due to the complexity of generating multi-line code snippets that are challenging to match
precisely.

RepoEval is a benchmark designed to evaluate repository-level code completion capabilities
across three granularities: line, API invocation, and function body completion. In our
evaluation, we set a maximum sequence length of 8192 tokens, set the maximum output as
256 tokens for function completion and 50 tokens for other tasks, and impose a limit of 2048
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Model | Python Java TypeScript C# Average
| EM ES EM ES EM ES EM ES EM ES
0.5B+ Models
Qwen2.5-Coder-0.5B | 22.7 66.2 217 66.8 219 672 321 754 246 689
1B+ Models

DS-Coder-1.3B-Base 334 726 349 745 367 764 466 835 379 768
Qwen2.5-Coder-1.5B 355 743 379 765 376 774 49.8 845 40.2 782

3B+ Models
StarCoder2-3B 11.0 627 116 697 88 758 82 712 99 698
Qwen2.5-Coder-3B 384 761 428 798 41.6 805 56.7 871 449 80.9
6B+ Models
StarCoder2-7B 109 631 83 710 67 768 73 721 83 708

DS-Coder-6.7B-Base 411 792 399 801 463 824 550 869 456 821
DS-Coder-V2-Lite-Base | 41.8 783 46.1 812 446 814 587 879 478 822

CodeQwenl.5-7B 40.7 778 470 8l1.6 458 822 59.7 87.6 483 823
Qwen2.5-Coder-7B 424 78.6 481 826 468 834 59.7 879 493 83.1
14B+ Models
StarCoder2-15B 282 705 267 710 247 763 252 742 262 730
Qwen2.5-Coder-14B 477 81.7 54.7 85.7 529 86.0 664 911 554 86.1
20B+ Models
CodeStral-22B 493 82.7 441 711 51.0 850 537 836 495 80.6
DS-Coder-33B-Base 442 804 465 827 492 84.0 552 878 488 837

Qwen2.5-Coder-32B 492 821 564 86.6 549 87.0 68.0 91.6 571 86.8

Table 8: Performance of different approaches on the CrossCodeEval Tasks.

tokens for the cross-file context. Besides, we utilize the official sparse retriever (Lu et al.,
2022) to extract the cross-file context. We evaluate performance using Exact Match (EM)
and Edit Similarity (ES) metrics. As shown in Table 10, Qwen2.5-Coder-32B achieves state-
of-the-art performance with an average improvement of 7.9% EM and 4.2% ES compared
to DS-Coder-33B-Base. Furthermore, Qwen2.5-Coder-14B and Qwen2.5-Coder-7B achieve
comparable performance to models with more than 20B parameters, while maintaining
state-of-the-art results among models of similar size.

SAFIM is a syntax-aware fill-in-the-middle benchmark that emphasizes AST-based code
completion, specifically targeting algorithmic blocks, control-flow expressions, and API
function calls. The benchmark consists of 17,720 examples from 8,590 code files created
after April 2022, deliberately avoiding overlap with mainstream pretraining corpora. For
evaluation, we use pass@1 rate as the metric for algorithmic and control-flow tasks, and
Exact Match (EM) for API completion tasks.

6.3 Code Reasoning

Code is a highly abstract form of logical language, and reasoning based on code helps
us determine whether a model truly understands the reasoning flow behind the code.
We selected CRUXEval (Gu et al., 2024) as the benchmark, which includes 800 Python
functions along with corresponding input-output examples. It consists of two distinct
tasks: CRUXEval-I, where the large language model (LLM) must predict the output based
on a given input; and CRUXEval-O, where the model must predict the input based on a
known output. For both CRUXEval-I and CRUXEval-O, we used a chain-of-thought (CoT)
approach, requiring the LLM to output steps sequentially during simulated execution.
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Chunk Completion Function completion  Average

Model
\ EM ES EM ES EM ES
0.5B+ Models
Qwen2.5-Coder-0.5B ‘ 29.8 64.2 9.5 38.0 19.7 51.1
1B+ Models
DS-Coder-1.3B-Base 40.6 71.9 9.6 39.4 251 557
Qwen2.5-Coder-1.5B 44.2 73.9 12.4 44.4 28.3 59.2
3B+ Models
StarCoder2-3B 18.5 62.0 10.2 39.2 14.3 50.6
Qwen2.5-Coder-3B 46.6 76.1 13.5 46.4 30.0 61.3
6B+ Models
StarCoder2-7B 19.4 63.6 10.2 40.0 14.8 51.8
DS-Coder-6.7B-Base 48.4 78.2 10.7 424 29.6 60.3
DS-Coder-V2-Lite-Base | 49.5 77.1 11.4 43.1 304 60.1
CodeQwen1.5-7B 48.2 77.5 6.4 30.6 273 541
Qwen2.5-Coder-7B 52.4 79.3 14.4 48.4 33.4 63.8
14B+ Models
StarCoder2-15B 21.3 53.7 7.8 30.5 14.6 42.1
Qwen2.5-Coder-14B 56.9 81.8 15.4 49.8 36.1 65.8
20B+ Models
CodeStral-22B 56.7 81.8 10.5 37.8 33.6 59.8
DS-Coder-33B-Base 52.0 79.9 11.9 44.3 320 621
Qwen2.5-Coder-32B 57.3 82.1 16.4 50.8 36.9 664

Table 9: Performance of different approaches on the CrossCodeLongEval Tasks.

As shown in Table 11, Qwen2.5-Coder delivered highly promising results, achieving a score
of 56.5 on CRUXEval-I and 56.0 on CRUXEval-O, thanks to our focus on executable quality
during the code cleaning process.

6.4 Math Reasoning

Mathematics and coding have always been closely intertwined. Mathematics forms the
foundational discipline for coding, while coding serves as a vital tool in mathematical
fields. As such, we expect an open and powerful code model to exhibit strong mathematical
capabilities as well. To assess Qwen2.5-Coder’s mathematical performance, we selected
five popular benchmarks, including MATH (Hendrycks et al., 2021), GSM8K (Cobbe et al.,
2021), MMLU-STEM (Hendrycks et al., 2020) and TheoremQA (Chen et al., 2023). Table 12
highlights Qwen2.5-Coder’s strengths in mathematics, which likely stem from two key
factors: first, the model’s strong foundation built on Qwen2.5, and second, the careful
mixing of code and mathematical data during training, which has ensured a well-balanced
performance across these domains.

6.5 General Natural Language

In addition to mathematical ability, we aim to retain as much of the base model’s general-
purpose capabilities as possible, such as general knowledge. To evaluate general natural
language understanding, we selected MMLU (Hendrycks et al., 2021) and its variant MMLU-
Redux (Gema et al., 2024), along with four other benchmarks: ARC-Challenge (Clark et al.,
2018), Truthful QA (Lin et al., 2021), WinoGrande (Sakaguchi et al., 2019), and HellaSwag
(Zellers et al., 2019). Similar to the results in mathematics, Table 14 highlights Qwen2.5-
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\ Line Function API Average

| EM ES EM ES EM ES EM ES
0.5B+ Models

Qwen2.5-Coder-0.5B | 442 72,6 4.6 480 356 685 281 63.0

1B+ Models

DS-Coder-1.3B-Base 587 804 62 488 458 750 369 68.1
Qwen2.5-Coder-1.5B 59.8 82.6 10.6 524 51.0 801 405 717

Model

3B+ Models
StarCoder2-3B 223 674 31 516 206 701 153 63.0
Qwen2.5-Coder-3B 649 85.0 123 558 54.7 813 44.0 74.0
6B+ Models
StarCoder2-7B 195 676 40 535 191 728 142 647

DS-Coder-6.7B-Base 631 855 99 533 523 817 417 735
DS-Coder-V2-Lite-Base | 66.5 854 10.8 539 531 813 434 735

CodeQwen1.5-7B 507 815 48 443 461 775 369 678

Qwen2.5-Coder-7B 673 861 132 552 584 839 463 751
14B+ Models

StarCoder2-15B 309 625 55 437 217 603 194 555

Qwen2.5-Coder-14B | 743 901 141 595 634 873 50.6 79.0
20B+ Models

Codestral-22B-v0.1 409 517 99 492 248 408 300 466

DS-Coder-33B-Base 665 86.6 103 529 542 835 43.7 743

Qwen2.5-Coder-32B 76.1 90.5 13.6 575 651 876 516 785

Table 10: Performance of different approaches on the RepoEval Tasks.

Coder’s advantage in general natural language capabilities compared to other coders, further
validating the effectiveness of Qwen2.5-Coder data mixing strategy.

6.6 Long-Context Evaluation

Long context capability is crucial for code LLMs, serving as the core skill for understanding
repository-level code and becoming a code agent. However, most of the current code
models still have very limited support for length, which hinders their potential for practical
application. Qwen2.5-Coder aims to further advance the progress of open-source code
models in long context modeling. To achieve this, we have collected and constructed
long sequence code data at the repository level for pre-training. Through careful data
proportioning and organization, we have enabled it to support input lengths of up to 128K
tokens.

Needle in the Code We created a simple but basic synthetic task called Needle in the Code,
inspired by popular long-context evaluations in the text domain. In this task, we inserted a
very simple custom function at various positions within a code repo (we chose Megatron * to
honor its contributions to open-source LLMs!) and tested whether the model could replicate
this function at the end of the codebase. The figure below shows that Qwen2.5-Coder is
capable of successfully completing this task within a 128k length range.

7 Evaluation on Instruct Models

For the evaluation of the instruct models, we rigorously assessed six core areas: code genera-
tion, code reasoning, code editing, text-to-sql, mathematical reasoning and general natural language

4https://github.com/NVIDIA/Megatron-LM
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. CRUXEval
Model Size Input-CoT  Output-CoT
0.5B+ Models
Qwen2.5-Coder-0.5B 05B | 352 23.0
1B+ Models
DS-Coder-1.3B-Base 1.3B 32.1 28.2
Qwen2.5-Coder-1.5B 1.5B 43.8 34.6
3B+ Models
StarCoder2-3B 3B 421 29.2
Qwen2.5-Coder-3B 3B 46.5 43.8
6B+ Models
StarCoder2-7B 7B 39.5 35.1
DS-Coder-6.7B-Base 6.7B 39.0 41.0
DS-Coder-V2-Lite-Base 2.4/16B 53.4 46.1
CodeQwenl.5-7B 7B 44.8 40.1
Qwen2.5-Coder-7B 7B 56.5 56.0
14B+ Models
StarCoder2-15B 15B 46.1 47.6
Qwen2.5-Coder-14B 14B 60.6 66.4
20B+ Models
DS-Coder-33B-Base 33B 50.6 48.8
DS-Coder-V2-Base 21/236B 62.7 67.4
Qwen2.5-Coder-32B 32B 62.5 69.4

Table 11: Performance of different models on CRUXEval with Input-CoT and Output-CoT
settings.

Qwen2.5-Coder I Correct MM Incorrect

0%
11%
22%
33%
44%
56%
67%
78%
89%

100%

10k 23k 35k 48k 61k 74k 86k 99k 112k 128k
Context Length

Figure 6: The long context ability of Qwen2.5-Coder, evaluated by Needle in the Code.

understanding. The evaluation was structured to ensure a fair and thorough comparison
across models. All evaluation code is publicly accessible for reproducibility®. To ensure a
broad comparison, we included some of the most popular and widely-used open-source
instruction-tuned models, notably versions from the DeepSeek-Coder series and Codestral
models. Below is a list of all artifacts referenced in this section.

Shttps://github.com/QwenLM/Qwen2.5-Coder
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MATH GSMS8K MMLUSTEM TheoremQA

Model Size 4-shot 4-shot 5-shot 5-shot
0.5B+ Models

Qwen2.5-Coder-0.5B 05B | 154 34.5 34.4 14.3
1B+ Models

DS-Coder-1.3B-Base 1.3B 4.6 4.4 24.5 8.9

Qwen2.5-Coder-1.5B 1.5B 30.9 65.8 49.0 214
3B+ Models

StarCoder2-3B 3B 10.8 21.6 349 12.1

Qwen2.5-Coder-3B 3B 40.0 75.7 56.0 29.5
6B+ Models

StarCoder2-7B 7B 14.6 32.7 39.8 16.0

DS-Coder-6.7B-Base 6.7B 10.3 21.3 34.2 13.6

DS-Coder-V2-Lite-Base 2.4/16B 39.0 67.1 58.5 29.3

CodeQwen1.5-7B 7B 10.6 37.7 39.6 15.8

Qwen2.5-Coder-7B 7B 46.6 83.9 67.6 34.0
14B+ Models

StarCoder2-15B 15B 23.7 57.7 49.2 20.5

Qwen2.5-Coder-14B 14B 52.8 88.7 73.9 39.6
20B+ Models

DS-Coder-33B-Base 33B 14.4 354 39.5 17.5

DS-Coder-V2-Base 21/236B 50.6 85.8 76.0 39.4

QOwen2.5-Coder-32B 32B 57.2 91.1 75.1 43.1

Table 12: Performance of various models on four math benchmarks, named MATH, GSMS8K,
MMLU STEM and TheoremQA respectively.

7.1 Code Generation

Building on the performance improvements of the Qwen2.5-Coder series base models, our
Qwen2.5-Coder series instruct models similarly demonstrated outstanding performance in
code generation tasks.

HumanEval and MBPP We also assessed the code generation capabilities of the Qwen2.5-
Coder series instruction models using the EvalPlus (Liu et al., 2023) dataset. As shown by
the results in Table 16, our Qwen2.5-Coder-7B-Instruct model demonstrated exceptional
accuracy, significantly outperforming other models with a comparable parameter count.
Remarkably, it even surpassed larger models with over 20 billion parameters, such as
CodeStral-22B and DS-Coder-33B-Instruct. Furthermore, our Qwen2.5-Coder-32B-Instruct
model achieved the highest performance on EvalPlus, even outperforming DS-Coder-V2-
Instruct, making it the most powerful open-source code model to date.

BigCodeBench-Instruct The instruct split provided by BigCodeBench (Zhuo et al., 2024)
is designed to evaluate the code generation capabilities of instruction-based models. We
evaluated the Qwen2.5-Coder series instruct models on the BigCodeBench-Instruct dataset.
As indicated in Table 16, the Qwen2.5-Coder-7B-Instruct model outperformed other instruct
models with comparable parameter sizes, achieving notably high accuracy scores on both the
full and hard subsets, reaching 41.0% on the full subset and 18.2% on the hard subset. This
highlights the robust code generation capabilities of the Qwen2.5-Coder instruct models.
Furthermore, the Qwen2.5-Coder-32B-Instruct achieved accuracy rates of 49.6% on the
complete split and 27.0% on the hard split, establishing it as the best-performing open-
source code generation model and surpassing several closed-source APIs.
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. MMLU
Model Size Base Pro Redux
0.5B+ Models
Qwen2.5-Coder-0.5B 0.5B \ 42.0 133 40.6
1B+ Models
DS-Coder-1.3B-Base 1.3B | 25.8 114 24.5
Qwen2.5-Coder-1.5B 15B | 53.6 23.1 50.9
3B+ Models
StarCoder2-3B 3B | 36.6 155 37.0
Qwen2.5-Coder-3B 3B | 61.2 32.0 59.5
6B+ Models
StarCoder2-7B 7B | 388 17.2 38.6
DS-Coder-6.7B-Base 6.7B | 364 167 365
DS-Coder-V2-Lite-Base 2.4/16B | 60.5 334 58.3
CodeQwenl.5-7B 7B | 405 172 412
Qwen2.5-Coder-7B 7B | 68.0 40.1 66.6
14B+ Models
StarCoder2-15B 15B | 64.1 243 488
Qwen2.5-Coder-14B 14B | 75.2 49.3 72.4
20B+ Models
DS-Coder-33B-Base 33B | 394 184 38.7
Qwen2.5-Coder-32B 32B | 791 504 775

Table 13: MMLU results of different models, a general benchmark for common knowledge.

LiveCodeBench LiveCodeBench (Jain et al., 2024) is a comprehensive and contamination-
free benchmark designed to evaluate the coding capabilities of LLMs. It continuously
gathers new problems from leading competitive programming platforms like LeetCode®,
AtCoder”, and CodeForces®, ensuring an up-to-date and diverse set of challenges. Currently,
it hosts over 600 high-quality coding problems published between May 2023 and September
2024.

To further demonstrate our model’s effectiveness on real-world competitive programming
tasks, we evaluated the Qwen-2.5-Coder series instruct models on the LiveCodeBench (2407-
2409) dataset. As shown in Table 16, the Qwen-2.5-Coder-7B-Instruct model achieved an
impressive Pass@1 accuracy of 37.6%, significantly outperforming other models with similar
parameter counts. Notably, it also outperformed larger models, such as CodeStral-22B-v0.1
and DS-Coder-33B-Instruct. Additionally, our Qwen-2.5-Coder-32B-Instruct model achieved
an accuracy of 31.4%, surpassing all open-source code generation models and reaching a
level comparable to many closed-source APIs.

Multi-Programming Language The Qwen2.5-Coder series instruct models have inherited
the high performance of the base model on the Multi-Programming Language. To further
evaluate their capabilities, we tested the instruct models on two specific benchmarks:
MultiPL-E (Cassano et al., 2022) and McEval (Chai et al., 2024).

MultiPL-E  As shown by the evaluation results in Table 17, Qwen2.5-Coder-7B-Instruct
consistently outperforms other models with similar parameter counts, such as DS-Coder-

https://leetcode.com
“https://atcoder. jp
8https ://codeforces.com
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Model Size | ARC-Challenge TruthfulQA WinoGrande HellaSwag
0.5B+ Models

Qwen2.5-Coder-0.5B 0.5B ‘ 34.4 42.7 54.8 48.4
1B+ Models

DS-Coder-1.3B-Base 1.3B 25.4 42.7 53.3 39.5

Qwen2.5-Coder-1.5B 1.5B 45.2 44.0 60.7 61.8
3B+ Models

StarCoder2-3B 3B 34.2 40.5 57.1 48.1

Qwen2.5-Coder-3B 3B 52.9 49.2 67.4 70.9
6B+ Models

StarCoder2-7B 7B 38.7 42.0 57.1 52.4

DS-Coder-6.7B-Base 6.7B 36.4 40.2 57.6 53.8

DS-Coder-V2-Lite-Base  2.4/16B 57.3 38.8 72.9 76.1

CodeQwenl.5-7B 7B 35.7 42.2 59.8 56.0

Qwen2.5-Coder-7B 7B 60.9 50.6 72.9 76.8
14B+ Models

StarCoder2-15B 15B 47.2 37.9 64.3 64.1

Qwen2.5-Coder-14B 14B 66.0 55.2 76.8 80.2
20B+ Models

DS-Coder-33B-Base 33B 42.2 40.0 62.0 60.2

DS-Coder-V2-Base 21/236B 64.3 414 83.7 86.0

Qwen2.5-Coder-32B 32B 70.5 54.2 80.8 83.0

Table 14: General performance of different models on four popular general benchmarks,
ARC-Challenge, TruthfulQA, WinoGrande and HellaSwag.

Artifact | Public link

Qwen2.5-Coder-0.5B-Instruct | https://hf.co/Qwen/Qwen2.5-Coder-0.5B-Instruct
Qwen2.5-Coder-1.5B-Instruct | https://hf.co/Qwen/Qwen2.5-Coder-1.5B-Instruct
Qwen2.5-Coder-3B-Instruct https://hf.co/Qwen/Qwen2.5-Coder-3B-Instruct
Qwen2.5-Coder-7B-Instruct https://hf.co/Qwen/Qwen2.5-Coder-7B-Instruct
Qwen2.5-Coder-14B-Instruct | https://hf.co/Qwen/Qwen2.5-Coder-14B-Instruct
Qwen2.5-Coder-32B-Instruct | https://hf.co/Qwen/Qwen2.5-Coder-32B-Instruct
CodeQwenl.5-7B-Chat https://hf.co/Qwen/CodeQwenl.5-7B-Chat
CodeLlama-7B-Instruct https://hf.co/meta-1lama/CodelLlama-7b-Instruct-hf
CodeLlama-13B-Instruct https://hf.co/meta-1lama/CodelLlama-13b-Instruct-hf
CodeLlama-34B-Instruct https://hf.co/meta-1lama/CodelLlama-34b-Instruct-hf
CodeLlama-70B-Instruct https://hf.co/meta-1lama/CodelLlama-7@b-Instruct-hf
DS-Coder-1.3B-instruct https://hf.co/deepseek-ai/deepseek-coder-1.3b-instruct
DS-Coder-6.7B-instruct https://hf.co/deepseek-ai/deepseek-coder-6.7b-instruct
DS-Coder-33B-instruct https://hf.co/deepseek-ai/deepseek-coder-33b-instruct
DS-Coder-V2-Lite-Instruct https://hf.co/deepseek-ai/DeepSeek-Coder-V2-Lite-Instruct
DS-Coder-V2-Instruct https://hf.co/deepseek-ai/DeepSeek-Coder-V2-Instruct
Starcoder2-15B-Instruct-v0.1 https://hf.co/bigcode/starcoder2-15b-instruct-ve.1
CodeStral-22B-v0.1 https://hf.co/mistralai/Codestral-22B-v0.1
Yi-Coder-1.5B-Chat https://hf.co/@1-ai/Yi-Coder-1.5B-Chat
Yi-Coder-9B-Chat https://hf.co/@1-ai/Yi-Coder-9B-Chat

Table 15: All artifacts released and used in this section.

V2-Lite-Instruct, in code generation tasks across eight programming languages. Both
Qwen2.5-Coder-7B-Instruct and Qwen2.5-Coder-14B-Instruct even surpass larger models,
like CodeStral-22B and DS-Coder-33B-Instruct (which have over 20 billion parameters),
underscoring their strong code generation capabilities across multiple languages. Our
Qwen2.5-Coder-32B-Instruct model achieves comparable performance to the DS-Coder-V2-
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Model Size | HumanEval MBPP BigCodeBench | LiveCodeBench
HE HE+ | MBPP MBPP+ | Full Hard Pass@1
0.5B+ Models
Qwen2.5-Coder-0.5B-Instruct 0.5B | 61.6 57.3 | 52.4 43.7 111 14 | 2.0
1B+ Models
DS-Coder-1.3B-Instruct 13B | 659 604 65.3 54.8 22.8 34 5.1
Yi-Coder-1.5B-Chat 1.5B | 69.5 64.0 65.9 57.7 23.8 11.5 48
Qwen2.5-Coder-1.5B-Instruct 15B | 70.7 66.5 69.2 59.4 32.5 6.8 6.1
3B+ Models
Qwen2.5-Coder-3B-Instruct 3B | 841 805 | 73.6 62.4 35.8 142 | 10.8
6B+ Models
CodeLlama-7B-Instruct 7B | 409 335 54.0 444 21.9 34 7.1
DS-Coder-6.7B-Instruct 6.7B | 744 713 74.9 65.6 35.5 10.1 15.5
CodeQwen1.5-7B-Chat 7B | 835 787 77.7 67.2 39.6 18.9 7.9
Yi-Coder-9B-Chat 9B | 823 744 82.0 69.0 38.1 11.5 17.2
DS-Coder-V2-Lite-Instruct 24/16B | 81.1 75.6 82.8 70.4 36.8 16.2 16.3
Qwen2.5-Coder-7B-Instruct 7B | 88.4 84.1 83.5 71.7 41.0 18.2 18.2
13B+ Models
CodeLlama-13B-Instruct 13B | 40.2 323 60.3 51.1 28.5 9.5 6.1
Starcoder2-15B-Instruct-v0.1 15B | 67.7 60.4 78.0 65.1 37.2 11.5 12.1
Qwen2.5-Coder-14B-Instruct 14B | 89.6 87.2 86.2 72.8 48.4 22.2 234
20B+ Models
CodeLlama-34B-Instruct 34B | 482 40.2 61.1 50.5 29.0 8.8 8.4
CodeStral-22B-v0.1 22B | 81.1 732 78.2 62.2 41.8 16.9 22.6
DS-Coder-33B-Instruct 33B | 81.1 75.0 80.4 70.1 42.0 17.6 21.3
CodeLlama-70B-Instruct 70B | 72.0 659 77.8 64.6 40.7 11.5 3.3
DS-Coder-V2-Instruct 21/236B | 854 823 89.4 75.1 48.2 24.3 27.9
Qwen2.5-Coder-32B-Instruct 32B | 92.7 87.2 90.2 75.1 49.6 27.0 314

Table 16: The performance of different instruct models on code generation by HumanEval,
MBPP, bigcodebench and livecodebench. For bigcodebench here, we report “instruct” tasks
score.

Instruct model with only 32 billion parameters, bringing it very close to the performance of
several closed-source APIs.

McEval To comprehensively assess the code generation capabilities of the Qwen2.5-Coder
series models across a broader range of programming languages, we evaluated them on
the McEval benchmark (Chai et al., 2024), which spans 40 programming languages and
includes 16,000 test cases. As shown in Figure 7, the Qwen2.5-Coder-32B-Instruct model
excels when compared to other open-source models on the McEval benchmark, particularly
across a wide range of programming languages.

MdEval Qwen2.5-Coder is further evaluated on the comprehensive multilingual code
debugging benchmark MdEval (Liu et al., 2024b) across 18 languages. Compared to the
multilingual code generation benchmark McEval (Chai et al., 2024), MdEval provides the
buggy code with example test cases (1.2K samples) to LLM for generating the correct code.
Figure 8 demonstrates that the Qwen2.5-Coder-32B-Instruct achieves a comparable or better
performance even compared to LLMs with larger model sizes.

Human Preference Alignment To evaluate the alignment performance of Qwen?2.5-Coder-
32B-Instruct with the human preferences, we adopted an internal annotated evaluation
benchmark called CodeArena, including nearly 400 human-curated samples. Similar to
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Model Size | Python Java C++ C# TS JS PHP Bash | Average
0.5B+ Models
Qwen2.5-Coder-0.5B-Instruct 0.5B ‘ 62.8 46.2 43,5 62.7 503 50.3 528 27.8 49.6
1B+ Models
DS-Coder-1.3B-Instruct 1.3B 65.2 519 453 551 59.7 522 453 127 48.4
Yi-Coder-1.5B-Chat 1.5B 67.7 519 491 576 579 596 522 19.0 51.9
Qwen2.5-Coder-1.5B-Instruct 1.5B 71.2 55.7 509 64.6 61.0 621 59.0 29.1 56.7
3B+ Models
Qwen2.5-Coder-3B-Instruct 3B ‘ 83.5 747 683 785 799 752 733 43.0 72.1
6B+ Models
CodeLlama-7B-Instruct 7B 34.8 304 311 216 327 - 28.6 10.1 -
DS-Coder-6.7B-Instruct 6.7B 78.6 684 634 728 672 727 689 367 66.1
CodeQwen1.5-7B-Chat 7B 84.1 734 745 778 717 752 708 392 70.8
Yi-Coder-9B-Chat 9B 85.4 76.0 677 766 723 789 721 456 71.8
DS-Coder-V2-Lite-Instruct 2.4/16B 81.1 76,6 758 766 805 77.6 745 430 73.2
Qwen2.5-Coder-7B-Instruct 7B 87.8 765 75.6 80.3 818 832 783 48.7 76.5
13B+ Models
CodeLlama-13B-Instruct 13B 42.7 405 422 240 39.0 - 323 139 -
Starcoder2-15B-Instruct-v0.1 15B 68.9 53.8 509 627 579 59.6 534 247 54.0
Qwen2.5-Coder-14B-Instruct 14B 89.0 79.7 851 84.2 86.8 84.5 80.1 475 79.6
20B+ Models
CodeLlama-34B-Instruct 34B 415 437 453 31.0 40.3 - 36.6 19.6 -
CodeStral-22B-v0.1 22B 81.1 633 652 437 68.6 - 689 424 -
DS-Coder-33B-Instruct 33B 79.3 734 689 741 679 739 727 430 69.2
CodeLlama-70B-Instruct 70B 67.8 58.2 534 367 39.0 - 58.4 29.7 -
DS-Coder-V2-Instruct 21/236B 90.2 823 848 823 830 845 795 525 79.9
Qwen2.5-Coder-32B-Instruct 32B 92.7 804 795 829 86.8 857 789 481 79.4

Table 17: The performance of different models on instruct format MultiPL-E.

Chatbot Arena (Chiang et al., 2024), we use CodeArena to emulate user code-related prompts
in realistic environments. We use GPT-4o as the evaluation model for preference alignment,
employing an “A vs. B win” evaluation method, which measures the percentage of instances
in the test set where the score of A exceeds the score of B. The results in Figure 9 demonstrate
the advantage of Qwen2.5-Coder-32B-Instruct in preference alignment.

7.2 Code Reasoning

To evaluate the code reasoning capabilities of the Qwen2.5-Coder series instruct mod-
els, we conducted an assessment on the CRUXEval (Gu et al., 2024) dataset. As shown
in Table 18, the Qwen2.5-Coder-7B-Instruct model achieved Input-CoT and Output-CoT
accuracies of 65.8% and 65.9%, respectively—demonstrating a substantial improvement
over the DS-Coder-V2-Lite-Instruct model, with gains of 12.8% in Input-CoT accuracy
and 13.0% in Output-CoT accuracy. Additionally, the Qwen2.5-Coder-7B-Instruct model
outperformed larger models, including CodeStral-22B and DS-Coder-33B-Instruct, high-
lighting its advanced code reasoning capabilities despite its smaller size. Notably, our
Qwen2.5-Coder-32B-Instruct model achieved accuracies of 75.2% and 83.4% on Input-CoT
and Output-CoT, respectively, significantly outperforming other open-source code mod-
els (including DS-Coder-V2-Instruct) and underscoring its robust performance in code
reasoning.

Figure 10 illustrates the relationship between model sizes and code reasoning capabilities.
The Qwen2.5-Coder instruct models stand out for delivering superior code reasoning
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McEval Performance
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Figure 7: The McEval Performance of Qwen2.5-Coder-32B-Instruct compared with popular
open-source large code models with similar size.

performance with the fewest parameters, surpassing the results of other open-source large
language models by a significant margin.

7.3 Code Editing

Aider Aider’ has created a code editing benchmark designed to quantitatively measure
its collaboration with large language models (LLMs). Drawing from a set of 133 Python

exercises sourced from Exercism!?, the benchmark tests the ability of Aider and LLMs to
interpret natural language programming requests and translate them into executable code
that successfully passes unit tests. This assessment goes beyond evaluating raw coding
proficiency; it also examines how effectively LLMs can edit existing code and format those
modifications for seamless integration with Aider’s system, ensuring that local source
files can be updated without issues. The comprehensive nature of this benchmark reflects
both the technical aptitude of the LLMs and their consistency in task completion. Table 19
highlights the performance of several language models in the Code Editing task. Among
these models, Qwen2.5-Coder-7B-Instruct exhibits exceptional code repair capabilities.
Despite its relatively modest scale of 7 billion parameters, it achieves an impressive PASS@1
accuracy of 51.9%, significantly outperforming comparable models. Remarkably, it also
surpasses larger models such as CodeStral-22B and DS-Coder-33B-Instruct , highlighting

9https ://github.com/paul-gauthier/aider
10https ://github.com/exercism/python
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MdEval Performance
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Figure 8: The MdEval Performance of Qwen2.5-Coder-32B-Instruct compared with popular
open-source large code models with similar size.
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Figure 9: The CodeArena Performance of Qwen2.5-Coder-32B-Instruct compared with
popular open-source large code models with similar size.

its remarkable efficiency and effectiveness in code editing tasks. Our Qwen2.5-Coder-32B-
Instruct model achieves even higher accuracy, with Pass@1 and Pass@2 rates reaching 60.9%
and 73.7%, respectively.

CodeEditorBench An effective code assistant must excel in generating code based on
given specifications, as well as in modifying or debugging existing code to meet evolving
requirements or resolve issues. In evaluating Qwen2.5-Coders proficiency in code modifi-
cation tasks, we focused on the CodeEditorBench (Guo et al., 2024b) suite, which assesses
performance across four key dimensions: Debugging, Translation, Switching, and Polishing.
We employed the same evaluation approach used in the original paper, relying on win
rate as the metric for overall performance across diverse problem types. The win rate was
computed for each problem category and then averaged across all categories to obtain the
overall score. The results in Figure 11 show that Qwen2.5-Coder-32B-Instruct achieves a win
rate comparable to DS-Coder-V2-Instruct (86.2% win rate), which features a significantly
larger 236 billion parameter scale.
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CRUXEval

Model Size Input-CoT ~ Output-CoT

0.5B+ Models

Qwen2.5-Coder-0.5B-Instruct 05B | 339 27.8
1B+ Models
DS-Coder-1.3B-Instruct 1.3B 12.9 28.1
Yi-Coder-1.5B-Chat 1.5B 19.9 249
Qwen2.5-Coder-1.5B-Instruct 1.5B 45.4 37.5
3B+ Models
Qwen2.5-Coder-3B-Instruct 3B | 532 56.0
6B+ Models
CodeLlama-7B-Instruct 7B 36.1 36.2
DS-Coder-6.7B-Instruct 6.7B 42.6 45.1
CodeQwenl.5-7B-Chat 7B 44.0 38.8
Yi-Coder-9B-Chat 9B 47.5 55.6
DS-Coder-V2-Lite-Instruct 2.4/16B 53.0 529
Qwen2.5-Coder-7B-Instruct 7B 65.8 65.9
13B+ Models
CodeLlama-13B-Instruct 13B 47.5 41.1
Starcoder2-15B-Instruct-v0.1 15B 455 50.9
Qwen2.5-Coder-14B-Instruct 14B 69.5 79.5
20B+ Models
CodeLlama-34B-Instruct 34B 48.5 471
CodeStral-22B-v0.1 22B 61.3 63.5
DS-Coder-33B-Instruct 33B 47.3 50.6
CodeLlama-70B-Instruct 70B 56.5 57.8
DS-Coder-V2-Instruct 21/236B 70.0 75.1
Qwen2.5-Coder-32B-Instruct 32B 75.2 83.4

Table 18: The CRUXEval performance of different instruct models, with Input-CoT and
Output-CoT settings.

7.4 Text-to-SQL

SQL is one of the essential tools in daily software development and production, but its
steep learning curve often hinders free interaction between non-programming experts and
databases. To address this issue, the Text-to-SQL task was introduced, aiming for models
to automatically map natural language questions to structured SQL queries. Previous
improvements in Text-to-SQL focused primarily on structure-aware learning, domain-
specific pre-training, and sophisticated prompt designs.

Thanks to the use of finely crafted synthetic data during both pre-training and fine-tuning,
we significantly enhanced Qwen2.5-Coder’s capability in Text-to-SQL tasks. We selected
two well-known benchmarks, Spider (Yu et al., 2018) and BIRD (Li et al., 2024a), for com-
prehensive evaluation. To ensure a fair comparison between Qwen2.5-Coder and other
open-source language models on this task, we used a unified prompt template as input,
following the work of Chang & Fosler-Lussier (2023). The evaluation prompt consists of
table representations aligned with database instructions, examples of table content, op-
tional additional knowledge, and natural language questions. This standardized prompt
template minimizes biases that may arise from prompt variations. As shown in Figure 12,
Qwen2.5-Coder outperforms other code models of the same size on the Text-to-SQL task.
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Figure 10: The relationship between model sizes and code reasoning capabilities. The x-axis
represents the parameter sizes of different models, and the y-axis indicates the CRUXEval-O
(CoT) scores respectively.
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Figure 11: The evaluation results on CodeEditBench.
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Figure 12: The text-to-SQL evaluation on various instruct code models.
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Figure 13: The table understanding evaluation on TableBench.
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Aider

Model Size | pcs@1  Pass@?

0.5B+ Models

Qwen2.5-Coder-0.5B-Instruct 05B | 14.3 14.3
1B+ Models
DS-Coder-1.3B-Instruct 1.3B 18.0 18.8
Yi-Coder-1.5B-Chat 1.5B 17.3 17.3
QOwen2.5-Coder-1.5B-Instruct 1.5B 28.6 31.6
3B+ Models
Qwen2.5-Coder-3B-Instruct 3B | 33.8 39.1
6B+ Models
CodeLlama-7B-Instruct 7B 1.5 15
DS-Coder-6.7B-Instruct 6.7B 37.6 444
CodeQwenl.5-7B-Chat 7B 24.8 38.3
Yi-Coder-9B-Chat 9B 459 54.1
DS-Coder-V2-Lite-Instruct 2.4/16B 444 52.6
Owen2.5-Coder-7B-Instruct 7B 55.6 68.4
13B+ Models
CodeLlama-13B-Instruct 13B 1.5 15
Qwen2.5-Coder-14B-Instruct 14B 58.6 69.2
20B+ Models
CodeLlama-34B-Instruct 34B 15 15
CodeStral-22B-v0.1 22B 36.8 51.1
DS-Coder-33B-Instruct 33B 50.4 54.5
CodeLlama-70B-Instruct 70B 12.8 15.0
DS-Coder-V2-Instruct 21/236B 519 73.7
Qwen2.5-Coder-32B-Instruct 32B 60.9 73.7

Table 19: The code editing ability of different instruct models evaluated by Aider benchmark.
The whole edit-format was consistently applied across all our experiments.

7.5 Math Reasoning and General Natural Language

In this section, we provide a comparative analysis of the performance between our Qwen2.5-
Coder series models and the DS-Coder-V2 series models, with a focus on both mathematical
computation and general natural language processing tasks. The results in Table 20 highlight
the versatility of the Qwen2.5-Coder series, which excels not only in complex coding tasks
but also in advanced general-purpose tasks, setting it apart from its competitors.

7.6 Table Understanding

To evaluate the understanding capabilities of structured data, we further evaluate the
Qwen2.5-Coder on a comprehensive and complex benchmark TableBench (Wu et al., 2024b),
which includes 18 fields within four major categories of table question answering (TableQA)
capabilities. We compare Qwen2.5-Coder with other LLMs under the textual chain-of-
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Model Size | MATH GSMB8K GaoKao2023en OlympiadBench CollegeMath AIME24
DS-Coder-V2-Lite-Instruct 2.4/16B 61.0 87.6 56.1 26.4 39.8 6.7
DS-Coder-V2-Instruct 21/236B 74.2 94.5 65.7 37.8 459 6.7
Qwen2.5-Coder-3B-Instruct 3B 58.1 80.7 48.8 23.6 39.7 6.7
Qwen2.5-Coder-7B-Instruct 7B 66.8 86.7 60.5 29.8 43.5 10.0
Qwen2.5-Coder-14B-Instruct 14B 66.8 94.2 66.0 40.1 47.3 10.0
Qwen2.5-Coder-32B-Instruct 32B 76.4 93.0 68.3 42.5 47.7 20.0
Model Size | AMC23 MMLU MMLU-Pro IFEval CEval GPQA
DS-Coder-V2-Lite-Instruct 2.4/16B 404 425 60.6 38.6 60.1 27.6
DS-Coder-V2-Instruct 21/236B 52.5 76.7 65.6 409 73.4 44.3
Qwen2.5-Coder-3B-Instruct 3B 25.0 56.5 35.2 442 53.9 28.3
Qwen2.5-Coder-7B-Instruct 7B 425 68.7 45.6 58.6 61.4 35.6
Qwen2.5-Coder-14B-Instruct 14B 50.0 71.7 55.6 66.5 66.2 36.8
Qwen2.5-Coder-32B-Instruct 32B 55.0 77.6 62.3 79.9 68.9 41.8

Table 20: The performance of math and general.

thought (TCoT) setting. Figure 13 demonstrates that Qwen2.5-Coder-32B-Instruct gets the
best performance 45.1 on TableBench.

8 Discussion: Scaling is All You Need

In Figure 14, We present a comparison of different sizes of Qwen2.5-Coder with other
open-source LLMs on MBPP-3shot and LiveCodeBench. For the base LLM, we choose
MBPP-3shot as the evaluation metric. Our extensive experiments show that MBPP-3shot is
more suitable for evaluating base models and correlates well with the actual performance
of the models. For the instruction model, we select the latest 4 months of LiveCodeBench
(2024.07~2024.11) questions as the evaluation to strictly avoid test data contamination, truly
reflecting the OOD capabilities of the LLM. There is a positive correlation between model
size and model performance, and Qwen?2.5-Coder has achieved state-of-the-art performance
across all sizes, encouraging us to continue exploring larger sizes of code LLM.

MBPP-3shot LiveCodeBench (2024.07 - 2024.11)

e 32B
bs

»” . ) N uB -
cod
20 7B .-
%
3B [
158 ¢

05B ¢
Model Size Model Size

10 05B ¢ --#- Qwen2.5-Coder-Base -- Qwen2.5-Coder-Instruct

Figure 14: The evaluation results of Qwen2.5-Coder models with different sizes on MBPP-
3shot and LiveCodeBench.

9 Conclusion

This work introduces Qwen2.5-Coder, the latest addition to the Qwen series. Built upon
Qwen2.5, a top-tier open-source LLM, Qwen2.5-Coder has been developed through exten-
sive pre-training and post-training of Qwen2.5-0.5B/1.5B/3B/7B/14B/32B on large-scale
datasets. To ensure the quality of the pre-training data, we have curated a dataset by collect-
ing public code data and extracting high-quality code-related content from web texts, while
filtering out low-quality data using advanced classifiers. Additionally, we have constructed
a meticulously designed instruction-tuning dataset to transform the base code LLM into a
strong coding assistant.

Looking ahead, our research will focus on exploring the impact of scaling up code LLMs
in terms of both data size and model size. We will also continue to enhance the reasoning
capabilities of these models, aiming to push the boundaries of what code LLMs can achieve.
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