Last updated: 2018-11-15
workflowr checks: (Click a bullet for more information) ✖ R Markdown file: uncommitted changes
The R Markdown is untracked by Git. To know which version of the R Markdown file created these results, you’ll want to first commit it to the Git repo. If you’re still working on the analysis, you can ignore this warning. When you’re finished, you can run wflow_publish
to commit the R Markdown file and build the HTML.
✔ Environment: empty
Great job! The global environment was empty. Objects defined in the global environment can affect the analysis in your R Markdown file in unknown ways. For reproduciblity it’s best to always run the code in an empty environment.
✔ Seed:
set.seed(12345)
The command set.seed(12345)
was run prior to running the code in the R Markdown file. Setting a seed ensures that any results that rely on randomness, e.g. subsampling or permutations, are reproducible.
✔ Session information: recorded
Great job! Recording the operating system, R version, and package versions is critical for reproducibility.
✔ Repository version: 241c630
wflow_publish
or wflow_git_commit
). workflowr only checks the R Markdown file, but you know if there are other scripts or data files that it depends on. Below is the status of the Git repository when the results were generated:
Ignored files:
Ignored: .DS_Store
Ignored: analysis/.DS_Store
Ignored: data/DAVID_2covar/
Ignored: data/DAVID_results/
Ignored: data/Eigengenes/
Ignored: data/aux_info/
Ignored: data/hg_38/
Ignored: data/libParams/
Ignored: data/logs/
Ignored: output/.DS_Store
Untracked files:
Untracked: .gitigore
Untracked: _workflowr.yml
Untracked: analysis/Collection_dates.Rmd
Untracked: analysis/Converting_IDs.Rmd
Untracked: analysis/Global_variation.Rmd
Untracked: analysis/Preliminary_clinical_covariate.Rmd
Untracked: analysis/VennDiagram2018-07-24_06-55-46.log
Untracked: analysis/VennDiagram2018-07-24_06-56-13.log
Untracked: analysis/VennDiagram2018-07-24_06-56-50.log
Untracked: analysis/VennDiagram2018-07-24_06-58-41.log
Untracked: analysis/VennDiagram2018-07-24_07-00-07.log
Untracked: analysis/VennDiagram2018-07-24_07-00-42.log
Untracked: analysis/VennDiagram2018-07-24_07-01-08.log
Untracked: analysis/VennDiagram2018-08-17_15-13-24.log
Untracked: analysis/VennDiagram2018-08-17_15-13-30.log
Untracked: analysis/VennDiagram2018-08-17_15-15-06.log
Untracked: analysis/VennDiagram2018-08-17_15-16-01.log
Untracked: analysis/VennDiagram2018-08-17_15-17-51.log
Untracked: analysis/VennDiagram2018-08-17_15-18-42.log
Untracked: analysis/VennDiagram2018-08-17_15-19-21.log
Untracked: analysis/VennDiagram2018-08-20_09-07-57.log
Untracked: analysis/VennDiagram2018-08-20_09-08-37.log
Untracked: analysis/VennDiagram2018-08-26_19-54-03.log
Untracked: analysis/VennDiagram2018-08-26_20-47-08.log
Untracked: analysis/VennDiagram2018-08-26_20-49-49.log
Untracked: analysis/VennDiagram2018-08-27_00-04-36.log
Untracked: analysis/VennDiagram2018-08-27_00-09-27.log
Untracked: analysis/VennDiagram2018-08-27_00-13-57.log
Untracked: analysis/VennDiagram2018-08-27_00-16-32.log
Untracked: analysis/VennDiagram2018-08-27_10-00-25.log
Untracked: analysis/VennDiagram2018-08-28_06-03-13.log
Untracked: analysis/VennDiagram2018-08-28_06-03-14.log
Untracked: analysis/VennDiagram2018-08-28_06-05-50.log
Untracked: analysis/VennDiagram2018-08-28_06-06-58.log
Untracked: analysis/VennDiagram2018-08-28_06-10-12.log
Untracked: analysis/VennDiagram2018-08-28_06-10-13.log
Untracked: analysis/VennDiagram2018-08-28_06-18-29.log
Untracked: analysis/VennDiagram2018-08-28_07-22-26.log
Untracked: analysis/VennDiagram2018-08-28_07-22-27.log
Untracked: analysis/VennDiagram2018-08-28_13-05-27.log
Untracked: analysis/VennDiagram2018-09-12_01-45-59.log
Untracked: analysis/VennDiagram2018-09-12_01-49-31.log
Untracked: analysis/VennDiagram2018-09-12_01-58-11.log
Untracked: analysis/VennDiagram2018-09-12_01-59-46.log
Untracked: analysis/VennDiagram2018-09-12_02-08-07.log
Untracked: analysis/VennDiagram2018-09-12_02-08-56.log
Untracked: analysis/VennDiagram2018-11-15_14-20-08.log
Untracked: analysis/VennDiagram2018-11-15_14-20-15.log
Untracked: analysis/VennDiagram2018-11-15_14-20-23.log
Untracked: analysis/VennDiagram2018-11-15_14-21-14.log
Untracked: analysis/VennDiagram2018-11-15_14-21-57.log
Untracked: analysis/VennDiagram2018-11-15_14-33-34.log
Untracked: analysis/VennDiagram2018-11-15_14-36-19.log
Untracked: analysis/Weight_change_preliminary_analysis.Rmd
Untracked: analysis/background_dds_david.csv
Untracked: analysis/correlations_bet_covariates.Rmd
Untracked: analysis/correlations_over_time.Rmd
Untracked: analysis/genocode_annotation_info.Rmd
Untracked: analysis/genotypes.Rmd
Untracked: analysis/import_transcript_level_estimates.Rmd
Untracked: analysis/phenotypes.Rmd
Untracked: analysis/test_dds_david.csv
Untracked: analysis/time_two_covar.Rmd
Untracked: analysis/variables_by_time.Rmd
Untracked: analysis/voom_limma.Rmd
Untracked: analysis/voom_limma_hg37.Rmd
Untracked: analysis/voom_limma_weight_change.Rmd
Untracked: analysis/weight_over_one_year.Rmd
Untracked: docs/VennDiagram2018-07-24_06-55-46.log
Untracked: docs/VennDiagram2018-07-24_06-56-13.log
Untracked: docs/VennDiagram2018-07-24_06-56-50.log
Untracked: docs/VennDiagram2018-07-24_06-58-41.log
Untracked: docs/VennDiagram2018-07-24_07-00-07.log
Untracked: docs/VennDiagram2018-07-24_07-00-42.log
Untracked: docs/VennDiagram2018-07-24_07-01-08.log
Untracked: docs/figure/
Unstaged changes:
Modified: .gitignore
Modified: analysis/_site.yml
Modified: analysis/about.Rmd
Deleted: analysis/chunks.R
Modified: analysis/index.Rmd
Modified: analysis/license.Rmd
Note that any generated files, e.g. HTML, png, CSS, etc., are not included in this status report because it is ok for generated content to have uncommitted changes.
The goal of this analysis is to look at the weight changes relative to discharge.
# Open libraries
library(ggplot2)
Warning: package 'ggplot2' was built under R version 3.4.4
library(VennDiagram)
Warning: package 'VennDiagram' was built under R version 3.4.4
Loading required package: grid
Loading required package: futile.logger
# Open weight change data
weight_change <- read.csv("../data/weight_relapse_weight_info.csv", stringsAsFactors = FALSE)
# Plot weight change over time
boxplot(weight_change$Weight_diff_T1T2, xlab = "T1 to T2", ylab = "Weight change (lbs)")
# Number of individuals that lost weight
weight_subset <- weight_change[which(weight_change$Weight_diff_T1T2 < 0),]
nrow(weight_subset)
[1] 2
mean(weight_subset$Weight_diff_T1T2)
[1] -2.85
weight_subset <- weight_change[which(weight_change$Weight_diff_T1T2 > 0),]
nrow(weight_subset)
[1] 53
mean(weight_subset$Weight_diff_T1T2)
[1] 12.68283
# Plot weight change over time
boxplot(weight_change$Weight_diff_T3T2, xlab = "T2 to T3", ylab = "Weight change (lbs)")
# Number of individuals that lost weight
weight_subset <- weight_change[which(weight_change$Weight_diff_T3T2 < -5),]
nrow(weight_subset)
[1] 2
weight_subset <- weight_change[which(weight_change$Weight_diff_T3T2 < 0),]
nrow(weight_subset)
[1] 7
mean(weight_subset$Weight_diff_T3T2)
[1] -6.364286
summary(weight_subset$Weight_diff_T3T2)
Min. 1st Qu. Median Mean 3rd Qu. Max.
-14.500 -7.750 -4.600 -6.364 -3.950 -2.050
weight_subset <- weight_change[which(weight_change$Weight_diff_T3T2 > 5),]
nrow(weight_subset)
[1] 24
weight_subset <- weight_change[which(weight_change$Weight_diff_T3T2 > 0),]
nrow(weight_subset)
[1] 34
mean(weight_subset$Weight_diff_T3T2)
[1] 10.70588
summary(weight_subset$Weight_diff_T3T2)
Min. 1st Qu. Median Mean 3rd Qu. Max.
0.30 4.30 8.00 10.71 13.28 45.20
# Plot weight change over time
boxplot(weight_change$Weight_diff_T4T2, xlab = "T2 to T4", ylab = "Weight change (lbs)")
# Number of individuals that lost weight
weight_subset <- weight_change[which(weight_change$Weight_diff_T4T2 < -5),]
nrow(weight_subset)
[1] 7
weight_subset <- weight_change[which(weight_change$Weight_diff_T4T2 < 0),]
nrow(weight_subset)
[1] 8
mean(weight_subset$Weight_diff_T4T2)
[1] -9.6125
summary(weight_subset$Weight_diff_T4T2)
Min. 1st Qu. Median Mean 3rd Qu. Max.
-16.000 -14.625 -9.000 -9.613 -6.725 -0.300
weight_subset <- weight_change[which(weight_change$Weight_diff_T4T2 > 5),]
nrow(weight_subset)
[1] 19
weight_subset <- weight_change[which(weight_change$Weight_diff_T4T2 > 0),]
nrow(weight_subset)
[1] 30
mean(weight_subset$Weight_diff_T4T2)
[1] 11.035
summary(weight_subset$Weight_diff_T4T2)
Min. 1st Qu. Median Mean 3rd Qu. Max.
0.300 3.925 8.300 11.035 12.975 40.600
# Plot weight change over time
boxplot(weight_change$Weight_diff_T5T2, xlab = "T2 to T5", ylab = "Weight change (lbs)")
# Number of individuals that lost weight
weight_subset <- weight_change[which(weight_change$Weight_diff_T5T2 < -5),]
nrow(weight_subset)
[1] 5
weight_subset <- weight_change[which(weight_change$Weight_diff_T5T2 < 0),]
nrow(weight_subset)
[1] 8
mean(weight_subset$Weight_diff_T5T2)
[1] -10.7875
summary(weight_subset$Weight_diff_T5T2)
Min. 1st Qu. Median Mean 3rd Qu. Max.
-19.50 -16.65 -11.95 -10.79 -4.30 -0.50
weight_subset <- weight_change[which(weight_change$Weight_diff_T5T2 > 5),]
nrow(weight_subset)
[1] 22
weight_subset <- weight_change[which(weight_change$Weight_diff_T5T2 > 0),]
nrow(weight_subset)
[1] 24
mean(weight_subset$Weight_diff_T5T2)
[1] 14.00208
summary(weight_subset$Weight_diff_T5T2)
Min. 1st Qu. Median Mean 3rd Qu. Max.
1.250 6.275 11.400 14.002 21.225 31.600
# Losing 0 pounds
weight_subset3 <- weight_change[which(weight_change$Weight_diff_T3T2 < 0),]
nrow(weight_subset3)
[1] 7
weight_subset4 <- weight_change[which(weight_change$Weight_diff_T4T2 < 0),]
nrow(weight_subset4)
[1] 8
weight_subset5 <- weight_change[which(weight_change$Weight_diff_T5T2 < 0),]
nrow(weight_subset5)
[1] 8
mylist <- list()
mylist[["T2 to T3"]] <- weight_subset3$ID
mylist[["T2 to T4"]] <- weight_subset4$ID
mylist[["T2 to T5"]] <- weight_subset5$ID
intersect(mylist$`T2 to T3`, mylist$`T2 to T4`)
[1] 2218 2234 2242 2270
intersect(mylist$`T2 to T3`, mylist$`T2 to T5`)
[1] 2234 2270
intersect(mylist$`T2 to T4`, mylist$`T2 to T5`)
[1] 2232 2234 2270
intersect(intersect(mylist$`T2 to T3`, mylist$`T2 to T4`), mylist$`T2 to T5`)
[1] 2234 2270
# Make as pdf
Four_comp <- venn.diagram(mylist, filename= NULL, main=NULL, cex=1.5 , fill = NULL, lty=1, height=2000, width=2000, scaled = FALSE)
grid.draw(Four_comp)
dev.off()
null device
1
pdf(file = "~/Dropbox/Figures/Negative_weight_loss.pdf")
grid.draw(Four_comp)
dev.off()
null device
1
# Losing 5 pounds
weight_subset3 <- weight_change[which(weight_change$Weight_diff_T3T2 < -5),]
nrow(weight_subset3)
[1] 2
weight_subset4 <- weight_change[which(weight_change$Weight_diff_T4T2 < -5),]
nrow(weight_subset4)
[1] 7
weight_subset5 <- weight_change[which(weight_change$Weight_diff_T5T2 < -5),]
nrow(weight_subset5)
[1] 5
mylist <- list()
mylist[["T2 to T3"]] <- weight_subset3$ID
mylist[["T2 to T4"]] <- weight_subset4$ID
mylist[["T2 to T5"]] <- weight_subset5$ID
intersect(mylist$`T2 to T3`, mylist$`T2 to T4`)
[1] 2234
intersect(mylist$`T2 to T3`, mylist$`T2 to T5`)
[1] 2234
intersect(mylist$`T2 to T4`, mylist$`T2 to T5`)
[1] 2232 2234 2270
intersect(intersect(mylist$`T2 to T3`, mylist$`T2 to T4`), mylist$`T2 to T5`)
[1] 2234
# Make as pdf
Four_comp <- venn.diagram(mylist, filename= NULL, main=NULL, cex=1.5 , fill = NULL, lty=1, height=2000, width=2000, scaled = FALSE)
grid.draw(Four_comp)
dev.off()
null device
1
pdf(file = "~/Dropbox/Figures/5_pound_weight_loss.pdf")
grid.draw(Four_comp)
dev.off()
null device
1
# Plot weight change over time
boxplot(weight_change$Weight_diff_REDT4T2, xlab = "T2 to RRED T4", ylab = "Weight change (lbs)")
# Number of individuals that lost weight
weight_subset <- weight_change[which(weight_change$Weight_diff_REDT4T2 < -5),]
nrow(weight_subset)
[1] 0
weight_subset <- weight_change[which(weight_change$Weight_diff_REDT4T2 < 0),]
nrow(weight_subset)
[1] 1
mean(weight_subset$Weight_diff_REDT4T2)
[1] -3.08
summary(weight_subset$Weight_diff_REDT4T2)
Min. 1st Qu. Median Mean 3rd Qu. Max.
-3.08 -3.08 -3.08 -3.08 -3.08 -3.08
weight_subset <- weight_change[which(weight_change$Weight_diff_REDT4T2 > 5),]
nrow(weight_subset)
[1] 2
weight_subset <- weight_change[which(weight_change$Weight_diff_REDT4T2 > 0),]
nrow(weight_subset)
[1] 5
mean(weight_subset$Weight_diff_REDT4T2)
[1] 7.166
summary(weight_subset$Weight_diff_REDT4T2)
Min. 1st Qu. Median Mean 3rd Qu. Max.
0.200 3.500 4.630 7.166 12.000 15.500
# Plot weight change over time
boxplot(weight_change$Weight_diff_REDT5T2, xlab = "T2 to RRED T5", ylab = "Weight change (lbs)")
# Number of individuals that lost weight
weight_subset <- weight_change[which(weight_change$Weight_diff_REDT5T2 < -5),]
nrow(weight_subset)
[1] 1
weight_subset <- weight_change[which(weight_change$Weight_diff_REDT5T2 < 0),]
nrow(weight_subset)
[1] 3
mean(weight_subset$Weight_diff_REDT5T2)
[1] -5.01
summary(weight_subset$Weight_diff_REDT5T2)
Min. 1st Qu. Median Mean 3rd Qu. Max.
-6.440 -5.535 -4.630 -5.010 -4.295 -3.960
weight_subset <- weight_change[which(weight_change$Weight_diff_REDT5T2 > 5),]
nrow(weight_subset)
[1] 3
weight_subset <- weight_change[which(weight_change$Weight_diff_REDT5T2 > 0),]
nrow(weight_subset)
[1] 3
mean(weight_subset$Weight_diff_REDT5T2)
[1] 11.72667
summary(weight_subset$Weight_diff_REDT5T2)
Min. 1st Qu. Median Mean 3rd Qu. Max.
9.31 10.21 11.10 11.73 12.94 14.77
# T1 to T3
weight_subset <- weight_change[which(weight_change$Weight_diff_T3T1 < 0),]
nrow(weight_subset)
[1] 1
# T1 to T4
weight_subset <- weight_change[which(weight_change$Weight_diff_T4T1 < 0),]
nrow(weight_subset)
[1] 2
# T1 to T5
weight_subset <- weight_change[which(weight_change$Weight_diff_T5T1 < 0),]
nrow(weight_subset)
[1] 2
sessionInfo()
R version 3.4.3 (2017-11-30)
Platform: x86_64-apple-darwin15.6.0 (64-bit)
Running under: OS X El Capitan 10.11.6
Matrix products: default
BLAS: /Library/Frameworks/R.framework/Versions/3.4/Resources/lib/libRblas.0.dylib
LAPACK: /Library/Frameworks/R.framework/Versions/3.4/Resources/lib/libRlapack.dylib
locale:
[1] en_US.UTF-8/en_US.UTF-8/en_US.UTF-8/C/en_US.UTF-8/en_US.UTF-8
attached base packages:
[1] grid stats graphics grDevices utils datasets methods
[8] base
other attached packages:
[1] VennDiagram_1.6.20 futile.logger_1.4.3 ggplot2_3.0.0
loaded via a namespace (and not attached):
[1] Rcpp_0.12.18 formatR_1.5 compiler_3.4.3
[4] pillar_1.3.0 git2r_0.23.0 plyr_1.8.4
[7] workflowr_1.1.1 bindr_0.1.1 futile.options_1.0.1
[10] R.methodsS3_1.7.1 R.utils_2.7.0 tools_3.4.3
[13] digest_0.6.16 evaluate_0.11 tibble_1.4.2
[16] gtable_0.2.0 pkgconfig_2.0.2 rlang_0.2.2
[19] yaml_2.2.0 bindrcpp_0.2.2 withr_2.1.2
[22] stringr_1.3.1 dplyr_0.7.6 knitr_1.20
[25] rprojroot_1.3-2 tidyselect_0.2.4 glue_1.3.0
[28] R6_2.2.2 rmarkdown_1.10 lambda.r_1.2.3
[31] purrr_0.2.5 magrittr_1.5 whisker_0.3-2
[34] backports_1.1.2 scales_1.0.0 htmltools_0.3.6
[37] assertthat_0.2.0 colorspace_1.3-2 stringi_1.2.4
[40] lazyeval_0.2.1 munsell_0.5.0 crayon_1.3.4
[43] R.oo_1.22.0
This reproducible R Markdown analysis was created with workflowr 1.1.1