Last updated: 2018-08-28
workflowr checks: (Click a bullet for more information) ✖ R Markdown file: uncommitted changes
The R Markdown is untracked by Git. To know which version of the R Markdown file created these results, you’ll want to first commit it to the Git repo. If you’re still working on the analysis, you can ignore this warning. When you’re finished, you can run wflow_publish
to commit the R Markdown file and build the HTML.
✔ Environment: empty
Great job! The global environment was empty. Objects defined in the global environment can affect the analysis in your R Markdown file in unknown ways. For reproduciblity it’s best to always run the code in an empty environment.
✔ Seed:
set.seed(12345)
The command set.seed(12345)
was run prior to running the code in the R Markdown file. Setting a seed ensures that any results that rely on randomness, e.g. subsampling or permutations, are reproducible.
✔ Session information: recorded
Great job! Recording the operating system, R version, and package versions is critical for reproducibility.
✔ Repository version: 241c630
wflow_publish
or wflow_git_commit
). workflowr only checks the R Markdown file, but you know if there are other scripts or data files that it depends on. Below is the status of the Git repository when the results were generated:
Ignored files:
Ignored: .DS_Store
Ignored: analysis/.DS_Store
Ignored: data/.DS_Store
Ignored: data/aux_info/
Ignored: data/hg_38/
Ignored: data/libParams/
Ignored: output/.DS_Store
Untracked files:
Untracked: _workflowr.yml
Untracked: analysis/Collection_dates.Rmd
Untracked: analysis/Converting_IDs.Rmd
Untracked: analysis/Global_variation.Rmd
Untracked: analysis/Preliminary_clinical_covariate.Rmd
Untracked: analysis/VennDiagram2018-07-24_06-55-46.log
Untracked: analysis/VennDiagram2018-07-24_06-56-13.log
Untracked: analysis/VennDiagram2018-07-24_06-56-50.log
Untracked: analysis/VennDiagram2018-07-24_06-58-41.log
Untracked: analysis/VennDiagram2018-07-24_07-00-07.log
Untracked: analysis/VennDiagram2018-07-24_07-00-42.log
Untracked: analysis/VennDiagram2018-07-24_07-01-08.log
Untracked: analysis/VennDiagram2018-08-17_15-13-24.log
Untracked: analysis/VennDiagram2018-08-17_15-13-30.log
Untracked: analysis/VennDiagram2018-08-17_15-15-06.log
Untracked: analysis/VennDiagram2018-08-17_15-16-01.log
Untracked: analysis/VennDiagram2018-08-17_15-17-51.log
Untracked: analysis/VennDiagram2018-08-17_15-18-42.log
Untracked: analysis/VennDiagram2018-08-17_15-19-21.log
Untracked: analysis/VennDiagram2018-08-20_09-07-57.log
Untracked: analysis/VennDiagram2018-08-20_09-08-37.log
Untracked: analysis/VennDiagram2018-08-26_19-54-03.log
Untracked: analysis/VennDiagram2018-08-26_20-47-08.log
Untracked: analysis/VennDiagram2018-08-26_20-49-49.log
Untracked: analysis/VennDiagram2018-08-27_00-04-36.log
Untracked: analysis/VennDiagram2018-08-27_00-09-27.log
Untracked: analysis/VennDiagram2018-08-27_00-13-57.log
Untracked: analysis/VennDiagram2018-08-27_00-16-32.log
Untracked: analysis/VennDiagram2018-08-27_10-00-25.log
Untracked: analysis/VennDiagram2018-08-28_06-03-13.log
Untracked: analysis/VennDiagram2018-08-28_06-03-14.log
Untracked: analysis/VennDiagram2018-08-28_06-05-50.log
Untracked: analysis/VennDiagram2018-08-28_06-06-58.log
Untracked: analysis/VennDiagram2018-08-28_06-10-12.log
Untracked: analysis/VennDiagram2018-08-28_06-10-13.log
Untracked: analysis/VennDiagram2018-08-28_06-18-29.log
Untracked: analysis/VennDiagram2018-08-28_07-22-26.log
Untracked: analysis/VennDiagram2018-08-28_07-22-27.log
Untracked: analysis/background_dds_david.csv
Untracked: analysis/correlations_bet_covariates.Rmd
Untracked: analysis/correlations_over_time.Rmd
Untracked: analysis/genocode_annotation_info.Rmd
Untracked: analysis/genotypes.Rmd
Untracked: analysis/import_transcript_level_estimates.Rmd
Untracked: analysis/test_dds_david.csv
Untracked: analysis/variables_by_time.Rmd
Untracked: analysis/voom_limma.Rmd
Untracked: analysis/voom_limma_hg37.Rmd
Untracked: analysis/voom_limma_weight_change.Rmd
Untracked: data/BAN2 Dates_T1_T2.xlsx
Untracked: data/BAN_DATES.csv
Untracked: data/BAN_DATES.xlsx
Untracked: data/BAN_DATES_txt.csv
Untracked: data/Ban_geno.csv
Untracked: data/Ban_geno.xlsx
Untracked: data/Blood_dates.txt
Untracked: data/DAVID_background.txt
Untracked: data/DAVID_list_T1T2.txt
Untracked: data/DAVID_list_T1T2_weight.txt
Untracked: data/DAVID_list_T2T3.txt
Untracked: data/DAVID_list_T2T3_weight.txt
Untracked: data/DAVID_results/
Untracked: data/DAVID_top100_list_T1T2.txt
Untracked: data/DAVID_top100_list_T1T2_weight.txt
Untracked: data/DAVID_top100_list_T2T3.txt
Untracked: data/DAVID_top100_list_T2T3_weight.txt
Untracked: data/Eigengenes/
Untracked: data/FemaleWeightRestoration-01-dataInput.RData
Untracked: data/FemaleWeightRestoration-resid-01-dataInput.RData
Untracked: data/FemaleWeightRestoration-resid-T1T2-01-dataInput.RData
Untracked: data/HTSF_IDs.sav
Untracked: data/Homo_sapiens.GRCh38.v22_table.txt
Untracked: data/Labels.csv
Untracked: data/Labels.xlsx
Untracked: data/RIN.xlsx
Untracked: data/RIN_over_time.csv
Untracked: data/RIN_over_time.xlsx
Untracked: data/T0_consolid.csv
Untracked: data/T0_consolid.xlsx
Untracked: data/age_t1.txt
Untracked: data/birthday_age.csv
Untracked: data/birthday_age.xlsx
Untracked: data/clinical_sample_info_geno.csv
Untracked: data/cmd_info.json
Untracked: data/counts_hg37_gc_txsalmon.RData
Untracked: data/counts_hg38_gc.RData
Untracked: data/counts_hg38_gc_dds.RData
Untracked: data/counts_hg38_gc_txsalmon.RData
Untracked: data/covar_lm.csv
Untracked: data/covar_lm_missing.csv
Untracked: data/eigengenes_T1_T2_cov_adj_exp_5_modules.txt
Untracked: data/eigengenes_T1_T2_module_background.txt
Untracked: data/eigengenes_adj_exp_7_modules.txt
Untracked: data/eigengenes_cov_adj_exp_14_modules.txt
Untracked: data/eigengenes_module_background.txt
Untracked: data/eigengenes_unadj_exp_10_modules.txt
Untracked: data/eigengenes_unadj_exp_6_modules.txt
Untracked: data/eigengenes_unadj_exp_9_modules.txt
Untracked: data/files_list.txt
Untracked: data/final_covariates.csv
Untracked: data/gene_exp_values_2202.txt
Untracked: data/gene_exp_values_2209.txt
Untracked: data/gene_exp_values_2218.txt
Untracked: data/gene_exp_values_2220.txt
Untracked: data/gene_exp_values_2226.txt
Untracked: data/gene_exp_values_2228.txt
Untracked: data/gene_expression_filtered_T1T5.csv
Untracked: data/gene_names_58387.txt
Untracked: data/gene_to_tran.txt
Untracked: data/lm_covar_fixed_random.csv
Untracked: data/lm_covar_fixed_random_geno.csv
Untracked: data/logs/
Untracked: data/module_T1T2_cov_adj_blue.txt
Untracked: data/module_T1T2_cov_adj_brown.txt
Untracked: data/module_T1T2_cov_adj_turquoise.txt
Untracked: data/module_T1T2_cov_adj_yellow.txt
Untracked: data/module_adj_cov_merged_blue.txt
Untracked: data/module_adj_cov_merged_brown.txt
Untracked: data/module_adj_cov_merged_cyan.txt
Untracked: data/module_adj_cov_merged_green.txt
Untracked: data/module_adj_cov_merged_greenyellow.txt
Untracked: data/module_adj_cov_merged_magenta.txt
Untracked: data/module_adj_cov_merged_red.txt
Untracked: data/module_adj_cov_merged_salmon.txt
Untracked: data/module_adj_cov_merged_tan.txt
Untracked: data/module_adj_cov_merged_yellow.txt
Untracked: data/module_black.txt
Untracked: data/module_blue.txt
Untracked: data/module_brown.txt
Untracked: data/module_cov_adj_black.txt
Untracked: data/module_cov_adj_blue.txt
Untracked: data/module_cov_adj_brown.txt
Untracked: data/module_cov_adj_cyan.txt
Untracked: data/module_cov_adj_green.txt
Untracked: data/module_cov_adj_greenyellow.txt
Untracked: data/module_cov_adj_magenta.txt
Untracked: data/module_cov_adj_pink.txt
Untracked: data/module_cov_adj_purple.txt
Untracked: data/module_cov_adj_red.txt
Untracked: data/module_cov_adj_salmon.txt
Untracked: data/module_cov_adj_tan.txt
Untracked: data/module_cov_adj_turquoise.txt
Untracked: data/module_cov_adj_yellow.txt
Untracked: data/module_cyan.txt
Untracked: data/module_green.txt
Untracked: data/module_greenyellow.txt
Untracked: data/module_magenta.txt
Untracked: data/module_merged_black.txt
Untracked: data/module_merged_blue.txt
Untracked: data/module_merged_brown.txt
Untracked: data/module_merged_cyan.txt
Untracked: data/module_merged_green.txt
Untracked: data/module_merged_greenyellow.txt
Untracked: data/module_merged_magenta.txt
Untracked: data/module_merged_pink.txt
Untracked: data/module_merged_purple.txt
Untracked: data/module_merged_red.txt
Untracked: data/module_merged_salmon.txt
Untracked: data/module_merged_tan.txt
Untracked: data/module_merged_turquoise.txt
Untracked: data/module_merged_yellow.txt
Untracked: data/module_pink.txt
Untracked: data/module_purple.txt
Untracked: data/module_red.txt
Untracked: data/module_salmon.txt
Untracked: data/module_tan.txt
Untracked: data/module_turquoise.txt
Untracked: data/module_yellow.txt
Untracked: data/notimecovariates.csv
Untracked: data/only_individuals_biomarkers_weight_restoration_study.xlsx
Untracked: data/pcs_genes.csv
Untracked: data/pcs_genes.txt
Untracked: data/rest1t2_BI_hg37.rds
Untracked: data/rest1t2_BI_hg38.rds
Untracked: data/rest1t2_hg37.rds
Untracked: data/rest1t2_psych_meds_BMI_hg37.rds
Untracked: data/rest1t2_psych_meds_hg37.rds
Untracked: data/rest2t3_BI_hg37.rds
Untracked: data/rest2t3_BI_hg38.rds
Untracked: data/rest2t3_hg37.rds
Untracked: data/rest2t3_psych_meds_BMI_hg37.rds
Untracked: data/rest2t3_psych_meds_hg37.rds
Untracked: data/salmon_gene_matrix_bak_reorder_time.txt
Untracked: data/technical_sample_info.csv
Untracked: data/tx_to_gene.txt
Untracked: data/tx_to_gene_37.txt
Untracked: data/usa2.pcawithref.menv.mds_cov
Untracked: data/vsd_values_hg38_gc.rds
Untracked: data/~$Labels.xlsx
Untracked: data/~$T0_consolid.xlsx
Untracked: docs/VennDiagram2018-07-24_06-55-46.log
Untracked: docs/VennDiagram2018-07-24_06-56-13.log
Untracked: docs/VennDiagram2018-07-24_06-56-50.log
Untracked: docs/VennDiagram2018-07-24_06-58-41.log
Untracked: docs/VennDiagram2018-07-24_07-00-07.log
Untracked: docs/VennDiagram2018-07-24_07-00-42.log
Untracked: docs/VennDiagram2018-07-24_07-01-08.log
Untracked: docs/figure/
Unstaged changes:
Modified: analysis/_site.yml
Modified: analysis/about.Rmd
Deleted: analysis/chunks.R
Modified: analysis/index.Rmd
Modified: analysis/license.Rmd
Note that any generated files, e.g. HTML, png, CSS, etc., are not included in this status report because it is ok for generated content to have uncommitted changes.
The goal of this script is to identify the major drivers of gene expression level variation in the data.
library(DESeq2)
Loading required package: S4Vectors
Loading required package: stats4
Loading required package: BiocGenerics
Loading required package: parallel
Attaching package: 'BiocGenerics'
The following objects are masked from 'package:parallel':
clusterApply, clusterApplyLB, clusterCall, clusterEvalQ,
clusterExport, clusterMap, parApply, parCapply, parLapply,
parLapplyLB, parRapply, parSapply, parSapplyLB
The following objects are masked from 'package:stats':
IQR, mad, sd, var, xtabs
The following objects are masked from 'package:base':
anyDuplicated, append, as.data.frame, cbind, colMeans,
colnames, colSums, do.call, duplicated, eval, evalq, Filter,
Find, get, grep, grepl, intersect, is.unsorted, lapply,
lengths, Map, mapply, match, mget, order, paste, pmax,
pmax.int, pmin, pmin.int, Position, rank, rbind, Reduce,
rowMeans, rownames, rowSums, sapply, setdiff, sort, table,
tapply, union, unique, unsplit, which, which.max, which.min
Attaching package: 'S4Vectors'
The following object is masked from 'package:base':
expand.grid
Loading required package: IRanges
Loading required package: GenomicRanges
Loading required package: GenomeInfoDb
Loading required package: SummarizedExperiment
Loading required package: Biobase
Welcome to Bioconductor
Vignettes contain introductory material; view with
'browseVignettes()'. To cite Bioconductor, see
'citation("Biobase")', and for packages 'citation("pkgname")'.
Loading required package: DelayedArray
Loading required package: matrixStats
Attaching package: 'matrixStats'
The following objects are masked from 'package:Biobase':
anyMissing, rowMedians
Attaching package: 'DelayedArray'
The following objects are masked from 'package:matrixStats':
colMaxs, colMins, colRanges, rowMaxs, rowMins, rowRanges
The following object is masked from 'package:base':
apply
library("pheatmap")
Warning: package 'pheatmap' was built under R version 3.4.4
library("gplots")
Attaching package: 'gplots'
The following object is masked from 'package:IRanges':
space
The following object is masked from 'package:S4Vectors':
space
The following object is masked from 'package:stats':
lowess
library("RColorBrewer")
library("ggplot2")
Warning: package 'ggplot2' was built under R version 3.4.4
library("cowplot")
Warning: package 'cowplot' was built under R version 3.4.4
Attaching package: 'cowplot'
The following object is masked from 'package:ggplot2':
ggsave
# Read in the filtered data (file made from the end of voom_limma.Rmd)
init_pc <- read.csv("../data/gene_expression_filtered_T1T5.csv")
dim(init_pc)
[1] 11504 157
init_pc <- init_pc[,2:157]
labels <- read.csv("../data/lm_covar_fixed_random.csv")
labels_123 <- as.data.frame(paste(labels$Individual, labels$Time, sep = "_"))
colnames(labels_123) <- c("ID_time")
vst <- readRDS("../data/vsd_values_hg38_gc.rds")
# Run PCA on the normalized data
pca_genes <- prcomp(t(vst), center = TRUE)
matrixpca <- pca_genes$x
PC1 <- matrixpca[,1]
PC2 <- matrixpca[,2]
pc3 <- matrixpca[,3]
pc4 <- matrixpca[,4]
pc5 <- matrixpca[,5]
matrixpca <- as.data.frame(matrixpca)
summary <- summary(pca_genes)
head(summary$importance[2,1:5])
PC1 PC2 PC3 PC4 PC5
0.12229 0.07022 0.05801 0.05184 0.03742
norm_count <- ggplot(data=matrixpca, aes(x=PC1, y=PC2, color=as.factor(labels$Time))) + geom_point(aes(colour = as.factor(labels$Time))) + ggtitle("PCA of normalized counts") + scale_color_discrete(name = "Time")
plot_grid(norm_count)
# Load gene expression data from all 156 samples
normalized_data <- read.csv("../data/gene_expression_filtered_T1T5.csv")
# Run PCA on the normalized data
pca_genes <- prcomp(t(normalized_data[,2:157]), scale = TRUE, center = TRUE)
matrixpca <- pca_genes$x
PC1 <- matrixpca[,1]
PC2 <- matrixpca[,2]
pc3 <- matrixpca[,3]
pc4 <- matrixpca[,4]
pc5 <- matrixpca[,5]
matrixpca <- as.data.frame(matrixpca)
summary <- summary(pca_genes)
head(summary$importance[2,1:5])
PC1 PC2 PC3 PC4 PC5
0.23496 0.13460 0.09950 0.05124 0.03724
norm_count <- ggplot(data=matrixpca, aes(x=PC1, y=PC2, color=as.factor(labels$Time))) + geom_point(aes(colour = as.factor(labels$Time))) + ggtitle("PCA of normalized counts") + scale_color_discrete(name = "Time")
plot_grid(norm_count)
# Add Bioinformatics step of scaling each gene
# centering with 'scale()'
center_scale <- function(x) {
scale(x, scale = TRUE)
}
# apply it
centered_init_pc <- center_scale(init_pc)
check <- cor(init_pc)
cx <- sweep(check, 2, colMeans(check), "-")
pca_genes <- prcomp(check, center = TRUE, scale = FALSE)
matrixpca <- pca_genes$x
PC1 <- matrixpca[,1]
PC2 <- matrixpca[,2]
pc3 <- matrixpca[,3]
pc4 <- matrixpca[,4]
pc5 <- matrixpca[,5]
matrixpca <- as.data.frame(matrixpca)
summary <- summary(pca_genes)
head(summary$importance[2,1:5])
PC1 PC2 PC3 PC4 PC5
0.65175 0.18426 0.07038 0.03644 0.01884
norm_count <- ggplot(data=matrixpca, aes(x=PC1, y=PC2, color=as.factor(labels$Time))) + geom_point(aes(colour = as.factor(labels$Time))) + ggtitle("PCA of normalized counts") + scale_color_discrete(name = "Time")
plot_grid(norm_count)
pca_genes <- prcomp(init_pc, center = TRUE, scale = FALSE)
pca_rot <- as.data.frame(pca_genes$rotation)
pca_rot[,1] <- as.numeric(pca_rot[,1])
pca_rot[,2] <- as.numeric(pca_rot[,2])
norm_count <- ggplot(data=pca_rot, aes(x=PC1, y=PC2, color=as.factor(labels$Time))) + geom_point(aes(colour = as.factor(labels$Time))) + ggtitle("PCA of normalized counts") + scale_color_discrete(name = "Time")
plot_grid(norm_count)
# Run PCA
X = t(scale(t(init_pc),center=TRUE,scale=FALSE))
sv = svd(t(X))
U = sv$u
V = sv$v
D = sv$d
## in R calculate the rank of a matrix is by
#qr(t(X))$rank
plot(U[,1],U[,2],xlab="PC1",ylab="PC2")
U <- as.data.frame(U)
norm_count <- ggplot(data=U, aes(x=U[,1], y=U[,2], color=labels$Time)) + geom_point(aes(colour = as.factor(labels$Time))) + ggtitle("PCA of normalized counts") + scale_color_discrete(name = "Time") + xlab("PC1") + ylab("PC2")
plot_grid(norm_count)
#save_plot("/Users/laurenblake/Dropbox/Lauren Blake/Figures/PCA_time_August10.png", norm_count,
# base_aspect_ratio = 1)
# Variance explained
varex = 0
cumvar = 0
denom = sum(D^2)
for(i in 1:64){
varex[i] = D[i]^2/denom
cumvar[i] = sum(D[1:i]^2)/denom
}
## variance explained by each PC cumulatively
varex
[1] 0.191251884 0.101480941 0.076890551 0.056966384 0.047740308
[6] 0.028534255 0.024038043 0.022025028 0.021309608 0.017922737
[11] 0.016249126 0.015280302 0.013255328 0.012700219 0.011990477
[16] 0.010997071 0.010762881 0.009782479 0.009333403 0.008706081
[21] 0.008313230 0.008213857 0.007578975 0.007354793 0.007018724
[26] 0.006604362 0.006492543 0.006201593 0.005842621 0.005607058
[31] 0.005434460 0.005379485 0.005218961 0.004967081 0.004903652
[36] 0.004583266 0.004531455 0.004453111 0.004248581 0.004233394
[41] 0.004162922 0.003957800 0.003902488 0.003785255 0.003691630
[46] 0.003594334 0.003489787 0.003408952 0.003371267 0.003297509
[51] 0.003219381 0.003093576 0.003056514 0.002994842 0.002942849
[56] 0.002890365 0.002825417 0.002793333 0.002717778 0.002548626
[61] 0.002523417 0.002504802 0.002406615 0.002389410
cumvar
[1] 0.1912519 0.2927328 0.3696234 0.4265898 0.4743301 0.5028643 0.5269024
[8] 0.5489274 0.5702370 0.5881597 0.6044089 0.6196892 0.6329445 0.6456447
[15] 0.6576352 0.6686323 0.6793951 0.6891776 0.6985110 0.7072171 0.7155303
[22] 0.7237442 0.7313232 0.7386780 0.7456967 0.7523010 0.7587936 0.7649952
[29] 0.7708378 0.7764449 0.7818793 0.7872588 0.7924778 0.7974449 0.8023485
[36] 0.8069318 0.8114632 0.8159163 0.8201649 0.8243983 0.8285612 0.8325190
[43] 0.8364215 0.8402068 0.8438984 0.8474927 0.8509825 0.8543915 0.8577627
[50] 0.8610603 0.8642796 0.8673732 0.8704297 0.8734246 0.8763674 0.8792578
[57] 0.8820832 0.8848765 0.8875943 0.8901429 0.8926664 0.8951712 0.8975778
[64] 0.8999672
sessionInfo()
R version 3.4.3 (2017-11-30)
Platform: x86_64-apple-darwin15.6.0 (64-bit)
Running under: OS X El Capitan 10.11.6
Matrix products: default
BLAS: /Library/Frameworks/R.framework/Versions/3.4/Resources/lib/libRblas.0.dylib
LAPACK: /Library/Frameworks/R.framework/Versions/3.4/Resources/lib/libRlapack.dylib
locale:
[1] en_US.UTF-8/en_US.UTF-8/en_US.UTF-8/C/en_US.UTF-8/en_US.UTF-8
attached base packages:
[1] parallel stats4 stats graphics grDevices utils datasets
[8] methods base
other attached packages:
[1] cowplot_0.9.3 ggplot2_3.0.0
[3] RColorBrewer_1.1-2 gplots_3.0.1
[5] pheatmap_1.0.10 DESeq2_1.18.1
[7] SummarizedExperiment_1.8.1 DelayedArray_0.4.1
[9] matrixStats_0.54.0 Biobase_2.38.0
[11] GenomicRanges_1.30.3 GenomeInfoDb_1.14.0
[13] IRanges_2.12.0 S4Vectors_0.16.0
[15] BiocGenerics_0.24.0
loaded via a namespace (and not attached):
[1] bitops_1.0-6 bit64_0.9-7 rprojroot_1.3-2
[4] tools_3.4.3 backports_1.1.2 R6_2.2.2
[7] rpart_4.1-13 KernSmooth_2.23-15 Hmisc_4.1-1
[10] DBI_1.0.0 lazyeval_0.2.1 colorspace_1.3-2
[13] nnet_7.3-12 withr_2.1.2 tidyselect_0.2.4
[16] gridExtra_2.3 bit_1.1-14 compiler_3.4.3
[19] git2r_0.23.0 htmlTable_1.12 labeling_0.3
[22] caTools_1.17.1.1 scales_1.0.0 checkmate_1.8.5
[25] genefilter_1.60.0 stringr_1.3.1 digest_0.6.16
[28] foreign_0.8-71 rmarkdown_1.10 R.utils_2.6.0
[31] XVector_0.18.0 base64enc_0.1-3 pkgconfig_2.0.2
[34] htmltools_0.3.6 htmlwidgets_1.2 rlang_0.2.2
[37] rstudioapi_0.7 RSQLite_2.1.1 bindr_0.1.1
[40] BiocParallel_1.12.0 gtools_3.8.1 acepack_1.4.1
[43] dplyr_0.7.6 R.oo_1.22.0 RCurl_1.95-4.11
[46] magrittr_1.5 GenomeInfoDbData_1.0.0 Formula_1.2-3
[49] Matrix_1.2-14 Rcpp_0.12.18 munsell_0.5.0
[52] R.methodsS3_1.7.1 stringi_1.2.4 whisker_0.3-2
[55] yaml_2.2.0 zlibbioc_1.24.0 plyr_1.8.4
[58] grid_3.4.3 blob_1.1.1 gdata_2.18.0
[61] crayon_1.3.4 lattice_0.20-35 splines_3.4.3
[64] annotate_1.56.2 locfit_1.5-9.1 knitr_1.20
[67] pillar_1.3.0 geneplotter_1.56.0 XML_3.98-1.16
[70] glue_1.3.0 evaluate_0.11 latticeExtra_0.6-28
[73] data.table_1.11.4 gtable_0.2.0 purrr_0.2.5
[76] assertthat_0.2.0 xtable_1.8-2 survival_2.42-6
[79] tibble_1.4.2 AnnotationDbi_1.40.0 memoise_1.1.0
[82] workflowr_1.1.1 bindrcpp_0.2.2 cluster_2.0.7-1
This reproducible R Markdown analysis was created with workflowr 1.1.1