Last updated: 2018-05-12
workflowr checks: (Click a bullet for more information) ✔ R Markdown file: up-to-date 
Great! Since the R Markdown file has been committed to the Git repository, you know the exact version of the code that produced these results.
 ✔ Environment: empty 
Great job! The global environment was empty. Objects defined in the global environment can affect the analysis in your R Markdown file in unknown ways. For reproduciblity it’s best to always run the code in an empty environment.
 ✔ Seed: 
set.seed(12345) 
The command set.seed(12345) was run prior to running the code in the R Markdown file. Setting a seed ensures that any results that rely on randomness, e.g. subsampling or permutations, are reproducible.
 ✔ Session information: recorded 
Great job! Recording the operating system, R version, and package versions is critical for reproducibility.
 ✔ Repository version: ddf9062 
wflow_publish or wflow_git_commit). workflowr only checks the R Markdown file, but you know if there are other scripts or data files that it depends on. Below is the status of the Git repository when the results were generated:
Ignored files:
    Ignored:    .DS_Store
    Ignored:    .Rhistory
    Ignored:    .Rproj.user/
    Ignored:    analysis/.DS_Store
    Ignored:    analysis/BH_robustness_cache/
    Ignored:    analysis/FDR_Null_cache/
    Ignored:    analysis/FDR_null_betahat_cache/
    Ignored:    analysis/Rmosek_cache/
    Ignored:    analysis/StepDown_cache/
    Ignored:    analysis/alternative2_cache/
    Ignored:    analysis/alternative_cache/
    Ignored:    analysis/ash_gd_cache/
    Ignored:    analysis/average_cor_gtex_2_cache/
    Ignored:    analysis/average_cor_gtex_cache/
    Ignored:    analysis/brca_cache/
    Ignored:    analysis/cash_deconv_cache/
    Ignored:    analysis/cash_fdr_1_cache/
    Ignored:    analysis/cash_fdr_2_cache/
    Ignored:    analysis/cash_fdr_3_cache/
    Ignored:    analysis/cash_fdr_4_cache/
    Ignored:    analysis/cash_fdr_5_cache/
    Ignored:    analysis/cash_fdr_6_cache/
    Ignored:    analysis/cash_plots_cache/
    Ignored:    analysis/cash_sim_1_cache/
    Ignored:    analysis/cash_sim_2_cache/
    Ignored:    analysis/cash_sim_3_cache/
    Ignored:    analysis/cash_sim_4_cache/
    Ignored:    analysis/cash_sim_5_cache/
    Ignored:    analysis/cash_sim_6_cache/
    Ignored:    analysis/cash_sim_7_cache/
    Ignored:    analysis/correlated_z_2_cache/
    Ignored:    analysis/correlated_z_3_cache/
    Ignored:    analysis/correlated_z_cache/
    Ignored:    analysis/create_null_cache/
    Ignored:    analysis/cutoff_null_cache/
    Ignored:    analysis/design_matrix_2_cache/
    Ignored:    analysis/design_matrix_cache/
    Ignored:    analysis/diagnostic_ash_cache/
    Ignored:    analysis/diagnostic_correlated_z_2_cache/
    Ignored:    analysis/diagnostic_correlated_z_3_cache/
    Ignored:    analysis/diagnostic_correlated_z_cache/
    Ignored:    analysis/diagnostic_plot_2_cache/
    Ignored:    analysis/diagnostic_plot_cache/
    Ignored:    analysis/efron_leukemia_cache/
    Ignored:    analysis/fitting_normal_cache/
    Ignored:    analysis/gaussian_derivatives_2_cache/
    Ignored:    analysis/gaussian_derivatives_3_cache/
    Ignored:    analysis/gaussian_derivatives_4_cache/
    Ignored:    analysis/gaussian_derivatives_5_cache/
    Ignored:    analysis/gaussian_derivatives_cache/
    Ignored:    analysis/gd-ash_cache/
    Ignored:    analysis/gd_delta_cache/
    Ignored:    analysis/gd_lik_2_cache/
    Ignored:    analysis/gd_lik_cache/
    Ignored:    analysis/gd_w_cache/
    Ignored:    analysis/knockoff_10_cache/
    Ignored:    analysis/knockoff_2_cache/
    Ignored:    analysis/knockoff_3_cache/
    Ignored:    analysis/knockoff_4_cache/
    Ignored:    analysis/knockoff_5_cache/
    Ignored:    analysis/knockoff_6_cache/
    Ignored:    analysis/knockoff_7_cache/
    Ignored:    analysis/knockoff_8_cache/
    Ignored:    analysis/knockoff_9_cache/
    Ignored:    analysis/knockoff_cache/
    Ignored:    analysis/knockoff_var_cache/
    Ignored:    analysis/marginal_z_alternative_cache/
    Ignored:    analysis/marginal_z_cache/
    Ignored:    analysis/mosek_reg_2_cache/
    Ignored:    analysis/mosek_reg_4_cache/
    Ignored:    analysis/mosek_reg_5_cache/
    Ignored:    analysis/mosek_reg_6_cache/
    Ignored:    analysis/mosek_reg_cache/
    Ignored:    analysis/pihat0_null_cache/
    Ignored:    analysis/plot_diagnostic_cache/
    Ignored:    analysis/poster_obayes17_cache/
    Ignored:    analysis/real_data_simulation_2_cache/
    Ignored:    analysis/real_data_simulation_3_cache/
    Ignored:    analysis/real_data_simulation_4_cache/
    Ignored:    analysis/real_data_simulation_5_cache/
    Ignored:    analysis/real_data_simulation_cache/
    Ignored:    analysis/rmosek_primal_dual_2_cache/
    Ignored:    analysis/rmosek_primal_dual_cache/
    Ignored:    analysis/seqgendiff_cache/
    Ignored:    analysis/simulated_correlated_null_2_cache/
    Ignored:    analysis/simulated_correlated_null_3_cache/
    Ignored:    analysis/simulated_correlated_null_cache/
    Ignored:    analysis/simulation_real_se_2_cache/
    Ignored:    analysis/simulation_real_se_cache/
    Ignored:    analysis/smemo_2_cache/
    Ignored:    data/LSI/
    Ignored:    docs/.DS_Store
    Ignored:    docs/figure/.DS_Store
    Ignored:    output/fig/
Unstaged changes:
    Deleted:    analysis/cash_plots_fdp.Rmd
Note that any generated files, e.g. HTML, png, CSS, etc., are not included in this status report because it is ok for generated content to have uncommitted changes.
library(edgeR)
library(limma)
library(sva)
library(cate)
library(vicar)
library(ashr)
library(pROC)
source("../code/gdash.R")
mat = readRDS("../data/liver.sim.rds")
counts_to_summary = function (counts, design) {
  dgecounts = edgeR::calcNormFactors(edgeR::DGEList(counts = counts, group = design[, 2]))
  v = limma::voom(dgecounts, design, plot = FALSE)
  lim = limma::lmFit(v)
  r.ebayes = limma::eBayes(lim)
  p = r.ebayes$p.value[, 2]
  t = r.ebayes$t[, 2]
  z = sign(t) * qnorm(1 - p/2)
  betahat = lim$coefficients[,2]
  sebetahat = betahat / z
  return (list(betahat = betahat, sebetahat = sebetahat, z = z))
}
one_sim <- function (mat, ngene, nsamp, pi0, sd) {
## add simulated signals
mat.sim = seqgendiff::poisthin(t(mat), nsamp = nsamp, ngene = ngene, gselect = "random", signal_params = list(mean = 0, sd = sd), prop_null = pi0)
counts = t(mat.sim$Y) ## ngene * nsamples matrix 
design = mat.sim$X
beta = mat.sim$beta
which_signal = (beta != 0)
## methods using summary statistics only
summary = counts_to_summary(counts, design)
fit.pvalue = (1 - pnorm(abs(summary$z))) * 2
fit.BH = p.adjust(fit.pvalue, method = "BH")
fit.qvalue = qvalue::qvalue(fit.pvalue)
fit.locfdr = locfdr::locfdr(summary$z, bre = round(ngene / 20), plot = 0)
fit.ash = ashr::ash(summary$betahat, summary$sebetahat, mixcompdist = "normal", method = "fdr")
fit.gdash = gdash(summary$betahat, summary$sebetahat)
fit.gdash.ash = ashr::ash(summary$betahat, summary$sebetahat, fixg = TRUE, g = fit.gdash$fitted_g)
## methods using data matrix
Y = t(log(counts + 0.5))
X = design
num_sv <- sva::num.sv(dat = t(Y), mod = X, method = "be")
mout <- vicar::mouthwash(Y = Y, X = X, k = num_sv, cov_of_interest = 2, include_intercept = FALSE)
cate_cate <- cate::cate.fit(X.primary = X[, 2, drop = FALSE], X.nuis = X[, -2, drop = FALSE], Y = Y, r = num_sv, adj.method = "rr")
sva_sva <- sva::sva(dat = t(Y), mod = X, mod0 = X[, -2, drop = FALSE], n.sv = num_sv)
X.sva <- cbind(X, sva_sva$sv)
lmout <- limma::lmFit(object = t(Y), design = X.sva)
eout  <- limma::ebayes(lmout)
svaout           <- list()
svaout$betahat   <- lmout$coefficients[, 2]
svaout$sebetahat <- lmout$stdev.unscaled[, 2] * sqrt(eout$s2.post)
svaout$pvalues   <- eout$p.value[, 2]
## result: roc auc
roc_res = c(
  pvalue = pROC::roc(response = which_signal, predictor = fit.pvalue)$auc,
  BH = pROC::roc(response = which_signal, predictor = fit.BH)$auc,
  qvalue = pROC::roc(response = which_signal, predictor = fit.qvalue$lfdr)$auc,
  locfdr = pROC::roc(response = which_signal, predictor = fit.locfdr$fdr)$auc,
  ash = pROC::roc(response = which_signal, predictor = ashr::get_lfdr(fit.ash))$auc,
  cash = pROC::roc(response = which_signal, predictor = ashr::get_lfdr(fit.gdash.ash))$auc,
  mouthwash = pROC::roc(response = which_signal, predictor = c(mout$result$lfdr))$auc,
  cate = pROC::roc(response = which_signal, predictor = c(cate_cate$beta.p.value))$auc,
  sva = pROC::roc(response = which_signal, predictor = c(svaout$pvalues))$auc
)
## ash with summary statistics
method_list <- list()
method_list$cate           <- list()
method_list$cate$betahat   <- c(cate_cate$beta)
method_list$cate$sebetahat <- c(sqrt(cate_cate$beta.cov.row * cate_cate$beta.cov.col) / sqrt(nrow(X)))
method_list$sva             <- list()
method_list$sva$betahat     <- c(svaout$betahat)
method_list$sva$sebetahat   <- c(svaout$sebetahat)
ashfit <- lapply(method_list, FUN = function(x) {ashr::ash(x$betahat, x$sebetahat, mixcompdist = "normal", method = "fdr")})
ashfit$ash <- fit.ash
ashfit$cash <- fit.gdash.ash
ashfit$mouthwash <- mout
ashfit = ashfit[c("ash", "cash", "mouthwash", "cate", "sva")]
## pi0
pi0_res <- sapply(ashfit, FUN = ashr::get_pi0)
pi0_res <- c(
  qvalue = fit.qvalue$pi0,
  locfdr = min(1, fit.locfdr$fp0["mlest", "p0"]),
  pi0_res
  )
## mse
mse_res <- sapply(ashfit, FUN = function(x) {mean((ashr::get_pm(x) - beta)^2)})
mse_res <- c(ols = mean((summary$betahat - beta)^2), mse_res)
## pFDP calibration
pFDP_alpha = function (alpha, tail_stat, true, obs) {
  return(1 - mean(true[tail_stat <= alpha]))
}
pFSP_alpha = function (alpha, tail_stat, true, obs) {
  return(mean(sign(obs[tail_stat <= alpha]) != sign(true[tail_stat <= alpha])))
}
tail_cali_list = function (alpha_list, tail_cali_alpha, tail_stat, true, obs) {
  sapply(alpha_list, tail_cali_alpha, tail_stat, true, obs)
}
alpha_list = seq(0, 0.2, by = 0.001)
pFDP <- sapply(
  ashfit, FUN = function (x) {
    tail_cali_list(alpha_list, pFDP_alpha, ashr::get_qvalue(x), which_signal, x$data$x)
  }
)
pFDP_BH = tail_cali_list(alpha_list, pFDP_alpha, fit.BH, which_signal, summary$betahat)
pFDP_qvalue = tail_cali_list(alpha_list, pFDP_alpha, fit.qvalue$qvalues, which_signal, summary$betahat)
pFDP_res = cbind(BH = pFDP_BH, qvalue = pFDP_qvalue, pFDP)
## pFSR calibration
pFSP_res <- sapply(
  ashfit, FUN = function (x) {
  tail_cali_list(alpha_list, pFSP_alpha, ashr::get_svalue(x), beta, x$data$x)
  }
)
return(list(pi = pi0_res, mse = mse_res, auc = roc_res, alpha = alpha_list, pFDP = pFDP_res, pFSP = pFSP_res))
}
n_sim = function (n, mat, ngene, nsamp, pi0, sd) {
  pi0_list = mse_list = auc_list = pFDP_list = pFSP_list = list()
  for (i in 1 : n) {
    one_res = one_sim(mat, ngene, nsamp, pi0, sd)
    pi0_list[[i]] = one_res$pi
    mse_list[[i]] = one_res$mse
    auc_list[[i]] = one_res$auc
    pFDP_list[[i]] = one_res$pFDP
    pFSP_list[[i]] = one_res$pFSP
  }
  alpha_vec = one_res$alpha
  pi0_mat = matrix(unlist(pi0_list), nrow = n, byrow = TRUE)
  colnames(pi0_mat) = names(pi0_list[[1]])
  mse_mat = matrix(unlist(mse_list), nrow = n, byrow = TRUE)
  colnames(mse_mat) = names(mse_list[[1]])
  auc_mat = matrix(unlist(auc_list), nrow = n, byrow = TRUE)
  colnames(auc_mat) = names(auc_list[[1]])
  pFDP_mat = list()
  for (j in 1 : ncol(pFDP_list[[1]])) {
    pFDP_mat[[j]] = t(sapply(pFDP_list, FUN = function(x) {rbind(x[, j])}))
  }
  names(pFDP_mat) = colnames(pFDP_list[[1]])
  pFSP_mat = list()
  for (j in 1 : ncol(pFSP_list[[1]])) {
    pFSP_mat[[j]] = t(sapply(pFSP_list, FUN = function(x) {rbind(x[, j])}))
  }
  names(pFSP_mat) = colnames(pFSP_list[[1]])
  return(list(pi0 = pi0_mat, mse = mse_mat, auc = auc_mat, alpha = alpha_vec, pFDP = pFDP_mat, pFSP = pFSP_mat))
}
sd = 0.6
pi0 = 0.9
ngene = 1e3
nsamp = 10
nsim = 100
set.seed(777)
system.time(res <- n_sim(nsim, mat, ngene, nsamp, pi0, sd))
Number of significant surrogate variables is:  2 
Iteration (out of 5 ):1  2  3  4  5  Number of significant surrogate variables is:  2 
Iteration (out of 5 ):1  2  3  4  5  Number of significant surrogate variables is:  2 
Iteration (out of 5 ):1  2  3  4  5  Number of significant surrogate variables is:  2 
Iteration (out of 5 ):1  2  3  4  5  
Warning in locfdr::locfdr(summary$z, bre = round(ngene/20), plot = 0): CM
estimation failed, middle of histogram non-normal
Number of significant surrogate variables is:  1 
Iteration (out of 5 ):1  2  3  4  5  Number of significant surrogate variables is:  2 
Iteration (out of 5 ):1  2  3  4  5  
Warning in locfdr::locfdr(summary$z, bre = round(ngene/20), plot = 0): CM
estimation failed, middle of histogram non-normal
Number of significant surrogate variables is:  2 
Iteration (out of 5 ):1  2  3  4  5  Number of significant surrogate variables is:  2 
Iteration (out of 5 ):1  2  3  4  5  
Warning in locfdr::locfdr(summary$z, bre = round(ngene/20), plot = 0): CM
estimation failed, middle of histogram non-normal
Number of significant surrogate variables is:  2 
Iteration (out of 5 ):1  2  3  4  5  Number of significant surrogate variables is:  2 
Iteration (out of 5 ):1  2  3  4  5  Number of significant surrogate variables is:  2 
Iteration (out of 5 ):1  2  3  4  5  Number of significant surrogate variables is:  3 
Iteration (out of 5 ):1  2  3  4  5  Number of significant surrogate variables is:  2 
Iteration (out of 5 ):1  2  3  4  5  
Warning in locfdr::locfdr(summary$z, bre = round(ngene/20), plot = 0): CM
estimation failed, middle of histogram non-normal
Number of significant surrogate variables is:  2 
Iteration (out of 5 ):1  2  3  4  5  Number of significant surrogate variables is:  3 
Iteration (out of 5 ):1  2  3  4  5  Number of significant surrogate variables is:  2 
Iteration (out of 5 ):1  2  3  4  5  Number of significant surrogate variables is:  2 
Iteration (out of 5 ):1  2  3  4  5  Number of significant surrogate variables is:  2 
Iteration (out of 5 ):1  2  3  4  5  Number of significant surrogate variables is:  2 
Iteration (out of 5 ):1  2  3  4  5  Number of significant surrogate variables is:  3 
Iteration (out of 5 ):1  2  3  4  5  Number of significant surrogate variables is:  2 
Iteration (out of 5 ):1  2  3  4  5  Number of significant surrogate variables is:  3 
Iteration (out of 5 ):1  2  3  4  5  Number of significant surrogate variables is:  2 
Iteration (out of 5 ):1  2  3  4  5  
Warning in locfdr::locfdr(summary$z, bre = round(ngene/20), plot = 0): CM
estimation failed, middle of histogram non-normal
Number of significant surrogate variables is:  1 
Iteration (out of 5 ):1  2  3  4  5  Number of significant surrogate variables is:  2 
Iteration (out of 5 ):1  2  3  4  5  Number of significant surrogate variables is:  3 
Iteration (out of 5 ):1  2  3  4  5  Number of significant surrogate variables is:  2 
Iteration (out of 5 ):1  2  3  4  5  
Warning in locfdr::locfdr(summary$z, bre = round(ngene/20), plot = 0): CM
estimation failed, middle of histogram non-normal
Number of significant surrogate variables is:  2 
Iteration (out of 5 ):1  2  3  4  5  
Warning in locfdr::locfdr(summary$z, bre = round(ngene/20), plot = 0): CM
estimation failed, middle of histogram non-normal
Number of significant surrogate variables is:  2 
Iteration (out of 5 ):1  2  3  4  5  Number of significant surrogate variables is:  2 
Iteration (out of 5 ):1  2  3  4  5  Number of significant surrogate variables is:  2 
Iteration (out of 5 ):1  2  3  4  5  Number of significant surrogate variables is:  2 
Iteration (out of 5 ):1  2  3  4  5  Number of significant surrogate variables is:  1 
Iteration (out of 5 ):1  2  3  4  5  Number of significant surrogate variables is:  2 
Iteration (out of 5 ):1  2  3  4  5  Number of significant surrogate variables is:  1 
Iteration (out of 5 ):1  2  3  4  5  Number of significant surrogate variables is:  3 
Iteration (out of 5 ):1  2  3  4  5  Number of significant surrogate variables is:  1 
Iteration (out of 5 ):1  2  3  4  5  Number of significant surrogate variables is:  3 
Iteration (out of 5 ):1  2  3  4  5  Number of significant surrogate variables is:  3 
Iteration (out of 5 ):1  2  3  4  5  Number of significant surrogate variables is:  2 
Iteration (out of 5 ):1  2  3  4  5  Number of significant surrogate variables is:  2 
Iteration (out of 5 ):1  2  3  4  5  Number of significant surrogate variables is:  2 
Iteration (out of 5 ):1  2  3  4  5  Number of significant surrogate variables is:  2 
Iteration (out of 5 ):1  2  3  4  5  Number of significant surrogate variables is:  2 
Iteration (out of 5 ):1  2  3  4  5  Number of significant surrogate variables is:  1 
Iteration (out of 5 ):1  2  3  4  5  Number of significant surrogate variables is:  2 
Iteration (out of 5 ):1  2  3  4  5  Number of significant surrogate variables is:  2 
Iteration (out of 5 ):1  2  3  4  5  Number of significant surrogate variables is:  2 
Iteration (out of 5 ):1  2  3  4  5  Number of significant surrogate variables is:  2 
Iteration (out of 5 ):1  2  3  4  5  Number of significant surrogate variables is:  2 
Iteration (out of 5 ):1  2  3  4  5  Number of significant surrogate variables is:  2 
Iteration (out of 5 ):1  2  3  4  5  Number of significant surrogate variables is:  2 
Iteration (out of 5 ):1  2  3  4  5  Number of significant surrogate variables is:  2 
Iteration (out of 5 ):1  2  3  4  5  Number of significant surrogate variables is:  1 
Iteration (out of 5 ):1  2  3  4  5  
Warning in locfdr::locfdr(summary$z, bre = round(ngene/20), plot = 0): CM
estimation failed, middle of histogram non-normal
Number of significant surrogate variables is:  2 
Iteration (out of 5 ):1  2  3  4  5  Number of significant surrogate variables is:  2 
Iteration (out of 5 ):1  2  3  4  5  
Warning in locfdr::locfdr(summary$z, bre = round(ngene/20), plot = 0): CM
estimation failed, middle of histogram non-normal
Warning in log(rowSums(sweep(x = exp(ldmix - ldmax), MARGIN = 2, STATS =
pi_vals, : NaNs produced
Number of significant surrogate variables is:  2 
Iteration (out of 5 ):1  2  3  4  5  Number of significant surrogate variables is:  2 
Iteration (out of 5 ):1  2  3  4  5  Number of significant surrogate variables is:  2 
Iteration (out of 5 ):1  2  3  4  5  Number of significant surrogate variables is:  3 
Iteration (out of 5 ):1  2  3  4  5  Number of significant surrogate variables is:  3 
Iteration (out of 5 ):1  2  3  4  5  
Warning in locfdr::locfdr(summary$z, bre = round(ngene/20), plot = 0): CM
estimation failed, middle of histogram non-normal
Number of significant surrogate variables is:  3 
Iteration (out of 5 ):1  2  3  4  5  Number of significant surrogate variables is:  2 
Iteration (out of 5 ):1  2  3  4  5  Number of significant surrogate variables is:  3 
Iteration (out of 5 ):1  2  3  4  5  Number of significant surrogate variables is:  2 
Iteration (out of 5 ):1  2  3  4  5  Number of significant surrogate variables is:  2 
Iteration (out of 5 ):1  2  3  4  5  Number of significant surrogate variables is:  2 
Iteration (out of 5 ):1  2  3  4  5  Number of significant surrogate variables is:  2 
Iteration (out of 5 ):1  2  3  4  5  
Warning in locfdr::locfdr(summary$z, bre = round(ngene/20), plot = 0): CM
estimation failed, middle of histogram non-normal
Number of significant surrogate variables is:  3 
Iteration (out of 5 ):1  2  3  4  5  Number of significant surrogate variables is:  3 
Iteration (out of 5 ):1  2  3  4  5  Number of significant surrogate variables is:  2 
Iteration (out of 5 ):1  2  3  4  5  
Warning in locfdr::locfdr(summary$z, bre = round(ngene/20), plot = 0): CM
estimation failed, middle of histogram non-normal
Number of significant surrogate variables is:  2 
Iteration (out of 5 ):1  2  3  4  5  
Warning in locfdr::locfdr(summary$z, bre = round(ngene/20), plot = 0): CM
estimation failed, middle of histogram non-normal
Number of significant surrogate variables is:  3 
Iteration (out of 5 ):1  2  3  4  5  Number of significant surrogate variables is:  3 
Iteration (out of 5 ):1  2  3  4  5  Number of significant surrogate variables is:  2 
Iteration (out of 5 ):1  2  3  4  5  
Warning in locfdr::locfdr(summary$z, bre = round(ngene/20), plot = 0): CM
estimation failed, middle of histogram non-normal
Number of significant surrogate variables is:  2 
Iteration (out of 5 ):1  2  3  4  5  
Warning in locfdr::locfdr(summary$z, bre = round(ngene/20), plot = 0): CM
estimation failed, middle of histogram non-normal
Number of significant surrogate variables is:  2 
Iteration (out of 5 ):1  2  3  4  5  Number of significant surrogate variables is:  2 
Iteration (out of 5 ):1  2  3  4  5  Number of significant surrogate variables is:  2 
Iteration (out of 5 ):1  2  3  4  5  Number of significant surrogate variables is:  3 
Iteration (out of 5 ):1  2  3  4  5  
Warning in locfdr::locfdr(summary$z, bre = round(ngene/20), plot = 0): CM
estimation failed, middle of histogram non-normal
Number of significant surrogate variables is:  3 
Iteration (out of 5 ):1  2  3  4  5  Number of significant surrogate variables is:  2 
Iteration (out of 5 ):1  2  3  4  5  Number of significant surrogate variables is:  2 
Iteration (out of 5 ):1  2  3  4  5  
Warning in locfdr::locfdr(summary$z, bre = round(ngene/20), plot = 0): CM
estimation failed, middle of histogram non-normal
Number of significant surrogate variables is:  2 
Iteration (out of 5 ):1  2  3  4  5  Number of significant surrogate variables is:  2 
Iteration (out of 5 ):1  2  3  4  5  Number of significant surrogate variables is:  2 
Iteration (out of 5 ):1  2  3  4  5  
Warning in locfdr::locfdr(summary$z, bre = round(ngene/20), plot = 0): CM
estimation failed, middle of histogram non-normal
Number of significant surrogate variables is:  2 
Iteration (out of 5 ):1  2  3  4  5  Number of significant surrogate variables is:  3 
Iteration (out of 5 ):1  2  3  4  5  Number of significant surrogate variables is:  2 
Iteration (out of 5 ):1  2  3  4  5  Number of significant surrogate variables is:  2 
Iteration (out of 5 ):1  2  3  4  5  Number of significant surrogate variables is:  2 
Iteration (out of 5 ):1  2  3  4  5  Number of significant surrogate variables is:  2 
Iteration (out of 5 ):1  2  3  4  5  Number of significant surrogate variables is:  2 
Iteration (out of 5 ):1  2  3  4  5  Number of significant surrogate variables is:  2 
Iteration (out of 5 ):1  2  3  4  5  Number of significant surrogate variables is:  2 
Iteration (out of 5 ):1  2  3  4  5  Number of significant surrogate variables is:  2 
Iteration (out of 5 ):1  2  3  4  5  Number of significant surrogate variables is:  2 
Iteration (out of 5 ):1  2  3  4  5  Number of significant surrogate variables is:  3 
Iteration (out of 5 ):1  2  3  4  5  Number of significant surrogate variables is:  2 
Iteration (out of 5 ):1  2  3  4  5  Number of significant surrogate variables is:  3 
Iteration (out of 5 ):1  2  3  4  5  
    user   system  elapsed 
1703.469  381.549 2135.044 

| Version | Author | Date | 
|---|---|---|
| 0f36d99 | LSun | 2017-12-21 | 
| f92c0db | LSun | 2017-06-17 | 

| Version | Author | Date | 
|---|---|---|
| 0f36d99 | LSun | 2017-12-21 | 
| f92c0db | LSun | 2017-06-17 | 

| Version | Author | Date | 
|---|---|---|
| 0f36d99 | LSun | 2017-12-21 | 
| f92c0db | LSun | 2017-06-17 | 

| Version | Author | Date | 
|---|---|---|
| 0f36d99 | LSun | 2017-12-21 | 
| f92c0db | LSun | 2017-06-17 | 

| Version | Author | Date | 
|---|---|---|
| 0f36d99 | LSun | 2017-12-21 | 
| f92c0db | LSun | 2017-06-17 | 

| Version | Author | Date | 
|---|---|---|
| 0f36d99 | LSun | 2017-12-21 | 
| f92c0db | LSun | 2017-06-17 | 

| Version | Author | Date | 
|---|---|---|
| 0f36d99 | LSun | 2017-12-21 | 
| f92c0db | LSun | 2017-06-17 | 
sessionInfo()
R version 3.4.3 (2017-11-30)
Platform: x86_64-apple-darwin15.6.0 (64-bit)
Running under: macOS High Sierra 10.13.4
Matrix products: default
BLAS: /Library/Frameworks/R.framework/Versions/3.4/Resources/lib/libRblas.0.dylib
LAPACK: /Library/Frameworks/R.framework/Versions/3.4/Resources/lib/libRlapack.dylib
locale:
[1] en_US.UTF-8/en_US.UTF-8/en_US.UTF-8/C/en_US.UTF-8/en_US.UTF-8
attached base packages:
[1] stats     graphics  grDevices utils     datasets  methods   base     
other attached packages:
 [1] Rmosek_8.0.69       PolynomF_1.0-1      CVXR_0.95          
 [4] REBayes_1.2         Matrix_1.2-12       SQUAREM_2017.10-1  
 [7] EQL_1.0-0           ttutils_1.0-1       pROC_1.10.0        
[10] ashr_2.2-2          vicar_0.1.6         cate_1.0.4         
[13] sva_3.26.0          BiocParallel_1.12.0 genefilter_1.60.0  
[16] mgcv_1.8-22         nlme_3.1-131        edgeR_3.20.2       
[19] limma_3.34.4       
loaded via a namespace (and not attached):
 [1] Biobase_2.38.0       svd_0.4.1            bit64_0.9-7         
 [4] splines_3.4.3        foreach_1.4.4        ECOSolveR_0.4       
 [7] R.utils_2.6.0        stats4_3.4.3         blob_1.1.0          
[10] yaml_2.1.18          pillar_1.0.1         RSQLite_2.0         
[13] backports_1.1.2      lattice_0.20-35      digest_0.6.15       
[16] colorspace_1.3-2     htmltools_0.3.6      R.oo_1.21.0         
[19] plyr_1.8.4           XML_3.98-1.9         esaBcv_1.2.1        
[22] xtable_1.8-2         corpcor_1.6.9        scales_0.5.0        
[25] whisker_0.3-2        scs_1.1-1            git2r_0.21.0        
[28] tibble_1.4.1         annotate_1.56.1      gmp_0.5-13.1        
[31] IRanges_2.12.0       ggplot2_2.2.1        BiocGenerics_0.24.0 
[34] lazyeval_0.2.1       Rmpfr_0.6-1          survival_2.41-3     
[37] magrittr_1.5         memoise_1.1.0        evaluate_0.10.1     
[40] R.methodsS3_1.7.1    doParallel_1.0.11    MASS_7.3-47         
[43] truncnorm_1.0-7      tools_3.4.3          matrixStats_0.52.2  
[46] stringr_1.3.0        S4Vectors_0.16.0     munsell_0.4.3       
[49] locfit_1.5-9.1       AnnotationDbi_1.40.0 compiler_3.4.3      
[52] rlang_0.1.6          grid_3.4.3           leapp_1.2           
[55] RCurl_1.95-4.8       iterators_1.0.9      bitops_1.0-6        
[58] rmarkdown_1.9        gtable_0.2.0         codetools_0.2-15    
[61] DBI_0.7              R6_2.2.2             ruv_0.9.6           
[64] knitr_1.20           bit_1.1-12           workflowr_1.0.1     
[67] rprojroot_1.3-2      stringi_1.1.6        pscl_1.5.2          
[70] parallel_3.4.3       Rcpp_0.12.16        
This reproducible R Markdown analysis was created with workflowr 1.0.1