Knockoff on Small SignalsLast updated: 2018-05-12
workflowr checks: (Click a bullet for more information) ✔ R Markdown file: up-to-date 
Great! Since the R Markdown file has been committed to the Git repository, you know the exact version of the code that produced these results.
 ✔ Environment: empty 
Great job! The global environment was empty. Objects defined in the global environment can affect the analysis in your R Markdown file in unknown ways. For reproduciblity it’s best to always run the code in an empty environment.
 ✔ Seed: 
set.seed(12345) 
The command set.seed(12345) was run prior to running the code in the R Markdown file. Setting a seed ensures that any results that rely on randomness, e.g. subsampling or permutations, are reproducible.
 ✔ Session information: recorded 
Great job! Recording the operating system, R version, and package versions is critical for reproducibility.
 ✔ Repository version: ddf9062 
wflow_publish or wflow_git_commit). workflowr only checks the R Markdown file, but you know if there are other scripts or data files that it depends on. Below is the status of the Git repository when the results were generated:
Ignored files:
    Ignored:    .DS_Store
    Ignored:    .Rhistory
    Ignored:    .Rproj.user/
    Ignored:    analysis/.DS_Store
    Ignored:    analysis/BH_robustness_cache/
    Ignored:    analysis/FDR_Null_cache/
    Ignored:    analysis/FDR_null_betahat_cache/
    Ignored:    analysis/Rmosek_cache/
    Ignored:    analysis/StepDown_cache/
    Ignored:    analysis/alternative2_cache/
    Ignored:    analysis/alternative_cache/
    Ignored:    analysis/ash_gd_cache/
    Ignored:    analysis/average_cor_gtex_2_cache/
    Ignored:    analysis/average_cor_gtex_cache/
    Ignored:    analysis/brca_cache/
    Ignored:    analysis/cash_deconv_cache/
    Ignored:    analysis/cash_fdr_1_cache/
    Ignored:    analysis/cash_fdr_2_cache/
    Ignored:    analysis/cash_fdr_3_cache/
    Ignored:    analysis/cash_fdr_4_cache/
    Ignored:    analysis/cash_fdr_5_cache/
    Ignored:    analysis/cash_fdr_6_cache/
    Ignored:    analysis/cash_plots_cache/
    Ignored:    analysis/cash_sim_1_cache/
    Ignored:    analysis/cash_sim_2_cache/
    Ignored:    analysis/cash_sim_3_cache/
    Ignored:    analysis/cash_sim_4_cache/
    Ignored:    analysis/cash_sim_5_cache/
    Ignored:    analysis/cash_sim_6_cache/
    Ignored:    analysis/cash_sim_7_cache/
    Ignored:    analysis/correlated_z_2_cache/
    Ignored:    analysis/correlated_z_3_cache/
    Ignored:    analysis/correlated_z_cache/
    Ignored:    analysis/create_null_cache/
    Ignored:    analysis/cutoff_null_cache/
    Ignored:    analysis/design_matrix_2_cache/
    Ignored:    analysis/design_matrix_cache/
    Ignored:    analysis/diagnostic_ash_cache/
    Ignored:    analysis/diagnostic_correlated_z_2_cache/
    Ignored:    analysis/diagnostic_correlated_z_3_cache/
    Ignored:    analysis/diagnostic_correlated_z_cache/
    Ignored:    analysis/diagnostic_plot_2_cache/
    Ignored:    analysis/diagnostic_plot_cache/
    Ignored:    analysis/efron_leukemia_cache/
    Ignored:    analysis/fitting_normal_cache/
    Ignored:    analysis/gaussian_derivatives_2_cache/
    Ignored:    analysis/gaussian_derivatives_3_cache/
    Ignored:    analysis/gaussian_derivatives_4_cache/
    Ignored:    analysis/gaussian_derivatives_5_cache/
    Ignored:    analysis/gaussian_derivatives_cache/
    Ignored:    analysis/gd-ash_cache/
    Ignored:    analysis/gd_delta_cache/
    Ignored:    analysis/gd_lik_2_cache/
    Ignored:    analysis/gd_lik_cache/
    Ignored:    analysis/gd_w_cache/
    Ignored:    analysis/knockoff_10_cache/
    Ignored:    analysis/knockoff_2_cache/
    Ignored:    analysis/knockoff_3_cache/
    Ignored:    analysis/knockoff_4_cache/
    Ignored:    analysis/knockoff_5_cache/
    Ignored:    analysis/knockoff_6_cache/
    Ignored:    analysis/knockoff_7_cache/
    Ignored:    analysis/knockoff_8_cache/
    Ignored:    analysis/knockoff_9_cache/
    Ignored:    analysis/knockoff_cache/
    Ignored:    analysis/knockoff_var_cache/
    Ignored:    analysis/marginal_z_alternative_cache/
    Ignored:    analysis/marginal_z_cache/
    Ignored:    analysis/mosek_reg_2_cache/
    Ignored:    analysis/mosek_reg_4_cache/
    Ignored:    analysis/mosek_reg_5_cache/
    Ignored:    analysis/mosek_reg_6_cache/
    Ignored:    analysis/mosek_reg_cache/
    Ignored:    analysis/pihat0_null_cache/
    Ignored:    analysis/plot_diagnostic_cache/
    Ignored:    analysis/poster_obayes17_cache/
    Ignored:    analysis/real_data_simulation_2_cache/
    Ignored:    analysis/real_data_simulation_3_cache/
    Ignored:    analysis/real_data_simulation_4_cache/
    Ignored:    analysis/real_data_simulation_5_cache/
    Ignored:    analysis/real_data_simulation_cache/
    Ignored:    analysis/rmosek_primal_dual_2_cache/
    Ignored:    analysis/rmosek_primal_dual_cache/
    Ignored:    analysis/seqgendiff_cache/
    Ignored:    analysis/simulated_correlated_null_2_cache/
    Ignored:    analysis/simulated_correlated_null_3_cache/
    Ignored:    analysis/simulated_correlated_null_cache/
    Ignored:    analysis/simulation_real_se_2_cache/
    Ignored:    analysis/simulation_real_se_cache/
    Ignored:    analysis/smemo_2_cache/
    Ignored:    data/LSI/
    Ignored:    docs/.DS_Store
    Ignored:    docs/figure/.DS_Store
    Ignored:    output/fig/
Unstaged changes:
    Deleted:    analysis/cash_plots_fdp.Rmd
Note that any generated files, e.g. HTML, png, CSS, etc., are not included in this status report because it is ok for generated content to have uncommitted changes.
| File | Version | Author | Date | Message | 
|---|---|---|---|---|
| rmd | cc0ab83 | Lei Sun | 2018-05-11 | update | 
| html | 6af9b53 | LSun | 2018-04-03 | Build site. | 
| rmd | 5bce84a | LSun | 2018-04-03 | wflow_publish(c(“knockoff_6.rmd”, “knockoff_var.rmd”)) | 
| html | 389feab | LSun | 2018-02-16 | Build site. | 
| rmd | 43d68f5 | Lei Sun | 2018-02-16 | small signal plots | 
| html | af9e532 | LSun | 2018-02-16 | Build site. | 
| rmd | 9c5dc8f | Lei Sun | 2018-02-16 | small signals | 
| rmd | e6884e4 | LSun | 2018-02-16 | small signals | 
| rmd | c1d4306 | Lei Sun | 2018-02-16 | better plots | 
| html | 3151e07 | LSun | 2018-02-15 | Build site. | 
| rmd | c586cb3 | LSun | 2018-02-15 | wflow_publish(“analysis/knockoff_6.rmd”) | 
| rmd | c926d34 | Lei Sun | 2018-02-14 | small signals | 
| html | 0033db5 | LSun | 2018-02-14 | Build site. | 
| rmd | c9c60cc | LSun | 2018-02-14 | wflow_publish(“analysis/knockoff_6.rmd”) | 
| html | ab63fb3 | LSun | 2018-02-08 | Build site. | 
| rmd | 1a2b7bf | LSun | 2018-02-08 | wflow_publish(c(“analysis/knockoff_5.rmd”, | 
| rmd | a17136e | Lei Sun | 2018-02-07 | small signals | 
| html | fe9b5df | LSun | 2018-02-07 | Build site. | 
| rmd | 7f18ee7 | LSun | 2018-02-07 | wflow_publish(c(“analysis/knockoff_5.rmd”, “analysis/knockoff_6.rmd”)) | 
| html | 0d44045 | LSun | 2018-02-06 | Build site. | 
| rmd | ee112bc | LSun | 2018-02-06 | wflow_publish(c(“analysis/knockoff_5.rmd”, “analysis/knockoff_6.rmd”, | 
In the Knockoff paper simulations, \(\beta\)’s are either \(0\) or \(A\). Here we are replicating the results, and investigating how well Knockoff deal with small signals.
In the following simulations, we always have \(n = 3000\), \(p = 1000\), For a certain \(\beta\), \(Y_n \sim N(X_{n\times p}\beta_p, I_n)\). Out of \(p = 1000\) \(\beta_j\)’s, here are three scenarios.
Knockoff paper)Loading required package: foreach
Loading required package: iterators
Loading required package: parallel
n <- 3000
p <- 1000
k <- 50
q <- 0.1
A <- 3.5
X <- matrix(rnorm(n * p), n , p)
X <- svd(X)$u
Xk <- knockoff::create.fixed(X)
Xk <- Xk$Xk

| Version | Author | Date | 
|---|---|---|
| ab63fb3 | LSun | 2018-02-08 | 
X <- matrix(rnorm(n * p), n , p)
X <- svd(X)$u
Xk <- knockoff::create.fixed(X)
Xk <- Xk$Xk

\(X\) has random orthonormal columns
| FDP.BH | FDP.Knockoff | FDP.Knockoff.Plus | Power.BH | Power.Knockoff | Power.Knockoff.Plus | Power.Large.BH | Power.Large.Knockoff | Power.Large.Knockoff.Plus | Power.Small.BH | Power.Small.Knockoff | Power.Small.Knockoff.Plus | 
|---|---|---|---|---|---|---|---|---|---|---|---|
| 0.0979 | 0.1082 | 0.0863 | 0.7339 | 0.7329 | 0.6939 | 0.7339 | 0.7329 | 0.6939 | NA | NA | NA | 
| 0.0847 | 0.0921 | 0.0795 | 0.3836 | 0.3867 | 0.3691 | 0.7791 | 0.7799 | 0.7555 | 0.1858 | 0.1901 | 0.176 | 
| 0.0756 | 0.0817 | 0.0727 | 0.3294 | 0.3340 | 0.3195 | 0.8116 | 0.8122 | 0.7932 | 0.2088 | 0.2145 | 0.201 | 

| Version | Author | Date | 
|---|---|---|
| af9e532 | LSun | 2018-02-16 | 
| fe9b5df | LSun | 2018-02-07 | 

| Version | Author | Date | 
|---|---|---|
| af9e532 | LSun | 2018-02-16 | 

| Version | Author | Date | 
|---|---|---|
| af9e532 | LSun | 2018-02-16 | 

| Version | Author | Date | 
|---|---|---|
| 389feab | LSun | 2018-02-16 | 
| af9e532 | LSun | 2018-02-16 | 

| Version | Author | Date | 
|---|---|---|
| 3151e07 | LSun | 2018-02-15 | 

| Version | Author | Date | 
|---|---|---|
| 3151e07 | LSun | 2018-02-15 | 
| 0033db5 | LSun | 2018-02-14 | 
| ab63fb3 | LSun | 2018-02-08 | 

| Version | Author | Date | 
|---|---|---|
| 3151e07 | LSun | 2018-02-15 | 
| 0033db5 | LSun | 2018-02-14 | 
| ab63fb3 | LSun | 2018-02-08 | 

\(X_{n \times p}\) has independent columns simulated from \(N(0, 1)\) and then normalized to have \(\|X_j\|_2^2 \equiv 1\).
X <- matrix(rnorm(n * p), n , p)
X <- t(t(X) / sqrt(colSums(X^2)))
Xk <- knockoff::create.fixed(X)
Xk <- Xk$Xk
X <- matrix(rnorm(n * p), n , p)
X <- t(t(X) / sqrt(colSums(X^2)))
Xk <- knockoff::create.fixed(X)
Xk <- Xk$Xk
X <- matrix(rnorm(n * p), n , p)
X <- t(t(X) / sqrt(colSums(X^2)))
Xk <- knockoff::create.fixed(X)
Xk <- Xk$Xk
| FDP.BH | FDP.Knockoff | FDP.Knockoff.Plus | Power.BH | Power.Knockoff | Power.Knockoff.Plus | Power.Large.BH | Power.Large.Knockoff | Power.Large.Knockoff.Plus | Power.Small.BH | Power.Small.Knockoff | Power.Small.Knockoff.Plus | 
|---|---|---|---|---|---|---|---|---|---|---|---|
| 0.0950 | 0.0713 | 0.0483 | 0.4344 | 0.5399 | 0.4135 | 0.4344 | 0.5399 | 0.4135 | NA | NA | NA | 
| 0.0828 | 0.0587 | 0.0397 | 0.2180 | 0.2106 | 0.1584 | 0.4789 | 0.4820 | 0.3699 | 0.0876 | 0.0749 | 0.0527 | 
| 0.0747 | 0.0456 | 0.0325 | 0.1838 | 0.1613 | 0.1243 | 0.5135 | 0.4372 | 0.3432 | 0.1013 | 0.0923 | 0.0696 | 

| Version | Author | Date | 
|---|---|---|
| af9e532 | LSun | 2018-02-16 | 

| Version | Author | Date | 
|---|---|---|
| af9e532 | LSun | 2018-02-16 | 

| Version | Author | Date | 
|---|---|---|
| af9e532 | LSun | 2018-02-16 | 

| Version | Author | Date | 
|---|---|---|
| 389feab | LSun | 2018-02-16 | 
| af9e532 | LSun | 2018-02-16 | 

| Version | Author | Date | 
|---|---|---|
| 3151e07 | LSun | 2018-02-15 | 

| Version | Author | Date | 
|---|---|---|
| 3151e07 | LSun | 2018-02-15 | 

| Version | Author | Date | 
|---|---|---|
| 3151e07 | LSun | 2018-02-15 | 

| Version | Author | Date | 
|---|---|---|
| 3151e07 | LSun | 2018-02-15 | 
\(X_{n \times p}\) has correlation \(\Sigma_{ij} = \rho^{|i - j|}\). Each row is independently \(N(0, \Sigma)\) and then normalized to have \(\|X_j\|_2^2 \equiv 1\).
rho <- 0.25
Sigma <- toeplitz(rho^(0 : (p - 1)))
X <- matrix(rnorm(n * p), n , p)
X <- t(t(X) / sqrt(colSums(X^2)))
X <- X %*% chol(Sigma)
Xk <- knockoff::create.fixed(X)
Xk <- Xk$Xk
X <- matrix(rnorm(n * p), n , p)
X <- t(t(X) / sqrt(colSums(X^2)))
X <- X %*% chol(Sigma)
Xk <- knockoff::create.fixed(X)
Xk <- Xk$Xk
X <- matrix(rnorm(n * p), n , p)
X <- t(t(X) / sqrt(colSums(X^2)))
X <- X %*% chol(Sigma)
Xk <- knockoff::create.fixed(X)
Xk <- Xk$Xk
| FDP.BH | FDP.Knockoff | FDP.Knockoff.Plus | Power.BH | Power.Knockoff | Power.Knockoff.Plus | Power.Large.BH | Power.Large.Knockoff | Power.Large.Knockoff.Plus | Power.Small.BH | Power.Small.Knockoff | Power.Small.Knockoff.Plus | 
|---|---|---|---|---|---|---|---|---|---|---|---|
| 0.0957 | 0.0563 | 0.0344 | 0.3367 | 0.4985 | 0.3484 | 0.3367 | 0.4985 | 0.3484 | NA | NA | NA | 
| 0.0824 | 0.0407 | 0.0249 | 0.1710 | 0.1656 | 0.1070 | 0.3820 | 0.3620 | 0.2348 | 0.0655 | 0.0673 | 0.0431 | 
| 0.0738 | 0.0258 | 0.0170 | 0.1441 | 0.1393 | 0.0988 | 0.4137 | 0.4040 | 0.2893 | 0.0767 | 0.0731 | 0.0511 | 

| Version | Author | Date | 
|---|---|---|
| af9e532 | LSun | 2018-02-16 | 

| Version | Author | Date | 
|---|---|---|
| af9e532 | LSun | 2018-02-16 | 

| Version | Author | Date | 
|---|---|---|
| af9e532 | LSun | 2018-02-16 | 

| Version | Author | Date | 
|---|---|---|
| 389feab | LSun | 2018-02-16 | 
| af9e532 | LSun | 2018-02-16 | 

| Version | Author | Date | 
|---|---|---|
| 3151e07 | LSun | 2018-02-15 | 

| Version | Author | Date | 
|---|---|---|
| 3151e07 | LSun | 2018-02-15 | 

| Version | Author | Date | 
|---|---|---|
| 3151e07 | LSun | 2018-02-15 | 

| Version | Author | Date | 
|---|---|---|
| 3151e07 | LSun | 2018-02-15 | 
\(X_{n \times p}\) has independent columns simulated from \(N(0, (1/\sqrt n)^2)\) so they are roughly normalized.
Loaded glmnet 2.0-13
| FDP.BH | FDP.Knockoff | FDP.Knockoff.Plus | Power.BH | Power.Knockoff | Power.Knockoff.Plus | Power.Large.BH | Power.Large.Knockoff | Power.Large.Knockoff.Plus | Power.Small.BH | Power.Small.Knockoff | Power.Small.Knockoff.Plus | 
|---|---|---|---|---|---|---|---|---|---|---|---|
| 0.0903 | 0.1164 | 0.0935 | 0.4312 | 0.6632 | 0.6124 | 0.4312 | 0.6632 | 0.6124 | NA | NA | NA | 
| 0.0782 | 0.1150 | 0.0929 | 0.2213 | 0.3417 | 0.3161 | 0.4808 | 0.6924 | 0.6526 | 0.0916 | 0.1664 | 0.1478 | 
| 0.0693 | 0.0923 | 0.0806 | 0.1803 | 0.2731 | 0.2573 | 0.5156 | 0.6962 | 0.6718 | 0.0965 | 0.1674 | 0.1536 | 

| Version | Author | Date | 
|---|---|---|
| 6af9b53 | LSun | 2018-04-03 | 

| Version | Author | Date | 
|---|---|---|
| 6af9b53 | LSun | 2018-04-03 | 

| Version | Author | Date | 
|---|---|---|
| 6af9b53 | LSun | 2018-04-03 | 

| Version | Author | Date | 
|---|---|---|
| 6af9b53 | LSun | 2018-04-03 | 

| Version | Author | Date | 
|---|---|---|
| 6af9b53 | LSun | 2018-04-03 | 

| Version | Author | Date | 
|---|---|---|
| 6af9b53 | LSun | 2018-04-03 | 

| Version | Author | Date | 
|---|---|---|
| 6af9b53 | LSun | 2018-04-03 | 

| Version | Author | Date | 
|---|---|---|
| 6af9b53 | LSun | 2018-04-03 | 
\(X_{n \times p}\) has correlation \(\Sigma_{ij} = \rho^{|i - j|}\). Each row is independently \(N(0, \frac1n\Sigma)\).
rho <- 0.5
Sigma <- toeplitz(rho^(0 : (p - 1)))
Sigma.5 <- chol(Sigma)
Cov.X <- Sigma / n
| FDP.BH | FDP.Knockoff | FDP.Knockoff.Plus | Power.BH | Power.Knockoff | Power.Knockoff.Plus | Power.Large.BH | Power.Large.Knockoff | Power.Large.Knockoff.Plus | Power.Small.BH | Power.Small.Knockoff | Power.Small.Knockoff.Plus | 
|---|---|---|---|---|---|---|---|---|---|---|---|
| 0.1199 | 0.1230 | 0.0946 | 0.1268 | 0.6036 | 0.5196 | 0.1268 | 0.6036 | 0.5196 | NA | NA | NA | 
| 0.0840 | 0.0971 | 0.0800 | 0.0635 | 0.2759 | 0.2469 | 0.1504 | 0.5784 | 0.5246 | 0.0200 | 0.1246 | 0.1081 | 
| 0.1562 | 0.0671 | 0.0467 | 0.0944 | 0.1253 | 0.0953 | 0.2850 | 0.3564 | 0.2782 | 0.0467 | 0.0676 | 0.0496 | 

| Version | Author | Date | 
|---|---|---|
| 6af9b53 | LSun | 2018-04-03 | 

| Version | Author | Date | 
|---|---|---|
| 6af9b53 | LSun | 2018-04-03 | 

| Version | Author | Date | 
|---|---|---|
| 6af9b53 | LSun | 2018-04-03 | 

| Version | Author | Date | 
|---|---|---|
| 6af9b53 | LSun | 2018-04-03 | 

| Version | Author | Date | 
|---|---|---|
| 6af9b53 | LSun | 2018-04-03 | 

| Version | Author | Date | 
|---|---|---|
| 6af9b53 | LSun | 2018-04-03 | 

| Version | Author | Date | 
|---|---|---|
| 6af9b53 | LSun | 2018-04-03 | 

| Version | Author | Date | 
|---|---|---|
| 6af9b53 | LSun | 2018-04-03 | 
sessionInfo()
R version 3.4.3 (2017-11-30)
Platform: x86_64-apple-darwin15.6.0 (64-bit)
Running under: macOS High Sierra 10.13.4
Matrix products: default
BLAS: /Library/Frameworks/R.framework/Versions/3.4/Resources/lib/libRblas.0.dylib
LAPACK: /Library/Frameworks/R.framework/Versions/3.4/Resources/lib/libRlapack.dylib
locale:
[1] en_US.UTF-8/en_US.UTF-8/en_US.UTF-8/C/en_US.UTF-8/en_US.UTF-8
attached base packages:
[1] parallel  stats     graphics  grDevices utils     datasets  methods  
[8] base     
other attached packages:
[1] knitr_1.20      lattice_0.20-35 doMC_1.3.5      iterators_1.0.9
[5] foreach_1.4.4   ggplot2_2.2.1   reshape2_1.4.3  Matrix_1.2-12  
[9] knockoff_0.3.0 
loaded via a namespace (and not attached):
 [1] Rcpp_0.12.16      compiler_3.4.3    pillar_1.0.1     
 [4] git2r_0.21.0      plyr_1.8.4        highr_0.6        
 [7] workflowr_1.0.1   R.methodsS3_1.7.1 R.utils_2.6.0    
[10] tools_3.4.3       digest_0.6.15     evaluate_0.10.1  
[13] tibble_1.4.1      gtable_0.2.0      rlang_0.1.6      
[16] yaml_2.1.18       stringr_1.3.0     rprojroot_1.3-2  
[19] grid_3.4.3        rmarkdown_1.9     magrittr_1.5     
[22] whisker_0.3-2     backports_1.1.2   scales_0.5.0     
[25] codetools_0.2-15  htmltools_0.3.6   colorspace_1.3-2 
[28] labeling_0.3      stringi_1.1.6     lazyeval_0.2.1   
[31] munsell_0.4.3     R.oo_1.21.0      
This reproducible R Markdown analysis was created with workflowr 1.0.1