Last updated: 2018-06-10

workflowr checks: (Click a bullet for more information)
  • R Markdown file: up-to-date

    Great! Since the R Markdown file has been committed to the Git repository, you know the exact version of the code that produced these results.

  • Environment: empty

    Great job! The global environment was empty. Objects defined in the global environment can affect the analysis in your R Markdown file in unknown ways. For reproduciblity it’s best to always run the code in an empty environment.

  • Seed: set.seed(12345)

    The command set.seed(12345) was run prior to running the code in the R Markdown file. Setting a seed ensures that any results that rely on randomness, e.g. subsampling or permutations, are reproducible.

  • Session information: recorded

    Great job! Recording the operating system, R version, and package versions is critical for reproducibility.

  • Repository version: 386b1fd

    Great! You are using Git for version control. Tracking code development and connecting the code version to the results is critical for reproducibility. The version displayed above was the version of the Git repository at the time these results were generated.

    Note that you need to be careful to ensure that all relevant files for the analysis have been committed to Git prior to generating the results (you can use wflow_publish or wflow_git_commit). workflowr only checks the R Markdown file, but you know if there are other scripts or data files that it depends on. Below is the status of the Git repository when the results were generated:
    
    Ignored files:
        Ignored:    .DS_Store
        Ignored:    .Rhistory
        Ignored:    .Rproj.user/
        Ignored:    analysis/.DS_Store
        Ignored:    analysis/BH_robustness_cache/
        Ignored:    analysis/FDR_Null_cache/
        Ignored:    analysis/FDR_null_betahat_cache/
        Ignored:    analysis/Rmosek_cache/
        Ignored:    analysis/StepDown_cache/
        Ignored:    analysis/alternative2_cache/
        Ignored:    analysis/alternative_cache/
        Ignored:    analysis/ash_gd_cache/
        Ignored:    analysis/average_cor_gtex_2_cache/
        Ignored:    analysis/average_cor_gtex_cache/
        Ignored:    analysis/brca_cache/
        Ignored:    analysis/cash_deconv_cache/
        Ignored:    analysis/cash_fdr_1_cache/
        Ignored:    analysis/cash_fdr_2_cache/
        Ignored:    analysis/cash_fdr_3_cache/
        Ignored:    analysis/cash_fdr_4_cache/
        Ignored:    analysis/cash_fdr_5_cache/
        Ignored:    analysis/cash_fdr_6_cache/
        Ignored:    analysis/cash_plots_2_cache/
        Ignored:    analysis/cash_plots_cache/
        Ignored:    analysis/cash_sim_1_cache/
        Ignored:    analysis/cash_sim_2_cache/
        Ignored:    analysis/cash_sim_3_cache/
        Ignored:    analysis/cash_sim_4_cache/
        Ignored:    analysis/cash_sim_5_cache/
        Ignored:    analysis/cash_sim_6_cache/
        Ignored:    analysis/cash_sim_7_cache/
        Ignored:    analysis/correlated_z_2_cache/
        Ignored:    analysis/correlated_z_3_cache/
        Ignored:    analysis/correlated_z_cache/
        Ignored:    analysis/create_null_cache/
        Ignored:    analysis/cutoff_null_cache/
        Ignored:    analysis/design_matrix_2_cache/
        Ignored:    analysis/design_matrix_cache/
        Ignored:    analysis/diagnostic_ash_cache/
        Ignored:    analysis/diagnostic_correlated_z_2_cache/
        Ignored:    analysis/diagnostic_correlated_z_3_cache/
        Ignored:    analysis/diagnostic_correlated_z_cache/
        Ignored:    analysis/diagnostic_plot_2_cache/
        Ignored:    analysis/diagnostic_plot_cache/
        Ignored:    analysis/efron_leukemia_cache/
        Ignored:    analysis/figure/
        Ignored:    analysis/fitting_normal_cache/
        Ignored:    analysis/gaussian_derivatives_2_cache/
        Ignored:    analysis/gaussian_derivatives_3_cache/
        Ignored:    analysis/gaussian_derivatives_4_cache/
        Ignored:    analysis/gaussian_derivatives_5_cache/
        Ignored:    analysis/gaussian_derivatives_cache/
        Ignored:    analysis/gd-ash_cache/
        Ignored:    analysis/gd_delta_cache/
        Ignored:    analysis/gd_lik_2_cache/
        Ignored:    analysis/gd_lik_cache/
        Ignored:    analysis/gd_w_cache/
        Ignored:    analysis/knockoff_10_cache/
        Ignored:    analysis/knockoff_2_cache/
        Ignored:    analysis/knockoff_3_cache/
        Ignored:    analysis/knockoff_4_cache/
        Ignored:    analysis/knockoff_5_cache/
        Ignored:    analysis/knockoff_6_cache/
        Ignored:    analysis/knockoff_7_cache/
        Ignored:    analysis/knockoff_8_cache/
        Ignored:    analysis/knockoff_9_cache/
        Ignored:    analysis/knockoff_cache/
        Ignored:    analysis/knockoff_var_cache/
        Ignored:    analysis/marginal_z_alternative_cache/
        Ignored:    analysis/marginal_z_cache/
        Ignored:    analysis/mosek_reg_2_cache/
        Ignored:    analysis/mosek_reg_4_cache/
        Ignored:    analysis/mosek_reg_5_cache/
        Ignored:    analysis/mosek_reg_6_cache/
        Ignored:    analysis/mosek_reg_cache/
        Ignored:    analysis/pihat0_null_cache/
        Ignored:    analysis/plot_diagnostic_cache/
        Ignored:    analysis/poster_obayes17_cache/
        Ignored:    analysis/real_data_simulation_2_cache/
        Ignored:    analysis/real_data_simulation_3_cache/
        Ignored:    analysis/real_data_simulation_4_cache/
        Ignored:    analysis/real_data_simulation_5_cache/
        Ignored:    analysis/real_data_simulation_cache/
        Ignored:    analysis/rmosek_primal_dual_2_cache/
        Ignored:    analysis/rmosek_primal_dual_cache/
        Ignored:    analysis/seqgendiff_cache/
        Ignored:    analysis/simulated_correlated_null_2_cache/
        Ignored:    analysis/simulated_correlated_null_3_cache/
        Ignored:    analysis/simulated_correlated_null_cache/
        Ignored:    analysis/simulation_real_se_2_cache/
        Ignored:    analysis/simulation_real_se_cache/
        Ignored:    analysis/smemo_2_cache/
        Ignored:    data/LSI/
        Ignored:    docs/.DS_Store
        Ignored:    docs/figure/.DS_Store
        Ignored:    output/fig/
    
    
    Note that any generated files, e.g. HTML, png, CSS, etc., are not included in this status report because it is ok for generated content to have uncommitted changes.
Expand here to see past versions:
    File Version Author Date Message
    rmd 386b1fd LSun 2018-06-10 wflow_publish(“analysis/gd_w.rmd”)
    rmd d8add67 Lei Sun 2018-06-10 selected examples
    html ff560a1 LSun 2018-06-10 Build site.
    rmd dc80048 Lei Sun 2018-06-09 gene random
    rmd ee5f1d8 LSun 2018-06-09 GD
    html b0f5a28 LSun 2018-06-03 Build site.
    rmd 7f9e4ff LSun 2018-06-03 wflow_publish(“analysis/gd_w.rmd”)
    html 792751b LSun 2018-06-02 Build site.
    rmd b7bf225 Lei Sun 2018-06-02 ecdf.avg
    html cf1e8e9 LSun 2018-06-01 Build site.
    rmd 08b81b6 LSun 2018-06-01 wflow_publish(“analysis/gd_w.rmd”)
    html b4bd5d8 LSun 2018-05-30 Build site.
    rmd edfa8ce Lei Sun 2018-05-30 new KM
    html 086abd6 LSun 2018-05-30 Build site.
    rmd e9c3b2d LSun 2018-05-30 wflow_publish(“analysis/gd_w.rmd”)
    html 99004e9 LSun 2018-05-30 Build site.
    rmd d54a155 Lei Sun 2018-05-30 eps
    html 2acb1ab LSun 2018-05-29 Build site.
    rmd fc26405 Lei Sun 2018-05-29 revision
    html b42a125 LSun 2018-05-29 Build site.
    rmd c1f43e0 LSun 2018-05-29 wflow_publish(“analysis/gd_w.rmd”)
    rmd 1ca47ca Lei Sun 2018-05-29 revise
    rmd 119caf9 LSun 2018-05-29 deconv
    rmd 2716923 Lei Sun 2018-05-29 deconv
    html 9914885 LSun 2018-05-27 Build site.
    rmd e68958a Lei Sun 2018-05-27 fit
    html fd44b58 LSun 2018-05-26 Build site.
    rmd 572e589 Lei Sun 2018-05-26 plots
    rmd bb57226 Lei Sun 2018-05-26 plots
    rmd 854ec31 Lei Sun 2018-05-26 plots
    rmd 9b26932 Lei Sun 2018-05-26 plots
    rmd 086a2bf Lei Sun 2018-05-26 output
    rmd 14d847a Lei Sun 2018-05-26 histograms of z
    html 7b21d1f LSun 2018-05-25 Build site.
    rmd 535ecdd LSun 2018-05-25 wflow_publish(“analysis/gd_w.rmd”)
    html 4d653b1 LSun 2018-05-15 Build site.
    html e05bc83 LSun 2018-05-12 Update to 1.0
    rmd cc0ab83 Lei Sun 2018-05-11 update
    html 807f924 LSun 2018-05-11 Build site.
    rmd 548070e LSun 2018-05-11 wflow_publish(“analysis/gd_w.rmd”)
    html 84c7d5b LSun 2018-05-11 Build site.
    rmd 5c9aeac LSun 2018-05-11 wflow_publish(“analysis/gd_w.rmd”)
    html ed9c0d9 LSun 2018-05-11 Build site.
    rmd 0ea9f77 Lei Sun 2018-05-10 W
    html adeab80 LSun 2018-05-06 Build site.
    rmd 0b0a394 LSun 2018-05-06 wflow_publish(c(“analysis/BH_robustness.rmd”, “analysis/gd_w.rmd”))
    html 720d179 LSun 2018-04-18 Build site.
    rmd b82e2bc LSun 2018-04-18 wflow_publish(c(“analysis/gd_w.rmd”, “analysis/index.Rmd”))
    rmd c7c5984 Lei Sun 2018-04-15 ecdfz
    html 1c2f32e LSun 2018-04-15 Build site.
    rmd 3b5dcc4 LSun 2018-04-15 wflow_publish(“analysis/gd_w.rmd”)
    rmd 1b5d40f Lei Sun 2018-04-13 gd w
    rmd c766b80 LSun 2018-04-13 add lfsr

source("../code/gdash_lik.R")
Warning: package 'Matrix' was built under R version 3.4.4
source("../code/gdfit.R")
source("../code/count_to_summary.R")
library(limma)
library(edgeR)
library(ashr)
library(plyr)
library(ggplot2)
library(reshape2)
library(decon)
library(deconvolveR)

Introduction

Simulated Data

set.seed(777)
d <- 10
n <- 1e4
B <- matrix(rnorm(n * d), n, d)
Sigma <- B %*% t(B) + diag(n)
sigma <- diag(Sigma)
Rho <- cov2cor(Sigma)
rhobar <- c()
for (l in 1 : 10) {
  rhobar[l] <- (sum(Rho^l) - n) / (n * (n - 1))
}
par(mar = c(5.1, 4.1, 1, 2.1))
hist(Rho[lower.tri(Rho)], xlab = expression(rho[ij]), main = "")

Expand here to see past versions of unnamed-chunk-3-1.png:
Version Author Date
720d179 LSun 2018-04-18
set.seed(20)
z <- rnorm(d)
Z <- B %*% z + rnorm(n)
Z <- Z / sqrt(sigma)
cat("sd(Z) =", sd(Z))
sd(Z) = 1.262205
hist(Z, breaks = 20, prob = TRUE, ylim = c(0, dnorm(0)))
lines(seq(-5, 5, by = 0.1), dnorm(seq(-5, 5, by = 0.1)), col = "blue")

Expand here to see past versions of unnamed-chunk-4-1.png:
Version Author Date
720d179 LSun 2018-04-18
p <- pnorm(-abs(Z)) * 2

par(mfcol = c(2, 2))
par(mar = c(5.1, 4.1, 3, 2.1))
hist(p, breaks = 100, main = "Correlated", xlab = "p-value")

par(mar = c(5.1, 4.1, 1, 2.1))
plot(-log(p), ylim = range(-log(p), -log(pnorm(-sqrt(2 * log(n))) * 2), -log(0.05 / n)))
abline(h = -log(pnorm(-sqrt(2 * log(n))) * 2), col = "maroon")
abline(h = -log(0.05 / n), col = "red")
abline(h = -log(0.001), col = "green")
abline(h = -log(0.05), col = "blue")

Z <- rnorm(n)
p <- pnorm(-abs(Z)) * 2
par(mar = c(5.1, 4.1, 3, 2.1))
hist(p, breaks = 100, main = "Independent", xlab = "p-value")

par(mar = c(5.1, 4.1, 1, 2.1))
plot(-log(p), ylim = range(-log(p), -log(pnorm(-sqrt(2 * log(n))) * 2), -log(0.05 / n)))
abline(h = -log(pnorm(-sqrt(2 * log(n))) * 2), col = "maroon")
abline(h = -log(0.05 / n), col = "red")
abline(h = -log(0.001), col = "green")
abline(h = -log(0.05), col = "blue")

Expand here to see past versions of unnamed-chunk-4-2.png:
Version Author Date
720d179 LSun 2018-04-18
set.seed(777)
nsim <- 1e4
Z.list <- W <- list()
for (i in 1 : nsim) {
z <- rnorm(d)
Z <- B %*% z + rnorm(n)
Z <- Z / sqrt(sigma)
Z.list[[i]] <- Z
Z.GD <- gdfit.mom(Z, 100)
W[[i]] <- Z.GD$w
}
Z.sim <- Z.list
W.sim <- W

Real Data from GTEx

r <- readRDS("../data/liver.rds")
top_genes_index = function (g, X) {
  return(order(rowSums(X), decreasing = TRUE)[1 : g])
}
lcpm = function (r) {
  R = colSums(r)
  t(log2(((t(r) + 0.5) / (R + 1)) * 10^6))
}
nsamp <- 5
ngene <- 1e4
Y = lcpm(r)
subset = top_genes_index(ngene, Y)
r = r[subset,]
set.seed(7)
nsim <- 1e4
Z.list <- W <- list()
for (i in 1 : nsim) {
  ## generate data
  counts <- r[, sample(ncol(r), 2 * nsamp)]
  design <- model.matrix(~c(rep(0, nsamp), rep(1, nsamp)))
  summary <- count_to_summary(counts, design)
  Z <- summary$z
  Z.list[[i]] <- Z
  Z.GD <- gdfit.mom(Z, 100)
  W[[i]] <- Z.GD$w
}
Z.gtex <- Z.list
W.gtex <- W
quantile.vec1 <- exp(seq(-21, -5, by = 0.01))
quantile.vec2 <- seq(0.007, 0.993, by = 0.001)
quantile.vec3 <- exp(seq(-5, -21, by = -0.01))
emp.cdf.Z1 <- sapply(quantile.vec1, function(x) {sapply(Z.gtex, function(y) mean(y <= qnorm(x)))})
emp.cdf.Z2 <- sapply(quantile.vec2, function(x) {sapply(Z.gtex, function(y) mean(y <= qnorm(x)))})
emp.cdf.Z3 <- sapply(quantile.vec3, function(x) {sapply(Z.gtex, function(y) mean(y <= -qnorm(x)))})
emp.cdf.Z4 <- sapply(quantile.vec3, function(x) {sapply(Z.gtex, function(y) mean(y > -qnorm(x)))})
ecdf.avg1 <- colMeans(emp.cdf.Z1)
ecdf.avg2 <- colMeans(emp.cdf.Z2)
ecdf.avg3 <- colMeans(emp.cdf.Z3)
ecdf.avg4 <- colMeans(emp.cdf.Z4)
ecdf.avg <- c(ecdf.avg1, ecdf.avg2, ecdf.avg3)
ecdf.tail.avg.conf.int1 <- apply(emp.cdf.Z1, 2, function(x) {t.test(x)$conf.int})
ecdf.tail.avg.conf.int4 <- apply(emp.cdf.Z4, 2, function(x) {t.test(x)$conf.int})
pdf("../output/fig/cor_z_avg_cdf.pdf", height = 4, width = 4)
par(mar = c(4.5, 4.5, 1, 1))
plot(c(qnorm(quantile.vec1), qnorm(quantile.vec2), -qnorm(quantile.vec3)), ecdf.avg, type = "l", xlab = "z", ylab = "CDF")
lines(c(qnorm(quantile.vec1), qnorm(quantile.vec2), -qnorm(quantile.vec3)), c(quantile.vec1, quantile.vec2, pnorm(-qnorm(quantile.vec3))), lty = 2, col = "blue")
legend("bottomright", lty = c(1, 2), col = c(1, "blue"), legend = c(expression(bar("F"[n])(z)), expression(Phi(z))))
rect(xleft = c(range(qnorm(quantile.vec1))[1], range(-qnorm(quantile.vec3))[1]),
     xright = c(range(qnorm(quantile.vec1))[2], range(-qnorm(quantile.vec3))[2]),
     ybottom = c(range(quantile.vec1, ecdf.avg1)[1], range(1 - quantile.vec3, 1 - ecdf.avg4)[1]),
     ytop = c(range(quantile.vec1, ecdf.avg1)[2], range(1 - quantile.vec3, 1 - ecdf.avg4)[2]),
     border = "red", lty = c(1, 5)
     )
dev.off()
quartz_off_screen 
                2 
pdf("../output/fig/cor_z_avg_cdf_left.pdf", height = 4, width = 4)
par(mar = c(4.5, 4.5, 1, 1))
plot(qnorm(quantile.vec1), log(ecdf.avg1), type = "l",
     ylim = range(log(quantile.vec1), log(ecdf.avg1)),
     xlab = "z", ylab = "log (CDF)", bty = "n")
lines(qnorm(quantile.vec1), log(quantile.vec1), lty = 2, col = "blue")
lines(qnorm(quantile.vec1), log(pnorm(qnorm(quantile.vec1), 0, 1.1)), lty = 2, col = "orange")
lines(qnorm(quantile.vec1), log(pnorm(qnorm(quantile.vec1), 0, 1.05)), lty = 2, col = "green")
polygon(x = c(qnorm(quantile.vec1), rev(qnorm(quantile.vec1))),
        y = c(log(ecdf.tail.avg.conf.int1[1, ]), rev(log(ecdf.tail.avg.conf.int1[2, ]))),
        border = NA,
        col = grDevices::adjustcolor("grey75", alpha.f = 0.5))
Warning in log(ecdf.tail.avg.conf.int1[1, ]): NaNs produced
legend("bottomright", lty = c(1, 2, 2, 2), col = c("black", "blue", "green", "orange"), legend = c(
  expression(bar("F"[n])),
  expression(N(0, 1)),
  expression(N(0, 1.05^2)),
  expression(N(0, 1.1^2))
))
box(col = "red")
dev.off()
quartz_off_screen 
                2 
pdf("../output/fig/cor_z_avg_cdf_right.pdf", height = 4, width = 4)
par(mar = c(4.5, 4.5, 1, 1))
plot(-qnorm(quantile.vec3), log(ecdf.avg4), type = "l",
     ylim = range(log(quantile.vec3), log(ecdf.avg4)),
     xlab = "z", ylab = "log (1 - CDF)", bty = "n")
lines(-qnorm(quantile.vec3), log(quantile.vec3), lty = 2, col = "blue")
lines(-qnorm(quantile.vec3), log(pnorm(qnorm(quantile.vec3), 0, 1.1)), lty = 2, col = "orange")
lines(-qnorm(quantile.vec3), log(pnorm(qnorm(quantile.vec3), 0, 1.05)), lty = 2, col = "green")
polygon(x = c(-qnorm(quantile.vec3), rev(-qnorm(quantile.vec3))),
        y = c(log(ecdf.tail.avg.conf.int4[1, ]), rev(log(ecdf.tail.avg.conf.int4[2, ]))),
        border = NA,
        col = grDevices::adjustcolor("grey75", alpha.f = 0.5))
legend("bottomleft", lty = c(1, 2, 2, 2), col = c("black", "blue", "green", "orange"), legend = c(
  expression(bar("F"[n])),
  expression(N(0, 1)),
  expression(N(0, 1.05^2)),
  expression(N(0, 1.1^2))
))
box(col = "red", lty = 5)
dev.off()
quartz_off_screen 
                2 
set.seed(777)
nsamp <- 50
nsim <- 1e3
z <- sebetahat <- list()
for (i in 1 : nsim) {
  ## generate data
  counts <- r[, sample(ncol(r), 2 * nsamp)]
  design <- model.matrix(~c(rep(0, nsamp), rep(1, nsamp)))
  summary <- count_to_summary(counts, design)
  z[[i]] <- summary$z
  sebetahat[[i]] <- summary$sebetahat
}
sd.vec <- sapply(z, sd)
median.vec <- sapply(z, median)
fd.vec <- sapply(z, function(x) {
  p <- pnorm(-abs(x)) * 2
  sum(p <= 0.005)
})
sel <- c(834, 211, 397, 748)
par(mfrow = c(2, 2))
for (i in seq(sel)) {
  fit <- gdfit(z[[sel[i]]], 10)
  plot.gdfit(z[[sel[i]]], fit$w, fit$L, legend = FALSE)
}

Expand here to see past versions of unnamed-chunk-15-1.png:
Version Author Date
adeab80 LSun 2018-05-06
set.seed(6)
par(mfrow = c(2, 3))
par(mar = c(4.5, 4.5, 2, 2))
hist(pnorm(-abs(z[[834]])) * 2, prob = TRUE, xlab = "", breaks = 100, main = "(a): Histogram of two-sided p-values")
lines(c(0, 1), c(1, 1), col = "red")
hist(z[[834]], prob = TRUE, breaks = 100, xlab = "", xlim = c(-4.5, -2), main = "(b): Left tail of correlated z-scores")
lines(seq(-6, 6, by = 0.01), dnorm(seq(-6, 6, by = 0.01), 0, sd(z[[834]])), col = "blue")
lines(seq(-6, 6, by = 0.01), dnorm(seq(-6, 6, by = 0.01)), col = "red")
hist(z[[834]], prob = TRUE, breaks = 100, xlab = "", xlim = c(2, 4.5), main = "(c): Right tail of correlated z-scores")
lines(seq(-6, 6, by = 0.01), dnorm(seq(-6, 6, by = 0.01)), col = "red")
p <- pnorm(-abs(z[[834]])) * 2
plot(sample(-log(pnorm(-abs(z[[834]])) * 2)), ylim = c(0, 20), ylab = "-log(p)", main = expression(paste("(d): Correlated ", N(0, 1))))
abline(h = -log(0.005), col = "red")
abline(h = -log(pnorm(-sqrt(2 * log(1e4))) * 2), col = "blue")
abline(h = -log(0.05 / 1e4), col = "green")
plot(-log(pnorm(-abs(rnorm(1e4))) * 2), ylim = c(0, 20), ylab = "-log(p)", main = expression(paste("(e): Independent ", N(0, 1))))
abline(h = -log(0.005), col = "red")
abline(h = -log(pnorm(-sqrt(2 * log(1e4))) * 2), col = "blue")
abline(h = -log(0.05 / 1e4), col = "green")
plot(-log(pnorm(-abs(rnorm(1e4, 0, 1.6))) * 2), ylim = c(0, 20), ylab = "-log(p)", main = expression(paste("(f): Independent ", N(0, 1.6^2))))
abline(h = -log(0.005), col = "red")
abline(h = -log(pnorm(-sqrt(2 * log(1e4))) * 2), col = "blue")
abline(h = -log(0.05 / 1e4), col = "green")

Expand here to see past versions of unnamed-chunk-16-1.png:
Version Author Date
adeab80 LSun 2018-05-06
p.bh <- p.adjust(p, method = "BH")
sum(p.bh <= 0.05)
[1] 575
plot(sort(log(p)), cex = 0.25, pch = 19, ylim = c(-19, 0), xlab = "Order", ylab = "log(p)")

set.seed(6)
z.indep <- rnorm(1e4)
points(sort(log(pnorm(-abs(z.indep)) * 2)), cex = 0.25, pch = 19, col = "blue")
z.indep <- rnorm(1e4, 0, 1.6)
points(sort(log(pnorm(-abs(z.indep)) * 2)), cex = 0.25, pch = 19, col = "green")

plot(sort(log(p)), cex = 0.25, pch = 19, ylim = c(-19, -2.5), xlim = c(1, 850), xlab = "Order", ylab = "log(p)")

set.seed(6)
z.indep <- rnorm(1e4)
points(sort(log(pnorm(-abs(z.indep)) * 2)), cex = 0.25, pch = 19, col = "blue")
z.indep <- rnorm(1e4, 0, 1.6)
points(sort(log(pnorm(-abs(z.indep)) * 2)), cex = 0.25, pch = 19, col = "green")
abline(h = log(0.005), col = "red", lty = 2)
abline(h = log(pnorm(-sqrt(2 * log(1e4))) * 2), col = "red", lty = 2)
abline(h = log(0.05 / 1e4), col = "red", lty = 2)

Expand here to see past versions of unnamed-chunk-16-2.png:
Version Author Date
adeab80 LSun 2018-05-06
W.sim.gd <- sapply(Z.sim, function (z) {fit.z <- gdfit(z, L = 10); return(
  list(w = fit.z$w, status = fit.z$status))})
W.gtex.gd <- sapply(Z.gtex, function (z) {fit.z <- gdfit(z, L = 10); return(
  list(w = fit.z$w, status = fit.z$status))})

Selected correlated null

quartz_off_screen 
                2 
setEPS()
postscript("../output/fig/ecdf_cor_sel.eps", width = 5, height = 5)

par(mar = c(4.5, 4.5, 1, 1))

plot(0, type = "n", xlim = c(-5, 5), ylim = c(0, 1), ylab = "(Empirical) CDF", xlab = "z", cex.lab = 2)

for (i in seq(nrow(z.mat.sel))) {
  lines(ecdf(z.mat.sel[i, ]), lwd = 1, col = "grey75")
}

lines(seq(-6, 6, by = 0.01), pnorm(seq(-6, 6, by = 0.01)), lwd = 2, col = "blue")

legend("bottomright", lwd = 1 : 2, col = c("grey75", "blue"), c(expression("F"[n]), expression(Phi)), bty = "n")

dev.off()
quartz_off_screen 
                2 

Shoulder inflation

z <- z.mat.sel[3, ]
p <- pnorm(-abs(z)) * 2

## the image is 7.5 * 3
setEPS()
postscript("../output/fig/cor_z_cdf.eps", width = 7.5, height = 3)

par(mfrow = c(1, 3))
par(oma = c(4, 2.5, 0, 0)) # make room (i.e. the 4's) for the overall x and y axis titles
par(mar = c(2, 2, 2.5, 1)) # make the plots be closer together

plot(ecdf(z), xlab = "", ylab = "", lwd = 2, main = expression("(a): CDF of All"), cex.main = 1.5)
lines(seq(-6, 6, by = 0.01), pnorm(seq(-6, 6, by = 0.01)), col = "blue", lwd = 2)
lines(seq(-6, 6, by = 0.01), pnorm(seq(-6, 6, by = 0.01), 0, 1.6), col = "green", lwd = 2)
rect(xleft = c(-5, 2.5),
     xright = c(-2.5, 5),
     ytop = c(0.05, 1),
     ybottom = c(0, 0.95), border = "red", lty = c(1, 5))

plot(ecdf(z), xlab = "", ylab = "", main = expression("(b): Left Tail"), lwd = 2, xlim = c(-5, -2.5), ylim = c(0, 0.05), cex.main = 1.5, bty = "n")
box(col = "red")
lines(seq(-6, 6, by = 0.01), pnorm(seq(-6, 6, by = 0.01)), col = "blue", lwd = 2)
lines(seq(-6, 6, by = 0.01), pnorm(seq(-6, 6, by = 0.01), 0, 1.6), col = "green", lwd = 2)

plot(ecdf(z), xlab = "", ylab = "", main = expression("(c): Right tail"), lwd = 2, xlim = c(2.5, 5), ylim = c(0.95, 1), cex.main = 1.5, bty = "n")
box(col = "red", lty = 5)
lines(seq(-6, 6, by = 0.01), pnorm(seq(-6, 6, by = 0.01)), col = "blue", lwd = 2)
lines(seq(-6, 6, by = 0.01), pnorm(seq(-6, 6, by = 0.01), 0, 1.6), col = "green", lwd = 2)

mtext('CDF', side = 2, outer = TRUE, line = 1)

legend("bottomleft", inset = c(-1.275, -0.35), legend = c("N(0, 1)", expression(N(0, 1.6^2))), lty = 1, lwd = 2, xpd = NA, col = c("blue", "green"), ncol = 2, cex = 1.25)

dev.off()
quartz_off_screen 
                2 
# 7.5 * 3
setEPS()
postscript("../output/fig/cor_z_pval.eps", width = 7.5, height = 3.3)

par(mfrow = c(1, 3))
par(oma = c(4, 2.5, 0, 0)) # make room (i.e. the 4's) for the overall x and y axis titles
par(mar = c(4.5, 2, 2.5, 1)) # make the plots be closer together

set.seed(5)
p.norm.1 <- pnorm(-abs(rnorm(1e4))) * 2
set.seed(25)
p.norm.1.6 <- pnorm(-abs(rnorm(1e4, 0, 1.6))) * 2
y.max <- -log(min(p.norm.1, p, p.norm.1.6))
y.max <- 20

plot(sample(-log(p)), ylim = c(0, y.max), ylab = "-log(p)", main = expression(paste("(d): Correlated ", N(0, 1))), cex.main = 1.5, cex.lab = 1.5)
abline(h = -log(0.005), col = "red", lwd = 2)
abline(h = -log(pnorm(-sqrt(2 * log(1e4))) * 2), col = "orange", lwd = 2)
abline(h = -log(0.05 / 1e4), col = "yellow", lwd = 2)

plot(-log(p.norm.1), ylim = c(0, y.max), ylab = "-log(p)", main = expression(paste("(e): Independent ", N(0, 1))), col = "blue", cex.main = 1.5, cex.lab = 1.5)
abline(h = -log(0.005), col = "red", lwd = 2)
abline(h = -log(pnorm(-sqrt(2 * log(1e4))) * 2), col = "orange", lwd = 2)
abline(h = -log(0.05 / 1e4), col = "yellow", lwd = 2)

plot(-log(p.norm.1.6), ylim = c(0, y.max), ylab = "-log(p)", main = expression(paste("(f): Independent ", N(0, 1.6^2))), col = "green", cex.main = 1.5, cex.lab = 1.5)
abline(h = -log(0.005), col = "red", lwd = 2)
abline(h = -log(pnorm(-sqrt(2 * log(1e4))) * 2), col = "orange", lwd = 2)
abline(h = -log(0.05 / 1e4), col = "yellow", lwd = 2)

mtext('-log(p)', side = 2, outer = TRUE, line = 1)

legend("bottomleft", inset = c(-2.01, -0.51), legend = c("0.005", "Universal Threshold", "Bonferroni"), lty = 1, lwd = 2, xpd = NA, col = c("red", "orange", "yellow"), ncol = 3, cex = 1.25)

dev.off()
quartz_off_screen 
                2 
## under 0.005
sum(p <= 0.005)
[1] 809
p.bh <- p.adjust(p, method = "BH")
## BHq at FDR 0.05
sum(p.bh <= 0.05)
[1] 506
fit.q <- qvalue::qvalue(p)
## pi0 by qvalue
1 - fit.q$pi0
[1] 0.566462
## qvalue at FDR 0.05
sum(fit.q$qvalues <= 0.05)
[1] 2162
## pi0 by ashr
fit.a <- ashr::ash(z, 1, method = "fdr")
1 - ashr::get_pi0(fit.a)
[1] 0.98599
## ashr at FDR 0.05
sum(ashr::get_qvalue(fit.a) <= 0.05)
[1] 10000

Deconvolution

KFE <- function(y, T = 300, lambda = 1/3){
    # Kernel Fourier Estimator: Stefanski and Carroll (Statistics, 1990)
    ks <- function(s,x) exp(s^2/2) * cos(s * x)
    K <- function(t, y, lambda = 1/3){
    k <- y
    for(i in 1:length(y)){
        k[i] <- integrate(ks, 0, 1/lambda, x = (y[i] - t))$value/pi 
    }
    mean(k)
    }
    eps <- 1e-04
    if(length(T) == 1) T <- seq(min(y)-eps, max(y)+eps, length = T)
    g <- T
    for(j in 1:length(T))
    g[j] <- K(T[j], y, lambda = lambda)
    list(x = T, y = g)
}

biweight <- function(x0, x, bw){
    t <- (x - x0)/bw
    (1-t^2)^2*((t> -1 & t<1)-0) *15/16
}

CDF.KW <- function(h, interp = FALSE, eps = 0.001, bw = 0.7){
    #Wasserstein distance:  ||G-H||_W
    if(interp == "biweight"){
    yk = h$x
    for (j in 1:length(yk))
        yk[j] = sum(biweight(h$x[j], h$x, bw = bw)*h$y/sum(h$y))
    H <- cumsum(yk)
    H <- H/H[length(H)]
    }
    else {
    H <- cumsum(h$y)
    H <- H/H[length(H)]
    }
    return(H)
}

library(deconvolveR)
G <- function (t) {
  0.6 * pnorm(t, 0, 0) + 0.3 * pnorm(t, 0, 1) + 0.1 * pnorm(t, 0, 3)
}

set.seed(777)

theta <- sample(c(
  rnorm(6e3, 0, 0),
  rnorm(3e3, 0, 1),
  rnorm(1e3, 0, 3)
))
set.seed(777)
r <- readRDS("../data/liver.rds")
nsamp <- 5
ngene <- 1e4
Y = lcpm(r)
subset = top_genes_index(ngene, Y)
r = r[subset,]
counts <- r[, sample(ncol(r), 2 * nsamp)]
design <- model.matrix(~c(rep(0, nsamp), rep(1, nsamp)))
summary <- count_to_summary(counts, design)
s <- summary$sebetahat
s <- s / sqrt(mean(s^2))
x.plot <- seq(-6, 6, by = 0.01)

G.plot <- G(x.plot)

for (i in 3 : 5) {
  if (i != 5) {
    z <- z.mat.sel[i, ]
  } else {
    z <- rnorm(1e4)
  }
  X <- theta + s * z
  Z <- theta + z
  
  ## Truth
  True.data <- cbind.data.frame(
    Method = "True",
    x = x.plot,
    cdfhat = G.plot
  )

  ## ASH
  fit.ash <- ashr::ash(X, s, method = "fdr", mixcompdist = "normal")
  ash.plot <- as.numeric(ashr::mixcdf(ashr::get_fitted_g(fit.ash), x.plot))
  ASH.data <- cbind.data.frame(
    Method = "ASH",
    x = x.plot,
    cdfhat = ash.plot
  )
  
  ## CASH
  fit.cash <- gdash(X, s)
  cash.plot <- as.numeric(ashr::mixcdf(ashr::get_fitted_g(fit.cash), x.plot))
  CASH.data <- cbind.data.frame(
    Method = "CASH",
    x = x.plot,
    cdfhat = cash.plot
  )

  ## Efron's BD (2016)
  fit.bd <- deconvolveR::deconv(tau = x.plot, X = Z, family = "Normal", deltaAt = 0)
  BD.data <- cbind.data.frame(
    Method = "Efron",
    x = fit.bd$stats[, 1],
    cdfhat = fit.bd$stats[, 4]
  )
  
  ## Kiefer-Wolfowitz's NPMLE (1956)
  ## implemented by Koenker-Mizera-Gu's REBayes (2016)
  v = seq(-6, 6, by = 0.01)
  fit.kw <- REBayes::GLmix(x = X, v = v, sigma = s)
  kw.plot <- CDF.KW(fit.kw)
  KW.data <- cbind.data.frame(
    Method = "KW",
    x = fit.kw$x,
    cdfhat = kw.plot
  )
  
  ## KW smoothed by the biweight kernel
  kws.plot <- CDF.KW(fit.kw, interp = "biweight")
  KWs.data <- cbind.data.frame(
    Method = "KWs",
    x = fit.kw$x,
    cdfhat = kws.plot
  )

  ## kernal deconvolution by Stefanski and Carroll 1990
  ## implemented by `decon`
  fit.fk <- decon::DeconCdf(y = X, sig = s, error = "normal")
  FK.data <- cbind.data.frame(
    Method = "Fourier-Kernel",
    x = fit.fk$x,
    cdfhat = fit.fk$y
  )
  
  if (i == 3) {
    deconv.inf.ggdata <- cbind.data.frame(
      Noise = "Inflated Noise",
      rbind.data.frame(
        True.data,
        KW.data,
        BD.data,
        ASH.data,
        CASH.data
      )
    )
  } else if (i == 4) {
    deconv.def.ggdata <- cbind.data.frame(
      Noise = "Deflated Noise",
      rbind.data.frame(
        True.data,
        KW.data,
        BD.data,
        ASH.data,
        CASH.data
      )
    )
  } else {
    deconv.ind.ggdata <- cbind.data.frame(
      Noise = "Independent Noise",
      rbind.data.frame(
        True.data,
        KW.data,
        BD.data,
        ASH.data,
        CASH.data
      )
    )
  }
}
Warning in REBayes::KWDual(A, rep(1, k), normalize(w), control = control): estimated mixing distribution has some negative values:
               consider reducing rtol

Warning in REBayes::KWDual(A, rep(1, k), normalize(w), control = control): estimated mixing distribution has some negative values:
               consider reducing rtol

Warning in REBayes::KWDual(A, rep(1, k), normalize(w), control = control): estimated mixing distribution has some negative values:
               consider reducing rtol

Warning in REBayes::KWDual(A, rep(1, k), normalize(w), control = control): estimated mixing distribution has some negative values:
               consider reducing rtol

Warning in REBayes::KWDual(A, rep(1, k), normalize(w), control = control): estimated mixing distribution has some negative values:
               consider reducing rtol

Warning in REBayes::KWDual(A, rep(1, k), normalize(w), control = control): estimated mixing distribution has some negative values:
               consider reducing rtol
Warning in stats::nlm(f = loglik, p = aStart, gradtol = 1e-10, ...): NA/Inf
replaced by maximum positive value

Warning in stats::nlm(f = loglik, p = aStart, gradtol = 1e-10, ...): NA/Inf
replaced by maximum positive value
Warning in REBayes::KWDual(A, rep(1, k), normalize(w), control = control): estimated mixing distribution has some negative values:
               consider reducing rtol

Warning in REBayes::KWDual(A, rep(1, k), normalize(w), control = control): estimated mixing distribution has some negative values:
               consider reducing rtol

Warning in REBayes::KWDual(A, rep(1, k), normalize(w), control = control): estimated mixing distribution has some negative values:
               consider reducing rtol

Warning in REBayes::KWDual(A, rep(1, k), normalize(w), control = control): estimated mixing distribution has some negative values:
               consider reducing rtol

Warning in REBayes::KWDual(A, rep(1, k), normalize(w), control = control): estimated mixing distribution has some negative values:
               consider reducing rtol

Warning in REBayes::KWDual(A, rep(1, k), normalize(w), control = control): estimated mixing distribution has some negative values:
               consider reducing rtol

Warning in REBayes::KWDual(A, rep(1, k), normalize(w), control = control): estimated mixing distribution has some negative values:
               consider reducing rtol

Warning in REBayes::KWDual(A, rep(1, k), normalize(w), control = control): estimated mixing distribution has some negative values:
               consider reducing rtol

Warning in REBayes::KWDual(A, rep(1, k), normalize(w), control = control): estimated mixing distribution has some negative values:
               consider reducing rtol

Warning in REBayes::KWDual(A, rep(1, k), normalize(w), control = control): estimated mixing distribution has some negative values:
               consider reducing rtol

Warning in REBayes::KWDual(A, rep(1, k), normalize(w), control = control): estimated mixing distribution has some negative values:
               consider reducing rtol

Warning in REBayes::KWDual(A, rep(1, k), normalize(w), control = control): estimated mixing distribution has some negative values:
               consider reducing rtol

Warning in REBayes::KWDual(A, rep(1, k), normalize(w), control = control): estimated mixing distribution has some negative values:
               consider reducing rtol
Warning in stats::nlm(f = loglik, p = aStart, gradtol = 1e-10, ...): NA/Inf
replaced by maximum positive value

Warning in stats::nlm(f = loglik, p = aStart, gradtol = 1e-10, ...): NA/Inf
replaced by maximum positive value

Warning in stats::nlm(f = loglik, p = aStart, gradtol = 1e-10, ...): NA/Inf
replaced by maximum positive value

Warning in stats::nlm(f = loglik, p = aStart, gradtol = 1e-10, ...): NA/Inf
replaced by maximum positive value

Warning in stats::nlm(f = loglik, p = aStart, gradtol = 1e-10, ...): NA/Inf
replaced by maximum positive value
deconv.ggdata <- rbind.data.frame(
  deconv.def.ggdata,
  deconv.ind.ggdata,
  deconv.inf.ggdata
)
method.name <- c("True", "KW NPMLE", "Efron g-modeling", "ASH", "CASH")
method.col <- scales::hue_pal()(5)
method.linetype <- c("longdash", rep("solid", 4))
## plotting
ggplot(data = deconv.ggdata, aes(x = x, y = cdfhat, col = Method, linetype = Method)) + 
  geom_line() +
  facet_wrap(~Noise, nrow = 1) +
  xlim(-5, 5) +
  scale_linetype_manual(values = method.linetype, labels = method.name, guide = guide_legend(nrow = 1)) +
  scale_color_manual(values = method.col, labels = method.name, guide = guide_legend(nrow = 1)) +
  labs(x = expression(theta), y = "Estimated CDF of g", title = expression(g == 0.6~delta[0] + 0.3~N(0, 1) + 0.1~N(0, 3^2))) +
  theme(plot.title = element_text(size = 15, hjust = 0.5),
        axis.title.x = element_text(size = 15),
        axis.text.x = element_text(size = 10),
        axis.title.y = element_text(size = 15),
        axis.text.y = element_text(size = 10),
        strip.text = element_text(size = 15),
        legend.position = "bottom",
        legend.title = element_blank(),
        legend.background = element_rect(color = "grey"),
        legend.text = element_text(size = 12)) +

ggsave("../output/fig/deconv.eps", height = 4, width = 9)
Warning: Removed 1000 rows containing missing values (geom_path).

Warning: Removed 1000 rows containing missing values (geom_path).

Expand here to see past versions of unnamed-chunk-26-1.png:
Version Author Date
ff560a1 LSun 2018-06-10
b0f5a28 LSun 2018-06-03
b4bd5d8 LSun 2018-05-30

Randomization by permutating labels on GTEx data

r <- readRDS("../data/liver.rds")
ngene <- 1e4
Y = lcpm(r)
subset = top_genes_index(ngene, Y)
r = r[subset,]
set.seed(777)
nsim <- 1e4
Z.list <- list()
for (i in seq(nsim)) {
  ## generate data
  counts <- r[, sample(ncol(r))]
  design <- model.matrix(~c(rep(0, 60), rep(1, 59)))
  summary <- count_to_summary(counts, design)
  Z <- summary$z
  Z.list[[i]] <- Z
}
z.mat <- matrix(unlist(Z.list), byrow = TRUE, nrow = nsim)
png("../output/fig/ecdf_by_dataset.png", width = 5, height = 5, units = "in", res = 600)

par(mar = c(4.5, 4.5, 1, 1))

plot(0, type = "n", xlim = c(-5, 5), ylim = c(0, 1), ylab = "(Empirical) CDF", xlab = "z", cex.lab = 2)

for (i in seq(nrow(z.mat))) {
  lines(ecdf(z.mat[i, ]), lwd = 1, col = "grey75")
}

lines(seq(-6, 6, by = 0.01), pnorm(seq(-6, 6, by = 0.01)), lwd = 2, col = "blue")

legend("bottomright", lwd = 1 : 2, col = c("grey75", "blue"), c(expression("F"[n]), expression(Phi)), bty = "n")

dev.off()
quartz_off_screen 
                2 
png("../output/fig/ecdf_by_gene.png", width = 5, height = 5, units = "in", res = 600)

par(mar = c(4.5, 4.5, 1, 1))

plot(0, type = "n", xlim = c(-5, 5), ylim = c(0, 1), ylab = "(Empirical) CDF", xlab = "z", cex.lab = 2)

for (i in seq(ncol(z.mat))) {
  lines(ecdf(z.mat[, i]), lwd = 1, col = "grey75")
}

lines(seq(-6, 6, by = 0.01), pnorm(seq(-6, 6, by = 0.01)), lwd = 2, col = "blue")

legend("bottomright", lwd = 1 : 2, col = c("grey75", "blue"), c(expression("F"[n]), expression(Phi)), bty = "n")

dev.off()
quartz_off_screen 
                2 
png("../output/fig/ecdf_ind.png", width = 5, height = 5, units = "in", res = 600)

par(mar = c(4.5, 4.5, 1, 1))

plot(0, type = "n", xlim = c(-5, 5), ylim = c(0, 1), ylab = "(Empirical) CDF", xlab = "z", cex.lab = 2)

for (i in seq(ncol(z.mat))) {
  lines(ecdf(rnorm(nrow(z.mat))), lwd = 1, col = "grey75")
}

lines(seq(-6, 6, by = 0.01), pnorm(seq(-6, 6, by = 0.01)), lwd = 2, col = "blue")

legend("bottomright", lwd = 1 : 2, col = c("grey75", "blue"), c(expression("F"[n]), expression(Phi)), bty = "n")

dev.off()
quartz_off_screen 
                2 

Random by each gene

r <- readRDS("../data/liver.rds")
ngene <- 1e4
Y = lcpm(r)
subset = top_genes_index(ngene, Y)
r = r[subset,]
nsamp <- 5
set.seed(777)
nsim <- 1e4
Z.list <- list()
for (i in seq(nsim)) {
  ## generate data
  counts <- t(apply(r, 1, sample, 2 * nsamp))
  design <- model.matrix(~c(rep(0, nsamp), rep(1, nsamp)))
  summary <- count_to_summary(counts, design)
  Z <- summary$z
  Z.list[[i]] <- Z
}
z.mat.rand.each.gene <- matrix(unlist(Z.list), byrow = TRUE, nrow = nsim)
png("../output/fig/ecdf_cor_rand_gene.png", width = 5, height = 5, units = "in", res = 600)

par(mar = c(4.5, 4.5, 1, 1))

plot(0, type = "n", xlim = c(-5, 5), ylim = c(0, 1), ylab = "(Empirical) CDF", xlab = "z", cex.lab = 2)

for (i in seq(nrow(z.mat.rand.each.gene))) {
  lines(ecdf(z.mat.rand.each.gene[i, ]), lwd = 1, col = "grey75")
}

lines(seq(-6, 6, by = 0.01), pnorm(seq(-6, 6, by = 0.01)), lwd = 2, col = "blue")

legend("bottomright", lwd = 1 : 2, col = c("grey75", "blue"), c(expression("F"[n]), expression(Phi)), bty = "n")

dev.off()
quartz_off_screen 
                2 

Session information

sessionInfo()
R version 3.4.3 (2017-11-30)
Platform: x86_64-apple-darwin15.6.0 (64-bit)
Running under: macOS High Sierra 10.13.5

Matrix products: default
BLAS: /Library/Frameworks/R.framework/Versions/3.4/Resources/lib/libRblas.0.dylib
LAPACK: /Library/Frameworks/R.framework/Versions/3.4/Resources/lib/libRlapack.dylib

locale:
[1] en_US.UTF-8/en_US.UTF-8/en_US.UTF-8/C/en_US.UTF-8/en_US.UTF-8

attached base packages:
[1] stats     graphics  grDevices utils     datasets  methods   base     

other attached packages:
 [1] polynom_1.3-9     deconvolveR_1.1   decon_1.2-4      
 [4] reshape2_1.4.3    ggplot2_2.2.1     plyr_1.8.4       
 [7] edgeR_3.20.9      limma_3.34.9      ashr_2.2-7       
[10] Rmosek_8.0.69     PolynomF_1.0-2    CVXR_0.95        
[13] REBayes_1.3       Matrix_1.2-14     SQUAREM_2017.10-1
[16] EQL_1.0-0         ttutils_1.0-1    

loaded via a namespace (and not attached):
 [1] qvalue_2.10.0     locfit_1.5-9.1    splines_3.4.3    
 [4] lattice_0.20-35   colorspace_1.3-2  htmltools_0.3.6  
 [7] yaml_2.1.19       gmp_0.5-13.1      rlang_0.2.0      
[10] R.oo_1.22.0       pillar_1.2.2      Rmpfr_0.7-0      
[13] R.utils_2.6.0     bit64_0.9-7       scs_1.1-1        
[16] foreach_1.4.4     stringr_1.3.1     munsell_0.4.3    
[19] gtable_0.2.0      workflowr_1.0.1   R.methodsS3_1.7.1
[22] codetools_0.2-15  evaluate_0.10.1   labeling_0.3     
[25] knitr_1.20        doParallel_1.0.11 pscl_1.5.2       
[28] parallel_3.4.3    Rcpp_0.12.16      backports_1.1.2  
[31] scales_0.5.0      truncnorm_1.0-8   bit_1.1-13       
[34] digest_0.6.15     stringi_1.2.2     grid_3.4.3       
[37] rprojroot_1.3-2   ECOSolveR_0.4     tools_3.4.3      
[40] magrittr_1.5      lazyeval_0.2.1    tibble_1.4.2     
[43] whisker_0.3-2     MASS_7.3-50       assertthat_0.2.0 
[46] rmarkdown_1.9     iterators_1.0.9   R6_2.2.2         
[49] git2r_0.21.0      compiler_3.4.3   

This reproducible R Markdown analysis was created with workflowr 1.0.1