cashr
comparison: ashr
with uniform
Last updated: 2018-10-12
workflowr checks: (Click a bullet for more information) ✔ R Markdown file: up-to-date
Great! Since the R Markdown file has been committed to the Git repository, you know the exact version of the code that produced these results.
✔ Environment: empty
Great job! The global environment was empty. Objects defined in the global environment can affect the analysis in your R Markdown file in unknown ways. For reproduciblity it’s best to always run the code in an empty environment.
✔ Seed:
set.seed(12345)
The command set.seed(12345)
was run prior to running the code in the R Markdown file. Setting a seed ensures that any results that rely on randomness, e.g. subsampling or permutations, are reproducible.
✔ Session information: recorded
Great job! Recording the operating system, R version, and package versions is critical for reproducibility.
✔ Repository version: f20502c
wflow_publish
or wflow_git_commit
). workflowr only checks the R Markdown file, but you know if there are other scripts or data files that it depends on. Below is the status of the Git repository when the results were generated:
Ignored files:
Ignored: .DS_Store
Ignored: .Rhistory
Ignored: .Rproj.user/
Ignored: analysis/.DS_Store
Ignored: analysis/BH_robustness_cache/
Ignored: analysis/FDR_Null_cache/
Ignored: analysis/FDR_null_betahat_cache/
Ignored: analysis/Rmosek_cache/
Ignored: analysis/StepDown_cache/
Ignored: analysis/alternative2_cache/
Ignored: analysis/alternative_cache/
Ignored: analysis/ash_gd_cache/
Ignored: analysis/average_cor_gtex_2_cache/
Ignored: analysis/average_cor_gtex_cache/
Ignored: analysis/brca_cache/
Ignored: analysis/cash_deconv_cache/
Ignored: analysis/cash_fdr_1_cache/
Ignored: analysis/cash_fdr_2_cache/
Ignored: analysis/cash_fdr_3_cache/
Ignored: analysis/cash_fdr_4_cache/
Ignored: analysis/cash_fdr_5_cache/
Ignored: analysis/cash_fdr_6_cache/
Ignored: analysis/cash_paper_fig_leukemia_cache/
Ignored: analysis/cash_plots_2_cache/
Ignored: analysis/cash_plots_3_cache/
Ignored: analysis/cash_plots_4_cache/
Ignored: analysis/cash_plots_5_cache/
Ignored: analysis/cash_plots_cache/
Ignored: analysis/cash_sim_1_cache/
Ignored: analysis/cash_sim_2_cache/
Ignored: analysis/cash_sim_3_cache/
Ignored: analysis/cash_sim_4_cache/
Ignored: analysis/cash_sim_5_cache/
Ignored: analysis/cash_sim_6_cache/
Ignored: analysis/cash_sim_7_cache/
Ignored: analysis/correlated_z_2_cache/
Ignored: analysis/correlated_z_3_cache/
Ignored: analysis/correlated_z_cache/
Ignored: analysis/create_null_cache/
Ignored: analysis/cutoff_null_cache/
Ignored: analysis/design_matrix_2_cache/
Ignored: analysis/design_matrix_cache/
Ignored: analysis/diagnostic_ash_cache/
Ignored: analysis/diagnostic_correlated_z_2_cache/
Ignored: analysis/diagnostic_correlated_z_3_cache/
Ignored: analysis/diagnostic_correlated_z_cache/
Ignored: analysis/diagnostic_plot_2_cache/
Ignored: analysis/diagnostic_plot_cache/
Ignored: analysis/efron_leukemia_cache/
Ignored: analysis/fitting_normal_cache/
Ignored: analysis/gaussian_derivatives_2_cache/
Ignored: analysis/gaussian_derivatives_3_cache/
Ignored: analysis/gaussian_derivatives_4_cache/
Ignored: analysis/gaussian_derivatives_5_cache/
Ignored: analysis/gaussian_derivatives_cache/
Ignored: analysis/gd-ash_cache/
Ignored: analysis/gd_delta_cache/
Ignored: analysis/gd_lik_2_cache/
Ignored: analysis/gd_lik_cache/
Ignored: analysis/gd_w_cache/
Ignored: analysis/knockoff_10_cache/
Ignored: analysis/knockoff_2_cache/
Ignored: analysis/knockoff_3_cache/
Ignored: analysis/knockoff_4_cache/
Ignored: analysis/knockoff_5_cache/
Ignored: analysis/knockoff_6_cache/
Ignored: analysis/knockoff_7_cache/
Ignored: analysis/knockoff_8_cache/
Ignored: analysis/knockoff_9_cache/
Ignored: analysis/knockoff_cache/
Ignored: analysis/knockoff_var_cache/
Ignored: analysis/marginal_z_alternative_cache/
Ignored: analysis/marginal_z_cache/
Ignored: analysis/mosek_reg_2_cache/
Ignored: analysis/mosek_reg_4_cache/
Ignored: analysis/mosek_reg_5_cache/
Ignored: analysis/mosek_reg_6_cache/
Ignored: analysis/mosek_reg_cache/
Ignored: analysis/pihat0_null_cache/
Ignored: analysis/plot_diagnostic_cache/
Ignored: analysis/poster_obayes17_cache/
Ignored: analysis/real_data_simulation_2_cache/
Ignored: analysis/real_data_simulation_3_cache/
Ignored: analysis/real_data_simulation_4_cache/
Ignored: analysis/real_data_simulation_5_cache/
Ignored: analysis/real_data_simulation_cache/
Ignored: analysis/rmosek_primal_dual_2_cache/
Ignored: analysis/rmosek_primal_dual_cache/
Ignored: analysis/seqgendiff_cache/
Ignored: analysis/simulated_correlated_null_2_cache/
Ignored: analysis/simulated_correlated_null_3_cache/
Ignored: analysis/simulated_correlated_null_cache/
Ignored: analysis/simulation_real_se_2_cache/
Ignored: analysis/simulation_real_se_cache/
Ignored: analysis/smemo_2_cache/
Ignored: data/LSI/
Ignored: docs/.DS_Store
Ignored: docs/figure/.DS_Store
Ignored: output/fig/
Ignored: output/paper/
Note that any generated files, e.g. HTML, png, CSS, etc., are not included in this status report because it is ok for generated content to have uncommitted changes.
Investigation on some finer points:
Will the use of uniform
instead of normal
make the performance by ashr
worse on FDP?
What’s happening when the median FDP given by cashr
is better than other methods with \(\pi_0 = 0.99\).
ashr
with uniform
vs normal
source("../code/gdash_lik.R")
source("../code/count_to_summary.R")
library(ggplot2)
FDP <- function (FDR, qvalue, beta) {
return(sum(qvalue <= FDR & beta == 0) / max(sum(qvalue <= FDR), 1))
}
TDP <- function (FDR, qvalue, beta) {
return(sum(qvalue <= FDR & beta != 0) / sum(beta != 0))
}
boxplot.quantile <- function(x) {
r <- quantile(x, probs = c(0.10, 0.25, 0.5, 0.75, 0.90))
names(r) <- c("ymin", "lower", "middle", "upper", "ymax")
return(r)
}
boxplot.quantile.sq <- function (x) {
r <- sqrt(quantile(x^2, probs = c(0.10, 0.25, 0.5, 0.75, 0.90)))
names(r) <- c("ymin", "lower", "middle", "upper", "ymax")
return(r)
}
mean.sq <- function (x) {
r <- sqrt(mean(x^2))
return(r)
}
mysqrt_trans <- function() {
scales::trans_new("mysqrt",
transform = base::sqrt,
inverse = function(x) ifelse(x<0, 0, x^2),
domain = c(0, Inf))
}
r <- readRDS("../data/liver.rds")
ngene <- 1e4
top_genes_index = function (g, X) {
return(order(rowSums(X), decreasing = TRUE)[1 : g])
}
lcpm = function (r) {
R = colSums(r)
t(log2(((t(r) + 0.5) / (R + 1)) * 10^6))
}
Y = lcpm(r)
subset = top_genes_index(ngene, Y)
r = r[subset,]
nsamp <- 5
pi0 <- 0.9
q.vec <- seq(0.001, 0.20, by = 0.001)
q <- 0.1
method.name.FDR <- c("cashr", "BH", "qvalue", "ashr.n", "ashr.u", "locfdr")
method.col.FDR <- scales::hue_pal()(length(method.name.FDR))
sd.z <- sapply(z.list, sd)
Noise <- cut(sd.z, breaks = c(0, quantile(sd.z, probs = 1 : 2 / 3), Inf), labels = c("Pseudo Deflation", "In-between", "Pseudo Inflation"))
typical.noise <- order(sd.z)[floor(quantile(seq(sd.z), c(0.1, 0.5, 0.9)))]
##================================================================
FDP.list <- lapply(q.vec, function (q) {
t(mapply(function(qvalue.mat, beta, q) {
apply(qvalue.mat, 2, function (qvalue, q, beta) {
FDP(q, qvalue, beta)
}, q, beta)
}, qvalue.list, beta.list, q))
})
names(FDP.list) <- q.vec
TDP.list <- lapply(q.vec, function(q) {
t(mapply(function(qvalue.mat, beta, q) {
apply(qvalue.mat, 2, function (qvalue, q, beta) {
TDP(q, qvalue, beta)
}, q, beta)
}, qvalue.list, beta.list, q))
})
names(TDP.list) <- q.vec
z.list.sel <- z.list[typical.noise]
names(z.list.sel) <- c("Pseudo Deflation", "In-between", "Pseudo Inflation")
z.sep.ggdata <- reshape2::melt(z.list.sel, value.name = "z")
z.sep.ggdata$L1 <- factor(z.sep.ggdata$L1, levels = c("Pseudo Deflation", "In-between", "Pseudo Inflation"))
z.sep.plot <- ggplot(data = z.sep.ggdata, aes(x = z)) +
geom_histogram(aes(y = ..density..), binwidth = 0.2) +
facet_wrap(~L1, nrow = 1) +
stat_function(fun = dnorm, aes(color = "N(0,1)"), lwd = 1.5, show.legend = TRUE) +
theme(axis.title.y = element_text(size = 15),
axis.text.y = element_text(size = 10),
strip.text = element_text(size = 15),
legend.position = "left",
legend.text = element_text(size = 12),
legend.key = element_blank()
)
FDP.q <- FDP.list[[which(q.vec == q)]]
FDP.q.noise.mat <- rbind.data.frame(
cbind.data.frame(Noise = rep("All", length(Noise)),
FDP.q),
cbind.data.frame(Noise,
FDP.q)
)
FDP.q.ggdata <- reshape2::melt(FDP.q.noise.mat, id.vars = c("Noise"), variable.name = "Method", value.name = "FDP")
################################################
TDP.q <- TDP.list[[which(q.vec == q)]]
TDP.q.noise.mat <- rbind.data.frame(
cbind.data.frame(Noise = rep("All", length(Noise)),
TDP.q),
cbind.data.frame(Noise,
TDP.q)
)
TDP.q.ggdata <- reshape2::melt(TDP.q.noise.mat, id.vars = c("Noise"), variable.name = "Method", value.name = "TDP")
FDP.sqrt.q.all.sep.plot <- ggplot(data = FDP.q.ggdata, aes(x = Method, y = FDP, fill = Method, color = Method)) +
stat_summary(fun.data = boxplot.quantile.sq, geom = "boxplot", aes(width = 0.75), position = position_dodge(), show.legend = FALSE) +
stat_summary(fun.y = mean.sq, geom = "point", position = position_dodge(width = 0.9), show.legend = FALSE, shape = 13, size = 3) +
scale_x_discrete(limits = rev(levels(FDP.q.ggdata$Method))) +
scale_y_continuous(trans = "mysqrt", breaks = c(0, 0.1, 0.2, 0.4, 0.6, 0.8)) +
coord_flip() +
scale_color_manual(labels = method.name.FDR, values = method.col.FDR) +
scale_fill_manual(labels = method.name.FDR, values = alpha(method.col.FDR, 0.35)) +
facet_wrap(~Noise, nrow = 1) +
geom_hline(yintercept = q, col = "black", linetype = "dashed", size = 1) +
labs(y = "FDP") +
expand_limits(y = 0) +
theme(plot.title = element_text(size = 12, hjust = 0),
axis.title.y = element_blank(),
axis.text.y = element_text(size = 15),
axis.title.x = element_text(size = 15),
axis.text.x = element_text(size = 10),
strip.text = element_text(size = 15),
legend.position = "bottom",
legend.background = element_rect(color = "grey"),
legend.text = element_text(size = 12)
)
Warning: Ignoring unknown aesthetics: width
TDP.q.all.sep.plot <- ggplot(data = TDP.q.ggdata, aes(x = Method, y = TDP, fill = Method, color = Method)) +
stat_summary(fun.data = boxplot.quantile, geom = "boxplot", aes(width = 0.75), position = position_dodge(), show.legend = FALSE) +
coord_flip() +
stat_summary(fun.y = mean, geom = "point", position = position_dodge(width = 0.9), show.legend = FALSE, shape = 13, size = 3) +
scale_x_discrete(limits = rev(levels(TDP.q.ggdata$Method))) +
scale_color_manual(labels = method.name.FDR, values = method.col.FDR) +
scale_fill_manual(labels = method.name.FDR, values = alpha(method.col.FDR, 0.35)) +
facet_wrap(~Noise, nrow = 1) +
labs(y = "TDP") +
expand_limits(y = 0) +
theme(axis.title.y = element_blank(),
axis.text.y = element_text(size = 15),
axis.title.x = element_text(size = 15),
axis.text.x = element_text(size = 10),
strip.text = element_text(size = 15),
legend.position = "bottom",
legend.background = element_rect(color = "grey"),
legend.text = element_text(size = 12)
)
Warning: Ignoring unknown aesthetics: width
FDP.sqrt.TDP.q.sep.plot.save <- gridExtra::arrangeGrob(
z.sep.plot +
labs(title = "Typical Examples of Realized Correlated N(0,1) Noise") +
scale_color_manual(values = "blue") +
theme(legend.title = element_blank(),
plot.margin = grid::unit(c(5.5, 5.5, 5.5, 67.5), "points"),
plot.title = element_text(size = 12, hjust = 0.5),
strip.text = element_text(size = 12),
axis.title.x = element_blank(),
axis.text.x = element_text(size = 10),
axis.title.y = element_text(size = 12)
),
gridExtra::arrangeGrob(
FDP.sqrt.q.all.sep.plot +
labs(title = "FDP") +
theme(plot.title = element_text(size = 12, hjust = 0.5),
axis.title.x = element_blank(),
strip.text = element_text(size = 12),
plot.margin = grid::unit(c(5.5, 5.5, 5.5, 5.5), "points"),
axis.text.y = element_text(size = 12)
),
TDP.q.all.sep.plot +
labs(title = "TDP") +
theme(plot.margin = grid::unit(c(5.5, 5.5, 5.5, 5.5), "points"),
axis.title.x = element_blank(),
strip.text = element_text(size = 12),
plot.title = element_text(size = 12, hjust = 0.5),
axis.text.y = element_text(size = 12)
),
heights = c(1, 1),
top = grid::textGrob(bquote(paste("Nominal FDR = ", .(q), " (", g[1], " is Gaussian; ", pi[0] == 0.9, ")")), gp = grid::gpar(fontsize = 12), hjust = 1.15)
),
heights = c(1, 2)
)
ggsave("../output/fig/FDP.TDP.q.sep.unif.pdf", FDP.sqrt.TDP.q.sep.plot.save, height = 6, width = 8)
sessionInfo()
R version 3.4.3 (2017-11-30)
Platform: x86_64-apple-darwin15.6.0 (64-bit)
Running under: macOS High Sierra 10.13.6
Matrix products: default
BLAS: /Library/Frameworks/R.framework/Versions/3.4/Resources/lib/libRblas.0.dylib
LAPACK: /Library/Frameworks/R.framework/Versions/3.4/Resources/lib/libRlapack.dylib
locale:
[1] en_US.UTF-8/en_US.UTF-8/en_US.UTF-8/C/en_US.UTF-8/en_US.UTF-8
attached base packages:
[1] stats graphics grDevices utils datasets methods base
other attached packages:
[1] ggplot2_2.2.1 ashr_2.2-7 Rmosek_8.0.69
[4] PolynomF_1.0-2 CVXR_0.95 REBayes_1.3
[7] Matrix_1.2-14 SQUAREM_2017.10-1 EQL_1.0-0
[10] ttutils_1.0-1
loaded via a namespace (and not attached):
[1] gmp_0.5-13.1 Rcpp_0.12.16 pillar_1.2.2
[4] plyr_1.8.4 compiler_3.4.3 git2r_0.21.0
[7] workflowr_1.1.1 R.methodsS3_1.7.1 R.utils_2.6.0
[10] iterators_1.0.9 tools_3.4.3 digest_0.6.15
[13] bit_1.1-13 tibble_1.4.2 gtable_0.2.0
[16] evaluate_0.10.1 lattice_0.20-35 rlang_0.2.0
[19] foreach_1.4.4 yaml_2.1.19 parallel_3.4.3
[22] gridExtra_2.3 Rmpfr_0.7-0 ECOSolveR_0.4
[25] stringr_1.3.1 knitr_1.20 rprojroot_1.3-2
[28] bit64_0.9-7 grid_3.4.3 R6_2.2.2
[31] rmarkdown_1.9 reshape2_1.4.3 magrittr_1.5
[34] whisker_0.3-2 scales_0.5.0 MASS_7.3-50
[37] backports_1.1.2 codetools_0.2-15 htmltools_0.3.6
[40] scs_1.1-1 colorspace_1.3-2 labeling_0.3
[43] stringi_1.2.2 lazyeval_0.2.1 munsell_0.4.3
[46] pscl_1.5.2 doParallel_1.0.11 truncnorm_1.0-8
[49] R.oo_1.22.0
This reproducible R Markdown analysis was created with workflowr 1.1.1