<!DOCTYPE html>

<html xmlns="http://www.w3.org/1999/xhtml">

<head>

<meta charset="utf-8">
<meta http-equiv="Content-Type" content="text/html; charset=utf-8" />
<meta name="generator" content="pandoc" />


<meta name="author" content="Lei Sun" />

<meta name="date" content="2017-04-25" />

<title>Marginal Distribution of z Scores: Null</title>

<script src="site_libs/jquery-1.11.3/jquery.min.js"></script>
<meta name="viewport" content="width=device-width, initial-scale=1" />
<link href="site_libs/bootstrap-3.3.5/css/cosmo.min.css" rel="stylesheet" />
<script src="site_libs/bootstrap-3.3.5/js/bootstrap.min.js"></script>
<script src="site_libs/bootstrap-3.3.5/shim/html5shiv.min.js"></script>
<script src="site_libs/bootstrap-3.3.5/shim/respond.min.js"></script>
<script src="site_libs/jqueryui-1.11.4/jquery-ui.min.js"></script>
<link href="site_libs/tocify-1.9.1/jquery.tocify.css" rel="stylesheet" />
<script src="site_libs/tocify-1.9.1/jquery.tocify.js"></script>
<script src="site_libs/navigation-1.1/tabsets.js"></script>
<link href="site_libs/highlightjs-1.1/textmate.css" rel="stylesheet" />
<script src="site_libs/highlightjs-1.1/highlight.js"></script>
<link href="site_libs/font-awesome-4.5.0/css/font-awesome.min.css" rel="stylesheet" />

<style type="text/css">code{white-space: pre;}</style>
<style type="text/css">
  pre:not([class]) {
    background-color: white;
  }
</style>
<script type="text/javascript">
if (window.hljs && document.readyState && document.readyState === "complete") {
   window.setTimeout(function() {
      hljs.initHighlighting();
   }, 0);
}
</script>



<style type="text/css">
h1 {
  font-size: 34px;
}
h1.title {
  font-size: 38px;
}
h2 {
  font-size: 30px;
}
h3 {
  font-size: 24px;
}
h4 {
  font-size: 18px;
}
h5 {
  font-size: 16px;
}
h6 {
  font-size: 12px;
}
.table th:not([align]) {
  text-align: left;
}
</style>


</head>

<body>

<style type = "text/css">
.main-container {
  max-width: 940px;
  margin-left: auto;
  margin-right: auto;
}
code {
  color: inherit;
  background-color: rgba(0, 0, 0, 0.04);
}
img {
  max-width:100%;
  height: auto;
}
.tabbed-pane {
  padding-top: 12px;
}
button.code-folding-btn:focus {
  outline: none;
}
</style>


<style type="text/css">
/* padding for bootstrap navbar */
body {
  padding-top: 51px;
  padding-bottom: 40px;
}
/* offset scroll position for anchor links (for fixed navbar)  */
.section h1 {
  padding-top: 56px;
  margin-top: -56px;
}

.section h2 {
  padding-top: 56px;
  margin-top: -56px;
}
.section h3 {
  padding-top: 56px;
  margin-top: -56px;
}
.section h4 {
  padding-top: 56px;
  margin-top: -56px;
}
.section h5 {
  padding-top: 56px;
  margin-top: -56px;
}
.section h6 {
  padding-top: 56px;
  margin-top: -56px;
}
</style>

<script>
// manage active state of menu based on current page
$(document).ready(function () {
  // active menu anchor
  href = window.location.pathname
  href = href.substr(href.lastIndexOf('/') + 1)
  if (href === "")
    href = "index.html";
  var menuAnchor = $('a[href="' + href + '"]');

  // mark it active
  menuAnchor.parent().addClass('active');

  // if it's got a parent navbar menu mark it active as well
  menuAnchor.closest('li.dropdown').addClass('active');
});
</script>


<div class="container-fluid main-container">

<!-- tabsets -->
<script>
$(document).ready(function () {
  window.buildTabsets("TOC");
});
</script>

<!-- code folding -->




<script>
$(document).ready(function ()  {

    // move toc-ignore selectors from section div to header
    $('div.section.toc-ignore')
        .removeClass('toc-ignore')
        .children('h1,h2,h3,h4,h5').addClass('toc-ignore');

    // establish options
    var options = {
      selectors: "h1,h2,h3",
      theme: "bootstrap3",
      context: '.toc-content',
      hashGenerator: function (text) {
        return text.replace(/[.\\/?&!#<>]/g, '').replace(/\s/g, '_').toLowerCase();
      },
      ignoreSelector: ".toc-ignore",
      scrollTo: 0
    };
    options.showAndHide = true;
    options.smoothScroll = true;

    // tocify
    var toc = $("#TOC").tocify(options).data("toc-tocify");
});
</script>

<style type="text/css">

#TOC {
  margin: 25px 0px 20px 0px;
}
@media (max-width: 768px) {
#TOC {
  position: relative;
  width: 100%;
}
}


.toc-content {
  padding-left: 30px;
  padding-right: 40px;
}

div.main-container {
  max-width: 1200px;
}

div.tocify {
  width: 20%;
  max-width: 260px;
  max-height: 85%;
}

@media (min-width: 768px) and (max-width: 991px) {
  div.tocify {
    width: 25%;
  }
}

@media (max-width: 767px) {
  div.tocify {
    width: 100%;
    max-width: none;
  }
}

.tocify ul, .tocify li {
  line-height: 20px;
}

.tocify-subheader .tocify-item {
  font-size: 0.90em;
  padding-left: 25px;
  text-indent: 0;
}

.tocify .list-group-item {
  border-radius: 0px;
}


</style>

<!-- setup 3col/9col grid for toc_float and main content  -->
<div class="row-fluid">
<div class="col-xs-12 col-sm-4 col-md-3">
<div id="TOC" class="tocify">
</div>
</div>

<div class="toc-content col-xs-12 col-sm-8 col-md-9">




<div class="navbar navbar-default  navbar-fixed-top" role="navigation">
  <div class="container">
    <div class="navbar-header">
      <button type="button" class="navbar-toggle collapsed" data-toggle="collapse" data-target="#navbar">
        <span class="icon-bar"></span>
        <span class="icon-bar"></span>
        <span class="icon-bar"></span>
      </button>
      <a class="navbar-brand" href="index.html">truncash</a>
    </div>
    <div id="navbar" class="navbar-collapse collapse">
      <ul class="nav navbar-nav">
        <li>
  <a href="index.html">Home</a>
</li>
<li>
  <a href="about.html">About</a>
</li>
<li>
  <a href="license.html">License</a>
</li>
      </ul>
      <ul class="nav navbar-nav navbar-right">
        <li>
  <a href="https://github.com/LSun/truncash">
    <span class="fa fa-github"></span>
     
  </a>
</li>
      </ul>
    </div><!--/.nav-collapse -->
  </div><!--/.container -->
</div><!--/.navbar -->

<div class="fluid-row" id="header">



<h1 class="title toc-ignore">Marginal Distribution of <span class="math inline">\(z\)</span> Scores: Null</h1>
<h4 class="author"><em>Lei Sun</em></h4>
<h4 class="date"><em>2017-04-25</em></h4>

</div>


<!-- The file analysis/chunks.R contains chunks that define default settings
shared across the workflowr files. -->
<!-- Update knitr chunk options -->
<!-- Insert the date the file was last updated -->
<p><strong>Last updated:</strong> 2017-05-09</p>
<!-- Insert the code version (Git commit SHA1) if Git repository exists and R
 package git2r is installed -->
<p><strong>Code version:</strong> 6264529</p>
<!-- Add your analysis here -->
<p><strong>This simulation can be seen as an enhanced version of <a href="ExtremeOccurrence.html">a previous simulation</a>.</strong></p>
<div id="introduction" class="section level2">
<h2>Introduction</h2>
<p>An assumption of using <a href="gaussian_derivatives.html">Gaussian derivatives</a> to fit correlated null <span class="math inline">\(z\)</span> scores is that each of these <span class="math inline">\(z\)</span> scores should actually be null. That is, for <span class="math inline">\(n\)</span> <span class="math inline">\(z\)</span> scores <span class="math inline">\(z_1, \ldots, z_n\)</span>, although the correlation between <span class="math inline">\(z_i\)</span> and <span class="math inline">\(z_j\)</span> are not necessarily zero, the marginal distribution of <span class="math inline">\(z_i\)</span>, <span class="math inline">\(\forall i\)</span>, should be <span class="math inline">\(N\left(0, 1\right)\)</span>.</p>
<p>However, in practice, it’s not easy to check whether these correlated <span class="math inline">\(z\)</span> scores are truly marginally <span class="math inline">\(N\left(0, 1\right)\)</span>. <a href="correlated_z.html">We’ve seen</a> that their historgram could be far from normal. Further more, <span class="math inline">\(z\)</span> scores in different data sets are distorted by different correlation structures. Therefore, we don’t have replicates here; that is, each data set is one single realization of a lot of random variables under correlation.</p>
<p>For our data sets in particular, let <span class="math inline">\(Z = \left[z_{ij}\right]_{m \times n}\)</span> be the matrix of <span class="math inline">\(z\)</span> scores. Each <span class="math inline">\(z_{ij}\)</span> denotes the gene differential expression <span class="math inline">\(z\)</span> score for gene <span class="math inline">\(j\)</span> in the data set <span class="math inline">\(i\)</span>. Since all of these <span class="math inline">\(z\)</span> scores are obtained from the same tissue, theoretically they should all be marginally <span class="math inline">\(N\left(0, 1\right)\)</span>.</p>
<p>Each row is a data set, consisting of <span class="math inline">\(10K\)</span> realized <span class="math inline">\(z\)</span> scores presumably marginally <span class="math inline">\(N\left(0, 1\right)\)</span>, whose empirical distribution distorted by correlation. If we plot the histogram of each row, it is grossly not <span class="math inline">\(N\left(0, 1\right)\)</span> due to correlation. Therefore, it’s not easy to verify that they are truly marginally <span class="math inline">\(N\left(0, 1\right)\)</span>.</p>
<p>Here are two pieces of evidence that they are. Let’s take a look one by one, compared with the independent <span class="math inline">\(z\)</span> scores case.</p>
<pre class="r"><code>z.null &lt;- read.table(&quot;../output/z_null_liver_777.txt&quot;)
n = ncol(z.null)
m = nrow(z.null)</code></pre>
<pre class="r"><code>set.seed(777)
z.sim = matrix(rnorm(m * n), nrow = m, ncol = n)</code></pre>
</div>
<div id="row-wise-eleftf_nleftzrightright-phileftzright" class="section level2">
<h2>Row-wise: <span class="math inline">\(E\left[F_n\left(z\right)\right] = \Phi\left(z\right)\)</span></h2>
<p>Let <span class="math inline">\(F_n^{R_i}\left(z\right)\)</span> be the empirical CDF of <span class="math inline">\(p\)</span> correlated <span class="math inline">\(z\)</span> scores in row <span class="math inline">\(i\)</span>. For any <span class="math inline">\(i\)</span>, <span class="math inline">\(F_n^{R_i}\left(z\right)\)</span> should be conspicuously different from <span class="math inline">\(\Phi\left(z\right)\)</span>, yet on average, <span class="math inline">\(E\left[F_n^{R_i}\left(z\right)\right]\)</span> should be equal to <span class="math inline">\(\Phi\left(z\right)\)</span>, if all <span class="math inline">\(z\)</span> scores are marginally <span class="math inline">\(N\left(0, 1\right)\)</span>.</p>
<p>In order to check that, we can borrow <a href="index.html">Prof. Michael Stein’s insight</a> to look at the tail events, or empirical CDF.</p>
<p>For each row, let <span class="math inline">\(\alpha\)</span> be a given probability level, <span class="math inline">\(z_\alpha = \Phi^{-1}\left(\alpha\right)\)</span> be the associated quantile, and we record a number <span class="math inline">\(R_i^\alpha\)</span> defined as follows.</p>
<p>If <span class="math inline">\(\alpha \leq 0.5\)</span>, <span class="math inline">\(R_\alpha^i\)</span> is the number of <span class="math inline">\(z\)</span> scores in row <span class="math inline">\(i\)</span> that are smaller than <span class="math inline">\(z_\alpha\)</span>; otherwise, if <span class="math inline">\(\alpha &gt; 0.5\)</span>, <span class="math inline">\(R_\alpha^i\)</span> is the number of <span class="math inline">\(z\)</span> scores in row <span class="math inline">\(i\)</span> that are larger than <span class="math inline">\(z_\alpha\)</span>.</p>
<p>Defined this way, <span class="math inline">\(R_\alpha^i\)</span> should be a sample from <span class="math inline">\(n \times F_n^{R_i}\left(z_\alpha\right)\)</span> or <span class="math inline">\(n \times \left(1- F_n^{R_i}\left(z_\alpha\right)\right)\)</span>. We can check if <span class="math inline">\(E\left[F_n\left(z\right)\right] = \Phi\left(z\right)\)</span> by looking at if the average <span class="math display">\[
\bar R_\alpha \approx \begin{cases} n\Phi\left(z_\alpha\right) = n\alpha &amp; \alpha \leq 0.5 \\ n\left(1-\Phi\left(z_\alpha\right)\right) = n\left(1 - \alpha\right) &amp; \alpha &gt; 0.5\end{cases} \ .
\]</span> We may also compare the frequencies of <span class="math inline">\(R_\alpha^i\)</span> with their theoretical expected values <span class="math inline">\(m \times \text{Binomial}\left(n, \alpha\right)\)</span> (in blue) assuming <span class="math inline">\(z_{ij}\)</span> are independent.</p>
<p><img src="figure/marginal_z.rmd/unnamed-chunk-5-1.png" width="672" style="display: block; margin: auto;" /><img src="figure/marginal_z.rmd/unnamed-chunk-5-2.png" width="672" style="display: block; margin: auto;" /><img src="figure/marginal_z.rmd/unnamed-chunk-5-3.png" width="672" style="display: block; margin: auto;" /><img src="figure/marginal_z.rmd/unnamed-chunk-5-4.png" width="672" style="display: block; margin: auto;" /><img src="figure/marginal_z.rmd/unnamed-chunk-5-5.png" width="672" style="display: block; margin: auto;" /><img src="figure/marginal_z.rmd/unnamed-chunk-5-6.png" width="672" style="display: block; margin: auto;" /><img src="figure/marginal_z.rmd/unnamed-chunk-5-7.png" width="672" style="display: block; margin: auto;" /><img src="figure/marginal_z.rmd/unnamed-chunk-5-8.png" width="672" style="display: block; margin: auto;" /><img src="figure/marginal_z.rmd/unnamed-chunk-5-9.png" width="672" style="display: block; margin: auto;" /><img src="figure/marginal_z.rmd/unnamed-chunk-5-10.png" width="672" style="display: block; margin: auto;" /><img src="figure/marginal_z.rmd/unnamed-chunk-5-11.png" width="672" style="display: block; margin: auto;" /><img src="figure/marginal_z.rmd/unnamed-chunk-5-12.png" width="672" style="display: block; margin: auto;" /><img src="figure/marginal_z.rmd/unnamed-chunk-5-13.png" width="672" style="display: block; margin: auto;" /><img src="figure/marginal_z.rmd/unnamed-chunk-5-14.png" width="672" style="display: block; margin: auto;" /><img src="figure/marginal_z.rmd/unnamed-chunk-5-15.png" width="672" style="display: block; margin: auto;" /><img src="figure/marginal_z.rmd/unnamed-chunk-5-16.png" width="672" style="display: block; margin: auto;" /><img src="figure/marginal_z.rmd/unnamed-chunk-5-17.png" width="672" style="display: block; margin: auto;" /><img src="figure/marginal_z.rmd/unnamed-chunk-5-18.png" width="672" style="display: block; margin: auto;" /><img src="figure/marginal_z.rmd/unnamed-chunk-5-19.png" width="672" style="display: block; margin: auto;" /><img src="figure/marginal_z.rmd/unnamed-chunk-5-20.png" width="672" style="display: block; margin: auto;" /><img src="figure/marginal_z.rmd/unnamed-chunk-5-21.png" width="672" style="display: block; margin: auto;" /></p>
<div id="independent-case-row-wise" class="section level3">
<h3>Independent case: row-wise</h3>
<p><img src="figure/marginal_z.rmd/unnamed-chunk-6-1.png" width="672" style="display: block; margin: auto;" /><img src="figure/marginal_z.rmd/unnamed-chunk-6-2.png" width="672" style="display: block; margin: auto;" /><img src="figure/marginal_z.rmd/unnamed-chunk-6-3.png" width="672" style="display: block; margin: auto;" /><img src="figure/marginal_z.rmd/unnamed-chunk-6-4.png" width="672" style="display: block; margin: auto;" /><img src="figure/marginal_z.rmd/unnamed-chunk-6-5.png" width="672" style="display: block; margin: auto;" /><img src="figure/marginal_z.rmd/unnamed-chunk-6-6.png" width="672" style="display: block; margin: auto;" /><img src="figure/marginal_z.rmd/unnamed-chunk-6-7.png" width="672" style="display: block; margin: auto;" /><img src="figure/marginal_z.rmd/unnamed-chunk-6-8.png" width="672" style="display: block; margin: auto;" /><img src="figure/marginal_z.rmd/unnamed-chunk-6-9.png" width="672" style="display: block; margin: auto;" /><img src="figure/marginal_z.rmd/unnamed-chunk-6-10.png" width="672" style="display: block; margin: auto;" /><img src="figure/marginal_z.rmd/unnamed-chunk-6-11.png" width="672" style="display: block; margin: auto;" /><img src="figure/marginal_z.rmd/unnamed-chunk-6-12.png" width="672" style="display: block; margin: auto;" /><img src="figure/marginal_z.rmd/unnamed-chunk-6-13.png" width="672" style="display: block; margin: auto;" /><img src="figure/marginal_z.rmd/unnamed-chunk-6-14.png" width="672" style="display: block; margin: auto;" /><img src="figure/marginal_z.rmd/unnamed-chunk-6-15.png" width="672" style="display: block; margin: auto;" /><img src="figure/marginal_z.rmd/unnamed-chunk-6-16.png" width="672" style="display: block; margin: auto;" /><img src="figure/marginal_z.rmd/unnamed-chunk-6-17.png" width="672" style="display: block; margin: auto;" /><img src="figure/marginal_z.rmd/unnamed-chunk-6-18.png" width="672" style="display: block; margin: auto;" /><img src="figure/marginal_z.rmd/unnamed-chunk-6-19.png" width="672" style="display: block; margin: auto;" /><img src="figure/marginal_z.rmd/unnamed-chunk-6-20.png" width="672" style="display: block; margin: auto;" /><img src="figure/marginal_z.rmd/unnamed-chunk-6-21.png" width="672" style="display: block; margin: auto;" /></p>
</div>
</div>
<div id="column-wise-closer-to-nleft0-1right" class="section level2">
<h2>Column-wise: closer to <span class="math inline">\(N\left(0, 1\right)\)</span></h2>
<p>Each column of <span class="math inline">\(z\)</span> should be seen as <span class="math inline">\(z\)</span> scores of a non-differentially expressed gene in different data sets. Therefore, column-wise, the empirical distribution <span class="math inline">\(F_m^{C_j}\left(z\right)\)</span> should be closer to <span class="math inline">\(\Phi\left(z\right)\)</span> than <span class="math inline">\(F_m^{R_i}\left(z\right)\)</span>.</p>
<p>Similarly, we are plotting <span class="math inline">\(C_\alpha^i\)</span>, compared with their theoretical frequencies as follows.</p>
<p><img src="figure/marginal_z.rmd/unnamed-chunk-8-1.png" width="672" style="display: block; margin: auto;" /><img src="figure/marginal_z.rmd/unnamed-chunk-8-2.png" width="672" style="display: block; margin: auto;" /><img src="figure/marginal_z.rmd/unnamed-chunk-8-3.png" width="672" style="display: block; margin: auto;" /><img src="figure/marginal_z.rmd/unnamed-chunk-8-4.png" width="672" style="display: block; margin: auto;" /><img src="figure/marginal_z.rmd/unnamed-chunk-8-5.png" width="672" style="display: block; margin: auto;" /><img src="figure/marginal_z.rmd/unnamed-chunk-8-6.png" width="672" style="display: block; margin: auto;" /><img src="figure/marginal_z.rmd/unnamed-chunk-8-7.png" width="672" style="display: block; margin: auto;" /><img src="figure/marginal_z.rmd/unnamed-chunk-8-8.png" width="672" style="display: block; margin: auto;" /><img src="figure/marginal_z.rmd/unnamed-chunk-8-9.png" width="672" style="display: block; margin: auto;" /><img src="figure/marginal_z.rmd/unnamed-chunk-8-10.png" width="672" style="display: block; margin: auto;" /><img src="figure/marginal_z.rmd/unnamed-chunk-8-11.png" width="672" style="display: block; margin: auto;" /><img src="figure/marginal_z.rmd/unnamed-chunk-8-12.png" width="672" style="display: block; margin: auto;" /><img src="figure/marginal_z.rmd/unnamed-chunk-8-13.png" width="672" style="display: block; margin: auto;" /><img src="figure/marginal_z.rmd/unnamed-chunk-8-14.png" width="672" style="display: block; margin: auto;" /><img src="figure/marginal_z.rmd/unnamed-chunk-8-15.png" width="672" style="display: block; margin: auto;" /><img src="figure/marginal_z.rmd/unnamed-chunk-8-16.png" width="672" style="display: block; margin: auto;" /><img src="figure/marginal_z.rmd/unnamed-chunk-8-17.png" width="672" style="display: block; margin: auto;" /></p>
<div id="independent-case-column-wise" class="section level3">
<h3>Independent case: column wise</h3>
<p><img src="figure/marginal_z.rmd/unnamed-chunk-9-1.png" width="672" style="display: block; margin: auto;" /><img src="figure/marginal_z.rmd/unnamed-chunk-9-2.png" width="672" style="display: block; margin: auto;" /><img src="figure/marginal_z.rmd/unnamed-chunk-9-3.png" width="672" style="display: block; margin: auto;" /><img src="figure/marginal_z.rmd/unnamed-chunk-9-4.png" width="672" style="display: block; margin: auto;" /><img src="figure/marginal_z.rmd/unnamed-chunk-9-5.png" width="672" style="display: block; margin: auto;" /><img src="figure/marginal_z.rmd/unnamed-chunk-9-6.png" width="672" style="display: block; margin: auto;" /><img src="figure/marginal_z.rmd/unnamed-chunk-9-7.png" width="672" style="display: block; margin: auto;" /><img src="figure/marginal_z.rmd/unnamed-chunk-9-8.png" width="672" style="display: block; margin: auto;" /><img src="figure/marginal_z.rmd/unnamed-chunk-9-9.png" width="672" style="display: block; margin: auto;" /><img src="figure/marginal_z.rmd/unnamed-chunk-9-10.png" width="672" style="display: block; margin: auto;" /><img src="figure/marginal_z.rmd/unnamed-chunk-9-11.png" width="672" style="display: block; margin: auto;" /><img src="figure/marginal_z.rmd/unnamed-chunk-9-12.png" width="672" style="display: block; margin: auto;" /><img src="figure/marginal_z.rmd/unnamed-chunk-9-13.png" width="672" style="display: block; margin: auto;" /><img src="figure/marginal_z.rmd/unnamed-chunk-9-14.png" width="672" style="display: block; margin: auto;" /><img src="figure/marginal_z.rmd/unnamed-chunk-9-15.png" width="672" style="display: block; margin: auto;" /><img src="figure/marginal_z.rmd/unnamed-chunk-9-16.png" width="672" style="display: block; margin: auto;" /><img src="figure/marginal_z.rmd/unnamed-chunk-9-17.png" width="672" style="display: block; margin: auto;" /></p>
</div>
</div>
<div id="conclusion" class="section level2">
<h2>Conclusion</h2>
<p>The empirical distribution and the indicated marginal distribution of the correlated null <span class="math inline">\(z\)</span> scores are behaving not different from the expectation.</p>
<p>Row-wise, the number of tail observations averages to what would be expected from correlated marginally <span class="math inline">\(N\left(0, 1\right)\)</span> random samples, validating Prof. Stein’s intuition.</p>
<p>Column-wise, the distribution of the number of tail observations is closer to normal, closer to what would be expected under corelated marginally <span class="math inline">\(N\left(0, 1\right)\)</span>. Moreover, the distribution seems unimodal, and peaked at <span class="math inline">\(m\alpha\)</span> when <span class="math inline">\(\alpha \leq0.5\)</span> or <span class="math inline">\(m\left(1-\alpha\right)\)</span> when <span class="math inline">\(\alpha\geq0.5\)</span>. It suggests that the marginal distribution of the null <span class="math inline">\(z\)</span> scores for a certain gene is usually centered at <span class="math inline">\(0\)</span>, and more often than not, close to <span class="math inline">\(N\left(0, 1\right)\)</span>.</p>
</div>
<div id="session-information" class="section level2">
<h2>Session information</h2>
<!-- Insert the session information into the document -->
<pre class="r"><code>sessionInfo()</code></pre>
<pre><code>R version 3.3.3 (2017-03-06)
Platform: x86_64-apple-darwin13.4.0 (64-bit)
Running under: macOS Sierra 10.12.4

locale:
[1] en_US.UTF-8/en_US.UTF-8/en_US.UTF-8/C/en_US.UTF-8/en_US.UTF-8

attached base packages:
[1] stats     graphics  grDevices utils     datasets  methods   base     

loaded via a namespace (and not attached):
 [1] backports_1.0.5 magrittr_1.5    rprojroot_1.2   tools_3.3.3    
 [5] htmltools_0.3.5 yaml_2.1.14     Rcpp_0.12.10    stringi_1.1.2  
 [9] rmarkdown_1.3   knitr_1.15.1    git2r_0.18.0    stringr_1.2.0  
[13] digest_0.6.11   evaluate_0.10  </code></pre>
</div>

<hr>
<p>
    This <a href="http://rmarkdown.rstudio.com">R Markdown</a> site was created with <a href="https://github.com/jdblischak/workflowr">workflowr</a>
</p>
<hr>

<!-- To enable disqus, uncomment the section below and provide your disqus_shortname -->

<!-- disqus
  <div id="disqus_thread"></div>
    <script type="text/javascript">
        /* * * CONFIGURATION VARIABLES: EDIT BEFORE PASTING INTO YOUR WEBPAGE * * */
        var disqus_shortname = 'rmarkdown'; // required: replace example with your forum shortname

        /* * * DON'T EDIT BELOW THIS LINE * * */
        (function() {
            var dsq = document.createElement('script'); dsq.type = 'text/javascript'; dsq.async = true;
            dsq.src = '//' + disqus_shortname + '.disqus.com/embed.js';
            (document.getElementsByTagName('head')[0] || document.getElementsByTagName('body')[0]).appendChild(dsq);
        })();
    </script>
    <noscript>Please enable JavaScript to view the <a href="http://disqus.com/?ref_noscript">comments powered by Disqus.</a></noscript>
    <a href="http://disqus.com" class="dsq-brlink">comments powered by <span class="logo-disqus">Disqus</span></a>
-->


</div>
</div>

</div>

<script>

// add bootstrap table styles to pandoc tables
function bootstrapStylePandocTables() {
  $('tr.header').parent('thead').parent('table').addClass('table table-condensed');
}
$(document).ready(function () {
  bootstrapStylePandocTables();
});


</script>

<!-- dynamically load mathjax for compatibility with self-contained -->
<script>
  (function () {
    var script = document.createElement("script");
    script.type = "text/javascript";
    script.src  = "https://cdn.mathjax.org/mathjax/latest/MathJax.js?config=TeX-AMS-MML_HTMLorMML";
    document.getElementsByTagName("head")[0].appendChild(script);
  })();
</script>

</body>
</html>