Rmosek: NormalizationLast updated: 2017-05-09
Code version: 85b0795
When fitting Gaussian derivatives, normalization could potentially increase the parity in the magnitude of the coefficients and thus make the results more accurate.
data.list = readRDS("../output/z_null_liver_777_select.RDS")
zscore = data.list[[3]]
sel.num = length(zscore)
data.list.index = readRDS("../output/z_null_liver_777_select_index.RDS")
ord = data.list.index[[3]]$gd.ord
source("../code/gdash.R")
library(ashr)
library(PolynomF)
x <- polynom()
H <- polylist(x, - 1 + x^2)
for(n in 2 : 19)
  H[[n+1]] <- x * H[[n]] - n * H[[n-1]]
It appears normalization indeed increases the accuracy, although the computation seems slowing down a little bit? Not sure.
sessionInfo()
R version 3.3.3 (2017-03-06)
Platform: x86_64-apple-darwin13.4.0 (64-bit)
Running under: macOS Sierra 10.12.4
locale:
[1] en_US.UTF-8/en_US.UTF-8/en_US.UTF-8/C/en_US.UTF-8/en_US.UTF-8
attached base packages:
[1] stats     graphics  grDevices utils     datasets  methods   base     
loaded via a namespace (and not attached):
 [1] backports_1.0.5 magrittr_1.5    rprojroot_1.2   tools_3.3.3    
 [5] htmltools_0.3.5 yaml_2.1.14     Rcpp_0.12.10    stringi_1.1.2  
 [9] rmarkdown_1.3   knitr_1.15.1    git2r_0.18.0    stringr_1.2.0  
[13] digest_0.6.11   evaluate_0.10  
This R Markdown site was created with workflowr