<!DOCTYPE html> <html xmlns="http://www.w3.org/1999/xhtml"> <head> <meta charset="utf-8" /> <meta http-equiv="Content-Type" content="text/html; charset=utf-8" /> <meta name="generator" content="pandoc" /> <meta name="author" content="Lei Sun" /> <meta name="date" content="2018-02-10" /> <title>CASH Simulations</title> <script src="site_libs/jquery-1.11.3/jquery.min.js"></script> <meta name="viewport" content="width=device-width, initial-scale=1" /> <link href="site_libs/bootstrap-3.3.5/css/readable.min.css" rel="stylesheet" /> <script src="site_libs/bootstrap-3.3.5/js/bootstrap.min.js"></script> <script src="site_libs/bootstrap-3.3.5/shim/html5shiv.min.js"></script> <script src="site_libs/bootstrap-3.3.5/shim/respond.min.js"></script> <script src="site_libs/jqueryui-1.11.4/jquery-ui.min.js"></script> <link href="site_libs/tocify-1.9.1/jquery.tocify.css" rel="stylesheet" /> <script src="site_libs/tocify-1.9.1/jquery.tocify.js"></script> <script src="site_libs/navigation-1.1/tabsets.js"></script> <script src="site_libs/navigation-1.1/codefolding.js"></script> <link href="site_libs/highlightjs-9.12.0/textmate.css" rel="stylesheet" /> <script src="site_libs/highlightjs-9.12.0/highlight.js"></script> <link href="site_libs/font-awesome-4.5.0/css/font-awesome.min.css" rel="stylesheet" /> <style type="text/css">code{white-space: pre;}</style> <style type="text/css"> pre:not([class]) { background-color: white; } </style> <script type="text/javascript"> if (window.hljs) { hljs.configure({languages: []}); hljs.initHighlightingOnLoad(); if (document.readyState && document.readyState === "complete") { window.setTimeout(function() { hljs.initHighlighting(); }, 0); } } </script> <style type="text/css"> h1 { font-size: 34px; } h1.title { font-size: 38px; } h2 { font-size: 30px; } h3 { font-size: 24px; } h4 { font-size: 18px; } h5 { font-size: 16px; } h6 { font-size: 12px; } .table th:not([align]) { text-align: left; } </style> </head> <body> <style type = "text/css"> .main-container { max-width: 940px; margin-left: auto; margin-right: auto; } code { color: inherit; background-color: rgba(0, 0, 0, 0.04); } img { max-width:100%; height: auto; } .tabbed-pane { padding-top: 12px; } button.code-folding-btn:focus { outline: none; } </style> <style type="text/css"> /* padding for bootstrap navbar */ body { padding-top: 51px; padding-bottom: 40px; } /* offset scroll position for anchor links (for fixed navbar) */ .section h1 { padding-top: 56px; margin-top: -56px; } .section h2 { padding-top: 56px; margin-top: -56px; } .section h3 { padding-top: 56px; margin-top: -56px; } .section h4 { padding-top: 56px; margin-top: -56px; } .section h5 { padding-top: 56px; margin-top: -56px; } .section h6 { padding-top: 56px; margin-top: -56px; } </style> <script> // manage active state of menu based on current page $(document).ready(function () { // active menu anchor href = window.location.pathname href = href.substr(href.lastIndexOf('/') + 1) if (href === "") href = "index.html"; var menuAnchor = $('a[href="' + href + '"]'); // mark it active menuAnchor.parent().addClass('active'); // if it's got a parent navbar menu mark it active as well menuAnchor.closest('li.dropdown').addClass('active'); }); </script> <div class="container-fluid main-container"> <!-- tabsets --> <script> $(document).ready(function () { window.buildTabsets("TOC"); }); </script> <!-- code folding --> <style type="text/css"> .code-folding-btn { margin-bottom: 4px; } </style> <script> $(document).ready(function () { window.initializeCodeFolding("hide" === "show"); }); </script> <script> $(document).ready(function () { // move toc-ignore selectors from section div to header $('div.section.toc-ignore') .removeClass('toc-ignore') .children('h1,h2,h3,h4,h5').addClass('toc-ignore'); // establish options var options = { selectors: "h1,h2,h3", theme: "bootstrap3", context: '.toc-content', hashGenerator: function (text) { return text.replace(/[.\\/?&!#<>]/g, '').replace(/\s/g, '_').toLowerCase(); }, ignoreSelector: ".toc-ignore", scrollTo: 0 }; options.showAndHide = true; options.smoothScroll = true; // tocify var toc = $("#TOC").tocify(options).data("toc-tocify"); }); </script> <style type="text/css"> #TOC { margin: 25px 0px 20px 0px; } @media (max-width: 768px) { #TOC { position: relative; width: 100%; } } .toc-content { padding-left: 30px; padding-right: 40px; } div.main-container { max-width: 1200px; } div.tocify { width: 20%; max-width: 260px; max-height: 85%; } @media (min-width: 768px) and (max-width: 991px) { div.tocify { width: 25%; } } @media (max-width: 767px) { div.tocify { width: 100%; max-width: none; } } .tocify ul, .tocify li { line-height: 20px; } .tocify-subheader .tocify-item { font-size: 0.90em; padding-left: 25px; text-indent: 0; } .tocify .list-group-item { border-radius: 0px; } </style> <!-- setup 3col/9col grid for toc_float and main content --> <div class="row-fluid"> <div class="col-xs-12 col-sm-4 col-md-3"> <div id="TOC" class="tocify"> </div> </div> <div class="toc-content col-xs-12 col-sm-8 col-md-9"> <div class="navbar navbar-default navbar-fixed-top" role="navigation"> <div class="container"> <div class="navbar-header"> <button type="button" class="navbar-toggle collapsed" data-toggle="collapse" data-target="#navbar"> <span class="icon-bar"></span> <span class="icon-bar"></span> <span class="icon-bar"></span> </button> <a class="navbar-brand" href="index.html">truncash</a> </div> <div id="navbar" class="navbar-collapse collapse"> <ul class="nav navbar-nav"> <li> <a href="about.html">About</a> </li> <li> <a href="license.html">License</a> </li> </ul> <ul class="nav navbar-nav navbar-right"> <li> <a href="https://github.com/LSun/truncash"> <span class="fa fa-github"></span> </a> </li> </ul> </div><!--/.nav-collapse --> </div><!--/.container --> </div><!--/.navbar --> <!-- Add a small amount of space between sections. --> <style type="text/css"> div.section { padding-top: 12px; } </style> <div class="fluid-row" id="header"> <div class="btn-group pull-right"> <button type="button" class="btn btn-default btn-xs dropdown-toggle" data-toggle="dropdown" aria-haspopup="true" aria-expanded="false"><span>Code</span> <span class="caret"></span></button> <ul class="dropdown-menu" style="min-width: 50px;"> <li><a id="rmd-show-all-code" href="#">Show All Code</a></li> <li><a id="rmd-hide-all-code" href="#">Hide All Code</a></li> </ul> </div> <h1 class="title toc-ignore"><code>CASH</code> Simulations</h1> <h4 class="author"><em>Lei Sun</em></h4> <h4 class="date"><em>2018-02-10</em></h4> </div> <p><strong>Last updated:</strong> 2018-05-15</p> <strong>workflowr checks:</strong> <small>(Click a bullet for more information)</small> <ul> <li> <details> <p><summary> <strong style="color:blue;">✔</strong> <strong>R Markdown file:</strong> up-to-date </summary></p> <p>Great! Since the R Markdown file has been committed to the Git repository, you know the exact version of the code that produced these results.</p> </details> </li> <li> <details> <p><summary> <strong style="color:blue;">✔</strong> <strong>Environment:</strong> empty </summary></p> <p>Great job! The global environment was empty. Objects defined in the global environment can affect the analysis in your R Markdown file in unknown ways. For reproduciblity it’s best to always run the code in an empty environment.</p> </details> </li> <li> <details> <p><summary> <strong style="color:blue;">✔</strong> <strong>Seed:</strong> <code>set.seed(12345)</code> </summary></p> <p>The command <code>set.seed(12345)</code> was run prior to running the code in the R Markdown file. Setting a seed ensures that any results that rely on randomness, e.g. subsampling or permutations, are reproducible.</p> </details> </li> <li> <details> <p><summary> <strong style="color:blue;">✔</strong> <strong>Session information:</strong> recorded </summary></p> <p>Great job! Recording the operating system, R version, and package versions is critical for reproducibility.</p> </details> </li> <li> <details> <p><summary> <strong style="color:blue;">✔</strong> <strong>Repository version:</strong> <a href="https://github.com/LSun/truncash/tree/388e65e06000e313c170a82f3ed57346f6024897" target="_blank">388e65e</a> </summary></p> Great! You are using Git for version control. Tracking code development and connecting the code version to the results is critical for reproducibility. The version displayed above was the version of the Git repository at the time these results were generated. <br><br> Note that you need to be careful to ensure that all relevant files for the analysis have been committed to Git prior to generating the results (you can use <code>wflow_publish</code> or <code>wflow_git_commit</code>). workflowr only checks the R Markdown file, but you know if there are other scripts or data files that it depends on. Below is the status of the Git repository when the results were generated: <pre><code> Ignored files: Ignored: .DS_Store Ignored: .Rhistory Ignored: .Rproj.user/ Ignored: analysis/.DS_Store Ignored: analysis/BH_robustness_cache/ Ignored: analysis/FDR_Null_cache/ Ignored: analysis/FDR_null_betahat_cache/ Ignored: analysis/Rmosek_cache/ Ignored: analysis/StepDown_cache/ Ignored: analysis/alternative2_cache/ Ignored: analysis/alternative_cache/ Ignored: analysis/ash_gd_cache/ Ignored: analysis/average_cor_gtex_2_cache/ Ignored: analysis/average_cor_gtex_cache/ Ignored: analysis/brca_cache/ Ignored: analysis/cash_deconv_cache/ Ignored: analysis/cash_fdr_1_cache/ Ignored: analysis/cash_fdr_2_cache/ Ignored: analysis/cash_fdr_3_cache/ Ignored: analysis/cash_fdr_4_cache/ Ignored: analysis/cash_fdr_5_cache/ Ignored: analysis/cash_fdr_6_cache/ Ignored: analysis/cash_plots_cache/ Ignored: analysis/cash_sim_1_cache/ Ignored: analysis/cash_sim_2_cache/ Ignored: analysis/cash_sim_3_cache/ Ignored: analysis/cash_sim_4_cache/ Ignored: analysis/cash_sim_5_cache/ Ignored: analysis/cash_sim_6_cache/ Ignored: analysis/cash_sim_7_cache/ Ignored: analysis/correlated_z_2_cache/ Ignored: analysis/correlated_z_3_cache/ Ignored: analysis/correlated_z_cache/ Ignored: analysis/create_null_cache/ Ignored: analysis/cutoff_null_cache/ Ignored: analysis/design_matrix_2_cache/ Ignored: analysis/design_matrix_cache/ Ignored: analysis/diagnostic_ash_cache/ Ignored: analysis/diagnostic_correlated_z_2_cache/ Ignored: analysis/diagnostic_correlated_z_3_cache/ Ignored: analysis/diagnostic_correlated_z_cache/ Ignored: analysis/diagnostic_plot_2_cache/ Ignored: analysis/diagnostic_plot_cache/ Ignored: analysis/efron_leukemia_cache/ Ignored: analysis/fitting_normal_cache/ Ignored: analysis/gaussian_derivatives_2_cache/ Ignored: analysis/gaussian_derivatives_3_cache/ Ignored: analysis/gaussian_derivatives_4_cache/ Ignored: analysis/gaussian_derivatives_5_cache/ Ignored: analysis/gaussian_derivatives_cache/ Ignored: analysis/gd-ash_cache/ Ignored: analysis/gd_delta_cache/ Ignored: analysis/gd_lik_2_cache/ Ignored: analysis/gd_lik_cache/ Ignored: analysis/gd_w_cache/ Ignored: analysis/knockoff_10_cache/ Ignored: analysis/knockoff_2_cache/ Ignored: analysis/knockoff_3_cache/ Ignored: analysis/knockoff_4_cache/ Ignored: analysis/knockoff_5_cache/ Ignored: analysis/knockoff_6_cache/ Ignored: analysis/knockoff_7_cache/ Ignored: analysis/knockoff_8_cache/ Ignored: analysis/knockoff_9_cache/ Ignored: analysis/knockoff_cache/ Ignored: analysis/knockoff_var_cache/ Ignored: analysis/marginal_z_alternative_cache/ Ignored: analysis/marginal_z_cache/ Ignored: analysis/mosek_reg_2_cache/ Ignored: analysis/mosek_reg_4_cache/ Ignored: analysis/mosek_reg_5_cache/ Ignored: analysis/mosek_reg_6_cache/ Ignored: analysis/mosek_reg_cache/ Ignored: analysis/pihat0_null_cache/ Ignored: analysis/plot_diagnostic_cache/ Ignored: analysis/poster_obayes17_cache/ Ignored: analysis/real_data_simulation_2_cache/ Ignored: analysis/real_data_simulation_3_cache/ Ignored: analysis/real_data_simulation_4_cache/ Ignored: analysis/real_data_simulation_5_cache/ Ignored: analysis/real_data_simulation_cache/ Ignored: analysis/rmosek_primal_dual_2_cache/ Ignored: analysis/rmosek_primal_dual_cache/ Ignored: analysis/seqgendiff_cache/ Ignored: analysis/simulated_correlated_null_2_cache/ Ignored: analysis/simulated_correlated_null_3_cache/ Ignored: analysis/simulated_correlated_null_cache/ Ignored: analysis/simulation_real_se_2_cache/ Ignored: analysis/simulation_real_se_cache/ Ignored: analysis/smemo_2_cache/ Ignored: data/LSI/ Ignored: docs/.DS_Store Ignored: docs/figure/.DS_Store Ignored: output/fig/ </code></pre> Note that any generated files, e.g. HTML, png, CSS, etc., are not included in this status report because it is ok for generated content to have uncommitted changes. </details> </li> </ul> <details> <summary> <small><strong>Expand here to see past versions:</strong></small> </summary> <ul> <table style="border-collapse:separate; border-spacing:5px;"> <thead> <tr> <th style="text-align:left;"> File </th> <th style="text-align:left;"> Version </th> <th style="text-align:left;"> Author </th> <th style="text-align:left;"> Date </th> <th style="text-align:left;"> Message </th> </tr> </thead> <tbody> <tr> <td style="text-align:left;"> html </td> <td style="text-align:left;"> <a href="https://cdn.rawgit.com/LSun/truncash/b7cf71b4d05a1ea70fdad8da02796d7c0ddc50e8/docs/cash_plots.html" target="_blank">b7cf71b</a> </td> <td style="text-align:left;"> LSun </td> <td style="text-align:left;"> 2018-05-14 </td> <td style="text-align:left;"> Build site. </td> </tr> <tr> <td style="text-align:left;"> rmd </td> <td style="text-align:left;"> <a href="https://github.com/LSun/truncash/blob/69e0c7d38485fae14d795f022ec7f718e9c2a93e/analysis/cash_plots.rmd" target="_blank">69e0c7d</a> </td> <td style="text-align:left;"> LSun </td> <td style="text-align:left;"> 2018-05-14 </td> <td style="text-align:left;"> Update to 1.0 </td> </tr> <tr> <td style="text-align:left;"> html </td> <td style="text-align:left;"> <a href="https://cdn.rawgit.com/LSun/truncash/69e0c7d38485fae14d795f022ec7f718e9c2a93e/docs/cash_plots.html" target="_blank">69e0c7d</a> </td> <td style="text-align:left;"> LSun </td> <td style="text-align:left;"> 2018-05-14 </td> <td style="text-align:left;"> Update to 1.0 </td> </tr> <tr> <td style="text-align:left;"> html </td> <td style="text-align:left;"> <a href="https://cdn.rawgit.com/LSun/truncash/27ef9e3a7d9105ef2924cfb810167a16779f2af9/docs/cash_plots.html" target="_blank">27ef9e3</a> </td> <td style="text-align:left;"> LSun </td> <td style="text-align:left;"> 2018-05-14 </td> <td style="text-align:left;"> Build site. </td> </tr> <tr> <td style="text-align:left;"> rmd </td> <td style="text-align:left;"> <a href="https://github.com/LSun/truncash/blob/22ec0c112638f23411253686a24fd0c9c912011d/analysis/cash_plots.rmd" target="_blank">22ec0c1</a> </td> <td style="text-align:left;"> Lei Sun </td> <td style="text-align:left;"> 2018-05-13 </td> <td style="text-align:left;"> more g </td> </tr> <tr> <td style="text-align:left;"> rmd </td> <td style="text-align:left;"> <a href="https://github.com/LSun/truncash/blob/e3e4aff00a342b1c30af091c4982a9c53b5af6a2/analysis/cash_plots.rmd" target="_blank">e3e4aff</a> </td> <td style="text-align:left;"> Lei Sun </td> <td style="text-align:left;"> 2018-05-13 </td> <td style="text-align:left;"> plots </td> </tr> <tr> <td style="text-align:left;"> rmd </td> <td style="text-align:left;"> <a href="https://github.com/LSun/truncash/blob/49513d83d2da0916b9f9ff8730c76ca110f1f90d/analysis/cash_plots.rmd" target="_blank">49513d8</a> </td> <td style="text-align:left;"> Lei Sun </td> <td style="text-align:left;"> 2018-05-13 </td> <td style="text-align:left;"> g3 </td> </tr> <tr> <td style="text-align:left;"> rmd </td> <td style="text-align:left;"> <a href="https://github.com/LSun/truncash/blob/208f33ef7266a482b8cd1d993a35033d75cd9d90/analysis/cash_plots.rmd" target="_blank">208f33e</a> </td> <td style="text-align:left;"> LSun </td> <td style="text-align:left;"> 2018-05-13 </td> <td style="text-align:left;"> more alternatives </td> </tr> <tr> <td style="text-align:left;"> rmd </td> <td style="text-align:left;"> <a href="https://github.com/LSun/truncash/blob/df1077547b4483343654ed0115b1f12c454afe8f/analysis/cash_plots.rmd" target="_blank">df10775</a> </td> <td style="text-align:left;"> Lei Sun </td> <td style="text-align:left;"> 2018-05-13 </td> <td style="text-align:left;"> bimodal </td> </tr> <tr> <td style="text-align:left;"> html </td> <td style="text-align:left;"> <a href="https://cdn.rawgit.com/LSun/truncash/0eb67ffc48770b8bfe57b04e1c40d06be807a68b/docs/cash_plots.html" target="_blank">0eb67ff</a> </td> <td style="text-align:left;"> LSun </td> <td style="text-align:left;"> 2018-05-13 </td> <td style="text-align:left;"> Build site. </td> </tr> <tr> <td style="text-align:left;"> rmd </td> <td style="text-align:left;"> <a href="https://github.com/LSun/truncash/blob/bdd32ee0e762b459c93a3481d745f78eed646cde/analysis/cash_plots.rmd" target="_blank">bdd32ee</a> </td> <td style="text-align:left;"> LSun </td> <td style="text-align:left;"> 2018-05-13 </td> <td style="text-align:left;"> wflow_publish(“analysis/cash_plots.rmd”) </td> </tr> <tr> <td style="text-align:left;"> rmd </td> <td style="text-align:left;"> <a href="https://github.com/LSun/truncash/blob/ad80febdb53c015f71ec5688f858682187919fd0/analysis/cash_plots.rmd" target="_blank">ad80feb</a> </td> <td style="text-align:left;"> Lei Sun </td> <td style="text-align:left;"> 2018-05-13 </td> <td style="text-align:left;"> plots </td> </tr> <tr> <td style="text-align:left;"> rmd </td> <td style="text-align:left;"> <a href="https://github.com/LSun/truncash/blob/42b59ae0425d31d4af580b241d9233c88669f86b/analysis/cash_plots.rmd" target="_blank">42b59ae</a> </td> <td style="text-align:left;"> LSun </td> <td style="text-align:left;"> 2018-05-13 </td> <td style="text-align:left;"> plot size </td> </tr> <tr> <td style="text-align:left;"> rmd </td> <td style="text-align:left;"> <a href="https://github.com/LSun/truncash/blob/9962d0703fe240be97212489abad282f80a9223a/analysis/cash_plots.rmd" target="_blank">9962d07</a> </td> <td style="text-align:left;"> Lei Sun </td> <td style="text-align:left;"> 2018-05-13 </td> <td style="text-align:left;"> plot size </td> </tr> <tr> <td style="text-align:left;"> rmd </td> <td style="text-align:left;"> <a href="https://github.com/LSun/truncash/blob/97317b47b519d8653ee39fdd19226cc20e758c15/analysis/cash_plots.rmd" target="_blank">97317b4</a> </td> <td style="text-align:left;"> LSun </td> <td style="text-align:left;"> 2018-05-13 </td> <td style="text-align:left;"> cash_pi0 </td> </tr> <tr> <td style="text-align:left;"> rmd </td> <td style="text-align:left;"> <a href="https://github.com/LSun/truncash/blob/8ac1a0704f949df2f92a410f0d04f160a73448ad/analysis/cash_plots.rmd" target="_blank">8ac1a07</a> </td> <td style="text-align:left;"> Lei Sun </td> <td style="text-align:left;"> 2018-05-12 </td> <td style="text-align:left;"> multiple pi0 </td> </tr> <tr> <td style="text-align:left;"> html </td> <td style="text-align:left;"> <a href="https://cdn.rawgit.com/LSun/truncash/e05bc836b3c74dc6ebca415afb5938675d6c5436/docs/cash_plots.html" target="_blank">e05bc83</a> </td> <td style="text-align:left;"> LSun </td> <td style="text-align:left;"> 2018-05-12 </td> <td style="text-align:left;"> Update to 1.0 </td> </tr> <tr> <td style="text-align:left;"> rmd </td> <td style="text-align:left;"> <a href="https://github.com/LSun/truncash/blob/cc0ab8379469bc3726f1508cd81e4ecd6fef1b1a/analysis/cash_plots.rmd" target="_blank">cc0ab83</a> </td> <td style="text-align:left;"> Lei Sun </td> <td style="text-align:left;"> 2018-05-11 </td> <td style="text-align:left;"> update </td> </tr> <tr> <td style="text-align:left;"> html </td> <td style="text-align:left;"> <a href="https://cdn.rawgit.com/LSun/truncash/566a8654839abc68c26d7eeb00980e5cd89b3ab5/docs/cash_plots.html" target="_blank">566a865</a> </td> <td style="text-align:left;"> LSun </td> <td style="text-align:left;"> 2018-05-09 </td> <td style="text-align:left;"> Build site. </td> </tr> <tr> <td style="text-align:left;"> rmd </td> <td style="text-align:left;"> <a href="https://github.com/LSun/truncash/blob/f85ff3f95abc912244162392d4d18f73a5794c06/analysis/cash_plots.rmd" target="_blank">f85ff3f</a> </td> <td style="text-align:left;"> LSun </td> <td style="text-align:left;"> 2018-05-09 </td> <td style="text-align:left;"> wflow_publish(“analysis/cash_plots.rmd”) </td> </tr> <tr> <td style="text-align:left;"> html </td> <td style="text-align:left;"> <a href="https://cdn.rawgit.com/LSun/truncash/564f9cbc4a8c3126ba03c320d03add8cc56c0aad/docs/cash_plots.html" target="_blank">564f9cb</a> </td> <td style="text-align:left;"> LSun </td> <td style="text-align:left;"> 2018-05-06 </td> <td style="text-align:left;"> Build site. </td> </tr> <tr> <td style="text-align:left;"> rmd </td> <td style="text-align:left;"> <a href="https://github.com/LSun/truncash/blob/797cd6939f3c430497c03ce97a2093ee9b29f32c/analysis/cash_plots.rmd" target="_blank">797cd69</a> </td> <td style="text-align:left;"> LSun </td> <td style="text-align:left;"> 2018-05-06 </td> <td style="text-align:left;"> wflow_publish(“analysis/cash_plots.rmd”) </td> </tr> <tr> <td style="text-align:left;"> html </td> <td style="text-align:left;"> <a href="https://cdn.rawgit.com/LSun/truncash/4093362a962261caab72b6d8d091a8d75bf6aa57/docs/cash_plots.html" target="_blank">4093362</a> </td> <td style="text-align:left;"> LSun </td> <td style="text-align:left;"> 2018-04-27 </td> <td style="text-align:left;"> Build site. </td> </tr> <tr> <td style="text-align:left;"> html </td> <td style="text-align:left;"> <a href="https://cdn.rawgit.com/LSun/truncash/37ad45698441ee0ae5eb3202f95e0164d77ef5b7/docs/cash_plots.html" target="_blank">37ad456</a> </td> <td style="text-align:left;"> LSun </td> <td style="text-align:left;"> 2018-04-27 </td> <td style="text-align:left;"> Build site. </td> </tr> <tr> <td style="text-align:left;"> rmd </td> <td style="text-align:left;"> <a href="https://github.com/LSun/truncash/blob/8c99563f2eef4e5cab124d07550cdea171d4d252/analysis/cash_plots.rmd" target="_blank">8c99563</a> </td> <td style="text-align:left;"> LSun </td> <td style="text-align:left;"> 2018-04-27 </td> <td style="text-align:left;"> wflow_publish(“analysis/cash_plots.rmd”) </td> </tr> <tr> <td style="text-align:left;"> rmd </td> <td style="text-align:left;"> <a href="https://github.com/LSun/truncash/blob/434b541bdc15b2dc25ba567a00b400a3adca728e/analysis/cash_plots.rmd" target="_blank">434b541</a> </td> <td style="text-align:left;"> Lei Sun </td> <td style="text-align:left;"> 2018-04-13 </td> <td style="text-align:left;"> FDP q </td> </tr> <tr> <td style="text-align:left;"> html </td> <td style="text-align:left;"> <a href="https://cdn.rawgit.com/LSun/truncash/7e7b2d1056ce9271efcec0a9c683c5ead20fadcc/docs/cash_plots.html" target="_blank">7e7b2d1</a> </td> <td style="text-align:left;"> LSun </td> <td style="text-align:left;"> 2018-04-12 </td> <td style="text-align:left;"> Build site. </td> </tr> <tr> <td style="text-align:left;"> rmd </td> <td style="text-align:left;"> <a href="https://github.com/LSun/truncash/blob/3a1e4cccb478491f57bfcb67c445abb3ef01b754/analysis/cash_plots.rmd" target="_blank">3a1e4cc</a> </td> <td style="text-align:left;"> LSun </td> <td style="text-align:left;"> 2018-04-12 </td> <td style="text-align:left;"> wflow_publish(“analysis/cash_plots.rmd”) </td> </tr> <tr> <td style="text-align:left;"> html </td> <td style="text-align:left;"> <a href="https://cdn.rawgit.com/LSun/truncash/d022714b2f3ed96ed6023463e86b00853d0e4af7/docs/cash_plots.html" target="_blank">d022714</a> </td> <td style="text-align:left;"> LSun </td> <td style="text-align:left;"> 2018-02-22 </td> <td style="text-align:left;"> cash </td> </tr> <tr> <td style="text-align:left;"> rmd </td> <td style="text-align:left;"> <a href="https://github.com/LSun/truncash/blob/e94c1d3faaabce53937a14402cbd7a141b7eb094/analysis/cash_plots.rmd" target="_blank">e94c1d3</a> </td> <td style="text-align:left;"> LSun </td> <td style="text-align:left;"> 2018-02-22 </td> <td style="text-align:left;"> cash plots </td> </tr> <tr> <td style="text-align:left;"> html </td> <td style="text-align:left;"> <a href="https://cdn.rawgit.com/LSun/truncash/898349224d5515a514c73d486a1ec606b8ddf32e/docs/cash_plots.html" target="_blank">8983492</a> </td> <td style="text-align:left;"> LSun </td> <td style="text-align:left;"> 2018-02-21 </td> <td style="text-align:left;"> Build site. </td> </tr> <tr> <td style="text-align:left;"> rmd </td> <td style="text-align:left;"> <a href="https://github.com/LSun/truncash/blob/5902dc9ac06021c1fe2118b450831535b2cd9ecb/analysis/cash_plots.rmd" target="_blank">5902dc9</a> </td> <td style="text-align:left;"> LSun </td> <td style="text-align:left;"> 2018-02-21 </td> <td style="text-align:left;"> wflow_publish(“~/GitHub/truncash/analysis/cash_plots.rmd”) </td> </tr> <tr> <td style="text-align:left;"> rmd </td> <td style="text-align:left;"> <a href="https://github.com/LSun/truncash/blob/48787a24c36b1a24e129936b2748cc52d1397d8a/analysis/cash_plots.rmd" target="_blank">48787a2</a> </td> <td style="text-align:left;"> Lei Sun </td> <td style="text-align:left;"> 2018-02-16 </td> <td style="text-align:left;"> cash plots </td> </tr> <tr> <td style="text-align:left;"> rmd </td> <td style="text-align:left;"> <a href="https://github.com/LSun/truncash/blob/ff78840417d28f89acda4ced9358de7dc499bf01/analysis/cash_plots.rmd" target="_blank">ff78840</a> </td> <td style="text-align:left;"> LSun </td> <td style="text-align:left;"> 2018-02-16 </td> <td style="text-align:left;"> cash_plots </td> </tr> <tr> <td style="text-align:left;"> html </td> <td style="text-align:left;"> <a href="https://cdn.rawgit.com/LSun/truncash/e4ecc944e59aa28a6791b0064a1c4e66a539e9a6/docs/cash_plots.html" target="_blank">e4ecc94</a> </td> <td style="text-align:left;"> LSun </td> <td style="text-align:left;"> 2018-02-16 </td> <td style="text-align:left;"> Build site. </td> </tr> <tr> <td style="text-align:left;"> rmd </td> <td style="text-align:left;"> <a href="https://github.com/LSun/truncash/blob/2898ce9a1fd6100e144c03e810a018dcbb95a8f2/analysis/cash_plots.rmd" target="_blank">2898ce9</a> </td> <td style="text-align:left;"> LSun </td> <td style="text-align:left;"> 2018-02-16 </td> <td style="text-align:left;"> wflow_publish(“analysis/cash_plots.rmd”) </td> </tr> <tr> <td style="text-align:left;"> html </td> <td style="text-align:left;"> <a href="https://cdn.rawgit.com/LSun/truncash/7c34000d9661213f6beaf89c08f5385487f40c87/docs/cash_plots.html" target="_blank">7c34000</a> </td> <td style="text-align:left;"> LSun </td> <td style="text-align:left;"> 2018-02-15 </td> <td style="text-align:left;"> Build site. </td> </tr> <tr> <td style="text-align:left;"> rmd </td> <td style="text-align:left;"> <a href="https://github.com/LSun/truncash/blob/cc05dc761a08501debf921040a8c82272670f4de/analysis/cash_plots.rmd" target="_blank">cc05dc7</a> </td> <td style="text-align:left;"> LSun </td> <td style="text-align:left;"> 2018-02-15 </td> <td style="text-align:left;"> wflow_publish(“analysis/cash_plots.rmd”) </td> </tr> <tr> <td style="text-align:left;"> rmd </td> <td style="text-align:left;"> <a href="https://github.com/LSun/truncash/blob/4d857f76f9fb42a3c75dd097694e2aebcd2a36b9/analysis/cash_plots.rmd" target="_blank">4d857f7</a> </td> <td style="text-align:left;"> Lei Sun </td> <td style="text-align:left;"> 2018-02-14 </td> <td style="text-align:left;"> plots </td> </tr> <tr> <td style="text-align:left;"> html </td> <td style="text-align:left;"> <a href="https://cdn.rawgit.com/LSun/truncash/f6f0ca05166b95be517673adcc3d213590001693/docs/cash_plots.html" target="_blank">f6f0ca0</a> </td> <td style="text-align:left;"> LSun </td> <td style="text-align:left;"> 2018-02-14 </td> <td style="text-align:left;"> Build site. </td> </tr> <tr> <td style="text-align:left;"> rmd </td> <td style="text-align:left;"> <a href="https://github.com/LSun/truncash/blob/3af89d27f95275a2cfeb3d23237e813930357c8c/analysis/cash_plots.rmd" target="_blank">3af89d2</a> </td> <td style="text-align:left;"> LSun </td> <td style="text-align:left;"> 2018-02-14 </td> <td style="text-align:left;"> wflow_publish(“analysis/cash_plots.rmd”) </td> </tr> <tr> <td style="text-align:left;"> rmd </td> <td style="text-align:left;"> <a href="https://github.com/LSun/truncash/blob/d2473f1d284215968bb9e32a89c65de7a10b877f/analysis/cash_plots.rmd" target="_blank">d2473f1</a> </td> <td style="text-align:left;"> Lei Sun </td> <td style="text-align:left;"> 2018-02-14 </td> <td style="text-align:left;"> cash_plots </td> </tr> <tr> <td style="text-align:left;"> html </td> <td style="text-align:left;"> <a href="https://cdn.rawgit.com/LSun/truncash/d2473f1d284215968bb9e32a89c65de7a10b877f/docs/cash_plots.html" target="_blank">d2473f1</a> </td> <td style="text-align:left;"> Lei Sun </td> <td style="text-align:left;"> 2018-02-14 </td> <td style="text-align:left;"> cash_plots </td> </tr> </tbody> </table> </ul> </details> <hr /> <pre class="r"><code>source("../code/gdfit.R") source("../code/gdash_lik.R") source("../code/count_to_summary.R") library(ashr) library(locfdr) library(qvalue) library(reshape2) library(ggplot2) library(grid) library(gridExtra) library(RColorBrewer) library(scales) library(cowplot) library(ggpubr)</code></pre> <pre class="r"><code>mean_sdp <- function (x) { m <- mean(x) ymax <- m + sd(x) return(c(y = m, ymax = ymax, ymin = m)) } mad.mean <- function (x) { return(mean(abs(x - median(x)))) } FDP <- function (FDR, qvalue, beta) { return(sum(qvalue <= FDR & beta == 0) / max(sum(qvalue <= FDR), 1)) } pFDP <- function (FDR, qvalue, beta) { return(sum(qvalue <= FDR & beta == 0) / sum(qvalue <= FDR)) } power <- function (FDR, qvalue, beta) { return(sum(qvalue <= FDR & beta != 0) / sum(beta != 0)) }</code></pre> <pre class="r"><code>r <- readRDS("../data/liver.rds")</code></pre> <pre class="r"><code>top_genes_index = function (g, X) { return(order(rowSums(X), decreasing = TRUE)[1 : g]) } lcpm = function (r) { R = colSums(r) t(log2(((t(r) + 0.5) / (R + 1)) * 10^6)) }</code></pre> <pre class="r"><code>nsamp <- 5 ngene <- 1e4 pi0.vec <- c(0.5, 0.9, 0.99)</code></pre> <pre class="r"><code>Y = lcpm(r) subset = top_genes_index(ngene, Y) r = r[subset,]</code></pre> <div id="g_1-nleft0-22right" class="section level2"> <h2><span class="math inline">\(g_1 = N\left(0, 2^2\right)\)</span></h2> <pre class="r"><code>q.vec <- seq(0.001, 0.20, by = 0.001) method.name <- c("BHq", "qvalue", "locfdr", "ASH", "CASH")</code></pre> <pre class="r"><code>FDP.array <- pFDP.array <- power.array <- array(0, dim = c(nsim, length(q.vec), length(method.name), length(pi0.vec))) FDP.summary <- array(0, dim = c(7, length(q.vec), length(method.name), length(pi0.vec))) pFDP.summary <- power.summary <- array(0, dim = c(5, length(q.vec), length(method.name), length(pi0.vec))) for (j in seq(length(pi0.vec))) { for (k in seq(length(method.name))) { for (i in seq(nsim)) { FDP.array[i, , k, j] <- sapply(q.vec, FDP, qvalue = qvalue.pi0.list[[j]][[i]][, k], beta = beta.pi0.list[[j]][[i]]) pFDP.array[i, , k, j] <- sapply(q.vec, pFDP, qvalue = qvalue.pi0.list[[j]][[i]][, k], beta = beta.pi0.list[[j]][[i]]) power.array[i, , k, j] <- sapply(q.vec, power, qvalue = qvalue.pi0.list[[j]][[i]][, k], beta = beta.pi0.list[[j]][[i]]) } FDP.summary[, , k, j] <- rbind( avg <- colMeans(FDP.array[, , k, j], na.rm = TRUE), sd <- apply(FDP.array[, , k, j], 2, sd, na.rm = TRUE), n <- colSums(!is.na(FDP.array[, , k, j])), q975 <- apply(FDP.array[, , k, j], 2, quantile, probs = 0.975, na.rm = TRUE), q025 <- apply(FDP.array[, , k, j], 2, quantile, probs = 0.025, na.rm = TRUE), q750 <- apply(FDP.array[, , k, j], 2, quantile, probs = 0.75, na.rm = TRUE), q250 <- apply(FDP.array[, , k, j], 2, quantile, probs = 0.25, na.rm = TRUE) ) pFDP.summary[, , k, j] <- rbind( avg <- colMeans(pFDP.array[, , k, j], na.rm = TRUE), sd <- apply(pFDP.array[, , k, j], 2, sd, na.rm = TRUE), n <- colSums(!is.na(pFDP.array[, , k, j])), q975 <- apply(pFDP.array[, , k, j], 2, quantile, probs = 0.975, na.rm = TRUE), q025 <- apply(pFDP.array[, , k, j], 2, quantile, probs = 0.025, na.rm = TRUE) ) power.summary[, , k, j] <- rbind( avg <- colMeans(power.array[, , k, j], na.rm = TRUE), sd <- apply(power.array[, , k, j], 2, sd, na.rm = TRUE), n <- colSums(!is.na(power.array[, , k, j])), q975 <- apply(power.array[, , k, j], 2, quantile, probs = 0.975, na.rm = TRUE), q025 <- apply(power.array[, , k, j], 2, quantile, probs = 0.025, na.rm = TRUE) ) } }</code></pre> <pre class="r"><code>q <- 0.1 z.over <- 1.05 z.under <- 0.95 method.col <- scales::hue_pal()(5) # method.col <- c("#377eb8", "#984ea3", "#4daf4a", "#ff7f00", "#e41a1c")</code></pre> <pre class="r"><code>for (j in seq(length(pi0.vec))) { sd.z <- sapply(z.pi0.list[[j]], sd) Noise <- cut(sd.z, breaks = c(0, quantile(sd.z, probs = 1 : 2 / 3), Inf), labels = c("Deflated Noise", "In-between", "Inflated Noise")) # Noise <- cut(sd.z, breaks = c(0, z.under, z.over, Inf), labels = c("Deflated Noise", "In-between", "Inflated Noise")) pi0.pi0 <- matrix(unlist(pi0.pi0.list[[j]]), byrow = TRUE, length(pi0.pi0.list[[j]])) pi0.pi0.noise <- rbind.data.frame(cbind.data.frame(Noise, pi0.pi0), cbind.data.frame(Noise = rep("All", length(Noise)), pi0.pi0)) pi0.plot <- ggplot(data = melt(pi0.pi0.noise, id.vars = "Noise"), aes(x = variable, y = value, col = variable)) + geom_boxplot() + stat_summary(fun.y = mean, geom = "point", shape = 13, size = 3) + scale_color_manual(values = method.col[-1]) + facet_wrap(~Noise, nrow = 1, ncol = 4) + geom_hline(yintercept = pi0.vec[j], col = "black", linetype = "dashed", size = 1) + scale_x_discrete(labels = method.name[-1]) + labs(x = "", y = expression(hat(pi)[0])) + theme(legend.position = "none", plot.title = element_text(hjust = 0.5, size = 15), axis.title.y = element_text(size = 15), axis.text.x = element_text(size = 15, angle = 45, hjust = 1), axis.text.y = element_text(size = 15), strip.text = element_text(size = 15)) FDP.summary.pi0 <- aperm(FDP.summary[, , , j], c(2, 1, 3)) FDP.summary.pi0.method <- FDP.summary.pi0[, , 1] for (kk in 2 : length(method.name)) { FDP.summary.pi0.method <- rbind.data.frame(FDP.summary.pi0.method, FDP.summary.pi0[, , kk]) } FDP.summary.pi0.method <- cbind.data.frame( rep(factor(seq(method.name)), each = dim(FDP.summary.pi0)[1]), rep(q.vec, length(method.name)), FDP.summary.pi0.method ) colnames(FDP.summary.pi0.method) <- c( "Method", "FDR", "FDP", "sd", "n", "q975", "q025", "q750", "q250" ) FDP.array.pi0 <- aperm(FDP.array[, , , j], c(2, 1, 3)) FDP.pi0.noise <- as.vector(aperm(apply(FDP.array.pi0, c(1, 3), tapply, Noise, mean, na.rm = TRUE), c(2, 1, 3))) sd.pi0.noise <- as.vector(aperm(apply(FDP.array.pi0, c(1, 3), tapply, Noise, sd, na.rm = TRUE), c(2, 1, 3))) n.pi0.noise <- as.vector(aperm(apply(FDP.array.pi0, c(1, 3), tapply, Noise, function(x){sum(!is.na(x))}), c(2, 1, 3))) q975.pi0.noise <- as.vector(aperm(apply(FDP.array.pi0, c(1, 3), tapply, Noise, quantile, probs = 0.975, na.rm = TRUE), c(2, 1, 3))) q025.pi0.noise <- as.vector(aperm(apply(FDP.array.pi0, c(1, 3), tapply, Noise, quantile, probs = 0.025, na.rm = TRUE), c(2, 1, 3))) q750.pi0.noise <- as.vector(aperm(apply(FDP.array.pi0, c(1, 3), tapply, Noise, quantile, probs = 0.75, na.rm = TRUE), c(2, 1, 3))) q250.pi0.noise <- as.vector(aperm(apply(FDP.array.pi0, c(1, 3), tapply, Noise, quantile, probs = 0.25, na.rm = TRUE), c(2, 1, 3))) FDP.summary.pi0.method.noise <- cbind.data.frame( rep(rep(levels(Noise), each = length(q.vec)), length(method.name)), rep(factor(seq(method.name)), each = length(levels(Noise)) * length(q.vec)), rep(q.vec, length(levels(Noise)) * length(method.name)), FDP.pi0.noise, sd.pi0.noise, n.pi0.noise, q975.pi0.noise, q025.pi0.noise, q750.pi0.noise, q250.pi0.noise ) colnames(FDP.summary.pi0.method.noise) <- c( "Noise", "Method", "FDR", "FDP", "sd", "n", "q975", "q025", "q750", "q250" ) FDP.summary.pi0.method.noise <- rbind.data.frame( FDP.summary.pi0.method.noise, cbind.data.frame(Noise = rep("All", dim(FDP.summary.pi0.method)[1]), FDP.summary.pi0.method) ) FDR.calib.plot <- ggplot(data = FDP.summary.pi0.method.noise, aes(x = FDR, y = FDP, group = Method, col = Method)) + geom_line() + geom_ribbon(aes(ymin = q025, ymax = q975, fill = Method), alpha = 0.35, linetype = "blank") + scale_color_manual(labels = method.name, values = method.col) + scale_fill_manual(labels = method.name, values = method.col) + facet_wrap(~Noise, nrow = 1, ncol = 4) + geom_abline(slope = 1, intercept = 0, linetype = "dashed", size = 1, col = "black") + labs(x = "Nominal FDR", y = "FDP") + theme(legend.position = "top", legend.text = element_text(size = 15), plot.title = element_text(hjust = 0.5, size = 15), axis.title.x = element_text(size = 15), axis.title.y = element_text(size = 15), axis.text.x = element_text(angle = 45, size = 15), axis.text.y = element_text(size = 15), strip.text = element_text(size = 15)) FDP.q <- FDP.array[, which(round(q.vec, 4) == q), , j] FDP.q.noise <- rbind.data.frame(cbind.data.frame(Noise, FDP.q), cbind.data.frame(Noise = rep("All", length(Noise)), FDP.q)) FDR.plot <- ggplot(data = melt(FDP.q.noise, id.vars = "Noise"), aes(x = variable, y = value, col = variable)) + geom_boxplot() + stat_summary(fun.y = mean, geom = "point", shape = 13, size = 3) + scale_color_manual(values = method.col) + facet_wrap(~Noise, nrow = 1, ncol = 4) + geom_hline(yintercept = q, col = "black", linetype = "dashed", size = 1) + scale_x_discrete(labels = method.name) + labs(x = "", y = "FDP") + theme(legend.position = "none", plot.title = element_text(hjust = 0.5, size = 15), axis.title.y = element_text(size = 15), axis.text.x = element_text(size = 15, angle = 45, hjust = 1), axis.text.y = element_text(size = 15), strip.text = element_text(size = 15)) TDP.q <- power.array[, which(round(q.vec, 4) == q), , j] TDP.q.noise <- rbind.data.frame(cbind.data.frame(Noise, TDP.q), cbind.data.frame(Noise = rep("All", length(Noise)), TDP.q)) power.plot <- ggplot(data = melt(TDP.q.noise, id.vars = "Noise"), aes(x = variable, y = value, col = variable)) + geom_boxplot() + stat_summary(fun.y = mean, geom = "point", shape = 13, size = 3) + scale_color_manual(values = method.col) + facet_wrap(~Noise, nrow = 1, ncol = 4) + scale_x_discrete(labels = method.name) + labs(x = "", y = "TPP") + theme(legend.position = "none", plot.title = element_text(hjust = 0.5, size = 15), axis.title.y = element_text(size = 15), axis.text.x = element_text(size = 15, angle = 45, hjust = 1), axis.text.y = element_text(size = 15), strip.text = element_text(size = 15)) joint <- ggarrange(FDR.calib.plot, pi0.plot + rremove("x.text"), FDR.plot + rremove("x.text"), power.plot, align = "v", ncol = 1, nrow = 4, heights = c(1.5, 1, 1, 1.2) ) joint <- annotate_figure(joint, top = text_grob(bquote(pi[0] == .(pi0.vec[j])), size = 15) ) print(joint) ggsave(paste0("../output/fig/g1_pi0_", pi0.vec[j], ".pdf"), joint, height = 10, width = 8) }</code></pre> <p><img src="figure/cash_plots.rmd/unnamed-chunk-8-1.png" width="672" style="display: block; margin: auto;" /></p> <details> <summary><em>Expand here to see past versions of unnamed-chunk-8-1.png:</em></summary> <table style = "border-collapse:separate; border-spacing:5px;"> <thead> <tr> <th style="text-align:left;"> Version </th> <th style="text-align:left;"> Author </th> <th style="text-align:left;"> Date </th> </tr> </thead> <tbody> <tr> <td style="text-align:left;"> <a href="https://github.com/LSun/truncash/blob/0eb67ffc48770b8bfe57b04e1c40d06be807a68b/docs/figure/cash_plots.rmd/unnamed-chunk-8-1.png" target="_blank">0eb67ff</a> </td> <td style="text-align:left;"> LSun </td> <td style="text-align:left;"> 2018-05-13 </td> </tr> </tbody> </table> </details> <p><img src="figure/cash_plots.rmd/unnamed-chunk-8-2.png" width="672" style="display: block; margin: auto;" /></p> <details> <summary><em>Expand here to see past versions of unnamed-chunk-8-2.png:</em></summary> <table style = "border-collapse:separate; border-spacing:5px;"> <thead> <tr> <th style="text-align:left;"> Version </th> <th style="text-align:left;"> Author </th> <th style="text-align:left;"> Date </th> </tr> </thead> <tbody> <tr> <td style="text-align:left;"> <a href="https://github.com/LSun/truncash/blob/0eb67ffc48770b8bfe57b04e1c40d06be807a68b/docs/figure/cash_plots.rmd/unnamed-chunk-8-2.png" target="_blank">0eb67ff</a> </td> <td style="text-align:left;"> LSun </td> <td style="text-align:left;"> 2018-05-13 </td> </tr> </tbody> </table> </details> <p><img src="figure/cash_plots.rmd/unnamed-chunk-8-3.png" width="672" style="display: block; margin: auto;" /></p> <details> <summary><em>Expand here to see past versions of unnamed-chunk-8-3.png:</em></summary> <table style = "border-collapse:separate; border-spacing:5px;"> <thead> <tr> <th style="text-align:left;"> Version </th> <th style="text-align:left;"> Author </th> <th style="text-align:left;"> Date </th> </tr> </thead> <tbody> <tr> <td style="text-align:left;"> <a href="https://github.com/LSun/truncash/blob/0eb67ffc48770b8bfe57b04e1c40d06be807a68b/docs/figure/cash_plots.rmd/unnamed-chunk-8-3.png" target="_blank">0eb67ff</a> </td> <td style="text-align:left;"> LSun </td> <td style="text-align:left;"> 2018-05-13 </td> </tr> </tbody> </table> </details> </div> <div id="bimodal-g_2-0.5-nleft-2-1right-0.5-nleft2-1right" class="section level2"> <h2>Bimodal: <span class="math inline">\(g_2 = 0.5 N\left(-2, 1\right) + 0.5 N\left(2, 1\right)\)</span></h2> <pre class="r"><code>FDP.array <- pFDP.array <- power.array <- array(0, dim = c(nsim, length(q.vec), length(method.name), length(pi0.vec))) FDP.summary <- array(0, dim = c(7, length(q.vec), length(method.name), length(pi0.vec))) pFDP.summary <- power.summary <- array(0, dim = c(5, length(q.vec), length(method.name), length(pi0.vec))) for (j in seq(length(pi0.vec))) { for (k in seq(length(method.name))) { for (i in seq(nsim)) { FDP.array[i, , k, j] <- sapply(q.vec, FDP, qvalue = qvalue.pi0.list[[j]][[i]][, k], beta = beta.pi0.list[[j]][[i]]) pFDP.array[i, , k, j] <- sapply(q.vec, pFDP, qvalue = qvalue.pi0.list[[j]][[i]][, k], beta = beta.pi0.list[[j]][[i]]) power.array[i, , k, j] <- sapply(q.vec, power, qvalue = qvalue.pi0.list[[j]][[i]][, k], beta = beta.pi0.list[[j]][[i]]) } FDP.summary[, , k, j] <- rbind( avg <- colMeans(FDP.array[, , k, j], na.rm = TRUE), sd <- apply(FDP.array[, , k, j], 2, sd, na.rm = TRUE), n <- colSums(!is.na(FDP.array[, , k, j])), q975 <- apply(FDP.array[, , k, j], 2, quantile, probs = 0.975, na.rm = TRUE), q025 <- apply(FDP.array[, , k, j], 2, quantile, probs = 0.025, na.rm = TRUE), q750 <- apply(FDP.array[, , k, j], 2, quantile, probs = 0.75, na.rm = TRUE), q250 <- apply(FDP.array[, , k, j], 2, quantile, probs = 0.25, na.rm = TRUE) ) pFDP.summary[, , k, j] <- rbind( avg <- colMeans(pFDP.array[, , k, j], na.rm = TRUE), sd <- apply(pFDP.array[, , k, j], 2, sd, na.rm = TRUE), n <- colSums(!is.na(pFDP.array[, , k, j])), q975 <- apply(pFDP.array[, , k, j], 2, quantile, probs = 0.975, na.rm = TRUE), q025 <- apply(pFDP.array[, , k, j], 2, quantile, probs = 0.025, na.rm = TRUE) ) power.summary[, , k, j] <- rbind( avg <- colMeans(power.array[, , k, j], na.rm = TRUE), sd <- apply(power.array[, , k, j], 2, sd, na.rm = TRUE), n <- colSums(!is.na(power.array[, , k, j])), q975 <- apply(power.array[, , k, j], 2, quantile, probs = 0.975, na.rm = TRUE), q025 <- apply(power.array[, , k, j], 2, quantile, probs = 0.025, na.rm = TRUE) ) } }</code></pre> <pre class="r"><code>for (j in seq(length(pi0.vec))) { sd.z <- sapply(z.pi0.list[[j]], sd) Noise <- cut(sd.z, breaks = c(0, quantile(sd.z, probs = 1 : 2 / 3), Inf), labels = c("Deflated Noise", "In-between", "Inflated Noise")) # Noise <- cut(sd.z, breaks = c(0, z.under, z.over, Inf), labels = c("Deflated Noise", "In-between", "Inflated Noise")) pi0.pi0 <- matrix(unlist(pi0.pi0.list[[j]]), byrow = TRUE, length(pi0.pi0.list[[j]])) pi0.pi0.noise <- rbind.data.frame(cbind.data.frame(Noise, pi0.pi0), cbind.data.frame(Noise = rep("All", length(Noise)), pi0.pi0)) pi0.plot <- ggplot(data = melt(pi0.pi0.noise, id.vars = "Noise"), aes(x = variable, y = value, col = variable)) + geom_boxplot() + stat_summary(fun.y = mean, geom = "point", shape = 13, size = 3) + scale_color_manual(values = method.col[-1]) + facet_wrap(~Noise, nrow = 1, ncol = 4) + geom_hline(yintercept = pi0.vec[j], col = "black", linetype = "dashed", size = 1) + scale_x_discrete(labels = method.name[-1]) + labs(x = "", y = expression(hat(pi)[0])) + theme(legend.position = "none", plot.title = element_text(hjust = 0.5, size = 15), axis.title.y = element_text(size = 15), axis.text.x = element_text(size = 15, angle = 45, hjust = 1), axis.text.y = element_text(size = 15), strip.text = element_text(size = 15)) FDP.summary.pi0 <- aperm(FDP.summary[, , , j], c(2, 1, 3)) FDP.summary.pi0.method <- FDP.summary.pi0[, , 1] for (kk in 2 : length(method.name)) { FDP.summary.pi0.method <- rbind.data.frame(FDP.summary.pi0.method, FDP.summary.pi0[, , kk]) } FDP.summary.pi0.method <- cbind.data.frame( rep(factor(seq(method.name)), each = dim(FDP.summary.pi0)[1]), rep(q.vec, length(method.name)), FDP.summary.pi0.method ) colnames(FDP.summary.pi0.method) <- c( "Method", "FDR", "FDP", "sd", "n", "q975", "q025", "q750", "q250" ) FDP.array.pi0 <- aperm(FDP.array[, , , j], c(2, 1, 3)) FDP.pi0.noise <- as.vector(aperm(apply(FDP.array.pi0, c(1, 3), tapply, Noise, mean, na.rm = TRUE), c(2, 1, 3))) sd.pi0.noise <- as.vector(aperm(apply(FDP.array.pi0, c(1, 3), tapply, Noise, sd, na.rm = TRUE), c(2, 1, 3))) n.pi0.noise <- as.vector(aperm(apply(FDP.array.pi0, c(1, 3), tapply, Noise, function(x){sum(!is.na(x))}), c(2, 1, 3))) q975.pi0.noise <- as.vector(aperm(apply(FDP.array.pi0, c(1, 3), tapply, Noise, quantile, probs = 0.975, na.rm = TRUE), c(2, 1, 3))) q025.pi0.noise <- as.vector(aperm(apply(FDP.array.pi0, c(1, 3), tapply, Noise, quantile, probs = 0.025, na.rm = TRUE), c(2, 1, 3))) q750.pi0.noise <- as.vector(aperm(apply(FDP.array.pi0, c(1, 3), tapply, Noise, quantile, probs = 0.75, na.rm = TRUE), c(2, 1, 3))) q250.pi0.noise <- as.vector(aperm(apply(FDP.array.pi0, c(1, 3), tapply, Noise, quantile, probs = 0.25, na.rm = TRUE), c(2, 1, 3))) FDP.summary.pi0.method.noise <- cbind.data.frame( rep(rep(levels(Noise), each = length(q.vec)), length(method.name)), rep(factor(seq(method.name)), each = length(levels(Noise)) * length(q.vec)), rep(q.vec, length(levels(Noise)) * length(method.name)), FDP.pi0.noise, sd.pi0.noise, n.pi0.noise, q975.pi0.noise, q025.pi0.noise, q750.pi0.noise, q250.pi0.noise ) colnames(FDP.summary.pi0.method.noise) <- c( "Noise", "Method", "FDR", "FDP", "sd", "n", "q975", "q025", "q750", "q250" ) FDP.summary.pi0.method.noise <- rbind.data.frame( FDP.summary.pi0.method.noise, cbind.data.frame(Noise = rep("All", dim(FDP.summary.pi0.method)[1]), FDP.summary.pi0.method) ) FDR.calib.plot <- ggplot(data = FDP.summary.pi0.method.noise, aes(x = FDR, y = FDP, group = Method, col = Method)) + geom_line() + geom_ribbon(aes(ymin = q025, ymax = q975, fill = Method), alpha = 0.35, linetype = "blank") + scale_color_manual(labels = method.name, values = method.col) + scale_fill_manual(labels = method.name, values = method.col) + facet_wrap(~Noise, nrow = 1, ncol = 4) + geom_abline(slope = 1, intercept = 0, linetype = "dashed", size = 1, col = "black") + labs(x = "Nominal FDR", y = "FDP") + theme(legend.position = "top", legend.text = element_text(size = 15), plot.title = element_text(hjust = 0.5, size = 15), axis.title.x = element_text(size = 15), axis.title.y = element_text(size = 15), axis.text.x = element_text(angle = 45, size = 15), axis.text.y = element_text(size = 15), strip.text = element_text(size = 15)) FDP.q <- FDP.array[, which(round(q.vec, 4) == q), , j] FDP.q.noise <- rbind.data.frame(cbind.data.frame(Noise, FDP.q), cbind.data.frame(Noise = rep("All", length(Noise)), FDP.q)) FDR.plot <- ggplot(data = melt(FDP.q.noise, id.vars = "Noise"), aes(x = variable, y = value, col = variable)) + geom_boxplot() + stat_summary(fun.y = mean, geom = "point", shape = 13, size = 3) + scale_color_manual(values = method.col) + facet_wrap(~Noise, nrow = 1, ncol = 4) + geom_hline(yintercept = q, col = "black", linetype = "dashed", size = 1) + scale_x_discrete(labels = method.name) + labs(x = "", y = "FDP") + theme(legend.position = "none", plot.title = element_text(hjust = 0.5, size = 15), axis.title.y = element_text(size = 15), axis.text.x = element_text(size = 15, angle = 45, hjust = 1), axis.text.y = element_text(size = 15), strip.text = element_text(size = 15)) TDP.q <- power.array[, which(round(q.vec, 4) == q), , j] TDP.q.noise <- rbind.data.frame(cbind.data.frame(Noise, TDP.q), cbind.data.frame(Noise = rep("All", length(Noise)), TDP.q)) power.plot <- ggplot(data = melt(TDP.q.noise, id.vars = "Noise"), aes(x = variable, y = value, col = variable)) + geom_boxplot() + stat_summary(fun.y = mean, geom = "point", shape = 13, size = 3) + scale_color_manual(values = method.col) + facet_wrap(~Noise, nrow = 1, ncol = 4) + scale_x_discrete(labels = method.name) + labs(x = "", y = "TPP") + theme(legend.position = "none", plot.title = element_text(hjust = 0.5, size = 15), axis.title.y = element_text(size = 15), axis.text.x = element_text(size = 15, angle = 45, hjust = 1), axis.text.y = element_text(size = 15), strip.text = element_text(size = 15)) joint <- ggarrange(FDR.calib.plot, pi0.plot + rremove("x.text"), FDR.plot + rremove("x.text"), power.plot, align = "v", ncol = 1, nrow = 4, heights = c(1.5, 1, 1, 1.2) ) joint <- annotate_figure(joint, top = text_grob(bquote(pi[0] == .(pi0.vec[j])), size = 15) ) print(joint) ggsave(paste0("../output/fig/g2_pi0_", pi0.vec[j], ".pdf"), joint, height = 10, width = 8) }</code></pre> <p><img src="figure/cash_plots.rmd/unnamed-chunk-10-1.png" width="672" style="display: block; margin: auto;" /></p> <details> <summary><em>Expand here to see past versions of unnamed-chunk-10-1.png:</em></summary> <table style = "border-collapse:separate; border-spacing:5px;"> <thead> <tr> <th style="text-align:left;"> Version </th> <th style="text-align:left;"> Author </th> <th style="text-align:left;"> Date </th> </tr> </thead> <tbody> <tr> <td style="text-align:left;"> <a href="https://github.com/LSun/truncash/blob/27ef9e3a7d9105ef2924cfb810167a16779f2af9/docs/figure/cash_plots.rmd/unnamed-chunk-10-1.png" target="_blank">27ef9e3</a> </td> <td style="text-align:left;"> LSun </td> <td style="text-align:left;"> 2018-05-14 </td> </tr> </tbody> </table> </details> <p><img src="figure/cash_plots.rmd/unnamed-chunk-10-2.png" width="672" style="display: block; margin: auto;" /></p> <details> <summary><em>Expand here to see past versions of unnamed-chunk-10-2.png:</em></summary> <table style = "border-collapse:separate; border-spacing:5px;"> <thead> <tr> <th style="text-align:left;"> Version </th> <th style="text-align:left;"> Author </th> <th style="text-align:left;"> Date </th> </tr> </thead> <tbody> <tr> <td style="text-align:left;"> <a href="https://github.com/LSun/truncash/blob/27ef9e3a7d9105ef2924cfb810167a16779f2af9/docs/figure/cash_plots.rmd/unnamed-chunk-10-2.png" target="_blank">27ef9e3</a> </td> <td style="text-align:left;"> LSun </td> <td style="text-align:left;"> 2018-05-14 </td> </tr> </tbody> </table> </details> <p><img src="figure/cash_plots.rmd/unnamed-chunk-10-3.png" width="672" style="display: block; margin: auto;" /></p> <details> <summary><em>Expand here to see past versions of unnamed-chunk-10-3.png:</em></summary> <table style = "border-collapse:separate; border-spacing:5px;"> <thead> <tr> <th style="text-align:left;"> Version </th> <th style="text-align:left;"> Author </th> <th style="text-align:left;"> Date </th> </tr> </thead> <tbody> <tr> <td style="text-align:left;"> <a href="https://github.com/LSun/truncash/blob/27ef9e3a7d9105ef2924cfb810167a16779f2af9/docs/figure/cash_plots.rmd/unnamed-chunk-10-3.png" target="_blank">27ef9e3</a> </td> <td style="text-align:left;"> LSun </td> <td style="text-align:left;"> 2018-05-14 </td> </tr> </tbody> </table> </details> </div> <div id="spiky-g_3-0.4-nleft0-0.52right-0.2-nleft0-12right-0.2-nleft0-22right-0.2-nleft0-32right" class="section level2"> <h2>Spiky: <span class="math inline">\(g_3 = 0.4 N\left(0, 0.5^2\right) + 0.2 N\left(0, 1^2\right) + 0.2 N\left(0, 2^2\right) + 0.2 N\left(0, 3^2\right)\)</span></h2> <pre class="r"><code>FDP.array <- pFDP.array <- power.array <- array(0, dim = c(nsim, length(q.vec), length(method.name), length(pi0.vec))) FDP.summary <- array(0, dim = c(7, length(q.vec), length(method.name), length(pi0.vec))) pFDP.summary <- power.summary <- array(0, dim = c(5, length(q.vec), length(method.name), length(pi0.vec))) for (j in seq(length(pi0.vec))) { for (k in seq(length(method.name))) { for (i in seq(nsim)) { FDP.array[i, , k, j] <- sapply(q.vec, FDP, qvalue = qvalue.pi0.list[[j]][[i]][, k], beta = beta.pi0.list[[j]][[i]]) pFDP.array[i, , k, j] <- sapply(q.vec, pFDP, qvalue = qvalue.pi0.list[[j]][[i]][, k], beta = beta.pi0.list[[j]][[i]]) power.array[i, , k, j] <- sapply(q.vec, power, qvalue = qvalue.pi0.list[[j]][[i]][, k], beta = beta.pi0.list[[j]][[i]]) } FDP.summary[, , k, j] <- rbind( avg <- colMeans(FDP.array[, , k, j], na.rm = TRUE), sd <- apply(FDP.array[, , k, j], 2, sd, na.rm = TRUE), n <- colSums(!is.na(FDP.array[, , k, j])), q975 <- apply(FDP.array[, , k, j], 2, quantile, probs = 0.975, na.rm = TRUE), q025 <- apply(FDP.array[, , k, j], 2, quantile, probs = 0.025, na.rm = TRUE), q750 <- apply(FDP.array[, , k, j], 2, quantile, probs = 0.75, na.rm = TRUE), q250 <- apply(FDP.array[, , k, j], 2, quantile, probs = 0.25, na.rm = TRUE) ) pFDP.summary[, , k, j] <- rbind( avg <- colMeans(pFDP.array[, , k, j], na.rm = TRUE), sd <- apply(pFDP.array[, , k, j], 2, sd, na.rm = TRUE), n <- colSums(!is.na(pFDP.array[, , k, j])), q975 <- apply(pFDP.array[, , k, j], 2, quantile, probs = 0.975, na.rm = TRUE), q025 <- apply(pFDP.array[, , k, j], 2, quantile, probs = 0.025, na.rm = TRUE) ) power.summary[, , k, j] <- rbind( avg <- colMeans(power.array[, , k, j], na.rm = TRUE), sd <- apply(power.array[, , k, j], 2, sd, na.rm = TRUE), n <- colSums(!is.na(power.array[, , k, j])), q975 <- apply(power.array[, , k, j], 2, quantile, probs = 0.975, na.rm = TRUE), q025 <- apply(power.array[, , k, j], 2, quantile, probs = 0.025, na.rm = TRUE) ) } }</code></pre> <pre class="r"><code>for (j in seq(length(pi0.vec))) { sd.z <- sapply(z.pi0.list[[j]], sd) Noise <- cut(sd.z, breaks = c(0, quantile(sd.z, probs = 1 : 2 / 3), Inf), labels = c("Deflated Noise", "In-between", "Inflated Noise")) # Noise <- cut(sd.z, breaks = c(0, z.under, z.over, Inf), labels = c("Deflated Noise", "In-between", "Inflated Noise")) pi0.pi0 <- matrix(unlist(pi0.pi0.list[[j]]), byrow = TRUE, length(pi0.pi0.list[[j]])) pi0.pi0.noise <- rbind.data.frame(cbind.data.frame(Noise, pi0.pi0), cbind.data.frame(Noise = rep("All", length(Noise)), pi0.pi0)) pi0.plot <- ggplot(data = melt(pi0.pi0.noise, id.vars = "Noise"), aes(x = variable, y = value, col = variable)) + geom_boxplot() + stat_summary(fun.y = mean, geom = "point", shape = 13, size = 3) + scale_color_manual(values = method.col[-1]) + facet_wrap(~Noise, nrow = 1, ncol = 4) + geom_hline(yintercept = pi0.vec[j], col = "black", linetype = "dashed", size = 1) + scale_x_discrete(labels = method.name[-1]) + labs(x = "", y = expression(hat(pi)[0])) + theme(legend.position = "none", plot.title = element_text(hjust = 0.5, size = 15), axis.title.y = element_text(size = 15), axis.text.x = element_text(size = 15, angle = 45, hjust = 1), axis.text.y = element_text(size = 15), strip.text = element_text(size = 15)) FDP.summary.pi0 <- aperm(FDP.summary[, , , j], c(2, 1, 3)) FDP.summary.pi0.method <- FDP.summary.pi0[, , 1] for (kk in 2 : length(method.name)) { FDP.summary.pi0.method <- rbind.data.frame(FDP.summary.pi0.method, FDP.summary.pi0[, , kk]) } FDP.summary.pi0.method <- cbind.data.frame( rep(factor(seq(method.name)), each = dim(FDP.summary.pi0)[1]), rep(q.vec, length(method.name)), FDP.summary.pi0.method ) colnames(FDP.summary.pi0.method) <- c( "Method", "FDR", "FDP", "sd", "n", "q975", "q025", "q750", "q250" ) FDP.array.pi0 <- aperm(FDP.array[, , , j], c(2, 1, 3)) FDP.pi0.noise <- as.vector(aperm(apply(FDP.array.pi0, c(1, 3), tapply, Noise, mean, na.rm = TRUE), c(2, 1, 3))) sd.pi0.noise <- as.vector(aperm(apply(FDP.array.pi0, c(1, 3), tapply, Noise, sd, na.rm = TRUE), c(2, 1, 3))) n.pi0.noise <- as.vector(aperm(apply(FDP.array.pi0, c(1, 3), tapply, Noise, function(x){sum(!is.na(x))}), c(2, 1, 3))) q975.pi0.noise <- as.vector(aperm(apply(FDP.array.pi0, c(1, 3), tapply, Noise, quantile, probs = 0.975, na.rm = TRUE), c(2, 1, 3))) q025.pi0.noise <- as.vector(aperm(apply(FDP.array.pi0, c(1, 3), tapply, Noise, quantile, probs = 0.025, na.rm = TRUE), c(2, 1, 3))) q750.pi0.noise <- as.vector(aperm(apply(FDP.array.pi0, c(1, 3), tapply, Noise, quantile, probs = 0.75, na.rm = TRUE), c(2, 1, 3))) q250.pi0.noise <- as.vector(aperm(apply(FDP.array.pi0, c(1, 3), tapply, Noise, quantile, probs = 0.25, na.rm = TRUE), c(2, 1, 3))) FDP.summary.pi0.method.noise <- cbind.data.frame( rep(rep(levels(Noise), each = length(q.vec)), length(method.name)), rep(factor(seq(method.name)), each = length(levels(Noise)) * length(q.vec)), rep(q.vec, length(levels(Noise)) * length(method.name)), FDP.pi0.noise, sd.pi0.noise, n.pi0.noise, q975.pi0.noise, q025.pi0.noise, q750.pi0.noise, q250.pi0.noise ) colnames(FDP.summary.pi0.method.noise) <- c( "Noise", "Method", "FDR", "FDP", "sd", "n", "q975", "q025", "q750", "q250" ) FDP.summary.pi0.method.noise <- rbind.data.frame( FDP.summary.pi0.method.noise, cbind.data.frame(Noise = rep("All", dim(FDP.summary.pi0.method)[1]), FDP.summary.pi0.method) ) FDR.calib.plot <- ggplot(data = FDP.summary.pi0.method.noise, aes(x = FDR, y = FDP, group = Method, col = Method)) + geom_line() + geom_ribbon(aes(ymin = q025, ymax = q975, fill = Method), alpha = 0.35, linetype = "blank") + scale_color_manual(labels = method.name, values = method.col) + scale_fill_manual(labels = method.name, values = method.col) + facet_wrap(~Noise, nrow = 1, ncol = 4) + geom_abline(slope = 1, intercept = 0, linetype = "dashed", size = 1, col = "black") + labs(x = "Nominal FDR", y = "FDP") + theme(legend.position = "top", legend.text = element_text(size = 15), plot.title = element_text(hjust = 0.5, size = 15), axis.title.x = element_text(size = 15), axis.title.y = element_text(size = 15), axis.text.x = element_text(angle = 45, size = 15), axis.text.y = element_text(size = 15), strip.text = element_text(size = 15)) FDP.q <- FDP.array[, which(round(q.vec, 4) == q), , j] FDP.q.noise <- rbind.data.frame(cbind.data.frame(Noise, FDP.q), cbind.data.frame(Noise = rep("All", length(Noise)), FDP.q)) FDR.plot <- ggplot(data = melt(FDP.q.noise, id.vars = "Noise"), aes(x = variable, y = value, col = variable)) + geom_boxplot() + stat_summary(fun.y = mean, geom = "point", shape = 13, size = 3) + scale_color_manual(values = method.col) + facet_wrap(~Noise, nrow = 1, ncol = 4) + geom_hline(yintercept = q, col = "black", linetype = "dashed", size = 1) + scale_x_discrete(labels = method.name) + labs(x = "", y = "FDP") + theme(legend.position = "none", plot.title = element_text(hjust = 0.5, size = 15), axis.title.y = element_text(size = 15), axis.text.x = element_text(size = 15, angle = 45, hjust = 1), axis.text.y = element_text(size = 15), strip.text = element_text(size = 15)) TDP.q <- power.array[, which(round(q.vec, 4) == q), , j] TDP.q.noise <- rbind.data.frame(cbind.data.frame(Noise, TDP.q), cbind.data.frame(Noise = rep("All", length(Noise)), TDP.q)) power.plot <- ggplot(data = melt(TDP.q.noise, id.vars = "Noise"), aes(x = variable, y = value, col = variable)) + geom_boxplot() + stat_summary(fun.y = mean, geom = "point", shape = 13, size = 3) + scale_color_manual(values = method.col) + facet_wrap(~Noise, nrow = 1, ncol = 4) + scale_x_discrete(labels = method.name) + labs(x = "", y = "TPP") + theme(legend.position = "none", plot.title = element_text(hjust = 0.5, size = 15), axis.title.y = element_text(size = 15), axis.text.x = element_text(size = 15, angle = 45, hjust = 1), axis.text.y = element_text(size = 15), strip.text = element_text(size = 15)) joint <- ggarrange(FDR.calib.plot, pi0.plot + rremove("x.text"), FDR.plot + rremove("x.text"), power.plot, align = "v", ncol = 1, nrow = 4, heights = c(1.5, 1, 1, 1.2) ) joint <- annotate_figure(joint, top = text_grob(bquote(pi[0] == .(pi0.vec[j])), size = 15) ) print(joint) ggsave(paste0("../output/fig/g3_pi0_", pi0.vec[j], ".pdf"), joint, height = 10, width = 8) }</code></pre> <p><img src="figure/cash_plots.rmd/unnamed-chunk-12-1.png" width="672" style="display: block; margin: auto;" /></p> <details> <summary><em>Expand here to see past versions of unnamed-chunk-12-1.png:</em></summary> <table style = "border-collapse:separate; border-spacing:5px;"> <thead> <tr> <th style="text-align:left;"> Version </th> <th style="text-align:left;"> Author </th> <th style="text-align:left;"> Date </th> </tr> </thead> <tbody> <tr> <td style="text-align:left;"> <a href="https://github.com/LSun/truncash/blob/27ef9e3a7d9105ef2924cfb810167a16779f2af9/docs/figure/cash_plots.rmd/unnamed-chunk-12-1.png" target="_blank">27ef9e3</a> </td> <td style="text-align:left;"> LSun </td> <td style="text-align:left;"> 2018-05-14 </td> </tr> <tr> <td style="text-align:left;"> <a href="https://github.com/LSun/truncash/blob/37ad45698441ee0ae5eb3202f95e0164d77ef5b7/docs/figure/cash_plots.rmd/unnamed-chunk-12-1.png" target="_blank">37ad456</a> </td> <td style="text-align:left;"> LSun </td> <td style="text-align:left;"> 2018-04-27 </td> </tr> </tbody> </table> </details> <p><img src="figure/cash_plots.rmd/unnamed-chunk-12-2.png" width="672" style="display: block; margin: auto;" /></p> <details> <summary><em>Expand here to see past versions of unnamed-chunk-12-2.png:</em></summary> <table style = "border-collapse:separate; border-spacing:5px;"> <thead> <tr> <th style="text-align:left;"> Version </th> <th style="text-align:left;"> Author </th> <th style="text-align:left;"> Date </th> </tr> </thead> <tbody> <tr> <td style="text-align:left;"> <a href="https://github.com/LSun/truncash/blob/27ef9e3a7d9105ef2924cfb810167a16779f2af9/docs/figure/cash_plots.rmd/unnamed-chunk-12-2.png" target="_blank">27ef9e3</a> </td> <td style="text-align:left;"> LSun </td> <td style="text-align:left;"> 2018-05-14 </td> </tr> <tr> <td style="text-align:left;"> <a href="https://github.com/LSun/truncash/blob/37ad45698441ee0ae5eb3202f95e0164d77ef5b7/docs/figure/cash_plots.rmd/unnamed-chunk-12-2.png" target="_blank">37ad456</a> </td> <td style="text-align:left;"> LSun </td> <td style="text-align:left;"> 2018-04-27 </td> </tr> </tbody> </table> </details> <p><img src="figure/cash_plots.rmd/unnamed-chunk-12-3.png" width="672" style="display: block; margin: auto;" /></p> <details> <summary><em>Expand here to see past versions of unnamed-chunk-12-3.png:</em></summary> <table style = "border-collapse:separate; border-spacing:5px;"> <thead> <tr> <th style="text-align:left;"> Version </th> <th style="text-align:left;"> Author </th> <th style="text-align:left;"> Date </th> </tr> </thead> <tbody> <tr> <td style="text-align:left;"> <a href="https://github.com/LSun/truncash/blob/27ef9e3a7d9105ef2924cfb810167a16779f2af9/docs/figure/cash_plots.rmd/unnamed-chunk-12-3.png" target="_blank">27ef9e3</a> </td> <td style="text-align:left;"> LSun </td> <td style="text-align:left;"> 2018-05-14 </td> </tr> </tbody> </table> </details> </div> <div id="flattop-g_4-1-13-left-nleft-3-0.52right-nleft-2.5-0.52right-nleft-2-0.52right-nleft-1.5-0.52right-nleft-1-0.52right-nleft-0.5-0.52right-nleft0-0.52right-nleft0.5-0.52right-nleft1-0.52right-nleft1.5-0.52right-nleft2-0.52right-nleft2.5-0.52right-nleft3-0.52right-right" class="section level2"> <h2>Flattop: <span class="math inline">\(g_4 = 1 / 13 \left( N\left(-3, 0.5^2\right) + N\left(-2.5, 0.5^2\right) + N\left(-2, 0.5^2\right) + N\left(-1.5, 0.5^2\right) + N\left(-1, 0.5^2\right) + N\left(-0.5, 0.5^2\right) + N\left(0, 0.5^2\right) + N\left(0.5, 0.5^2\right) + N\left(1, 0.5^2\right) + N\left(1.5, 0.5^2\right) + N\left(2, 0.5^2\right) + N\left(2.5, 0.5^2\right) + N\left(3, 0.5^2\right) \right)\)</span></h2> <pre class="r"><code>FDP.array <- pFDP.array <- power.array <- array(0, dim = c(nsim, length(q.vec), length(method.name), length(pi0.vec))) FDP.summary <- array(0, dim = c(7, length(q.vec), length(method.name), length(pi0.vec))) pFDP.summary <- power.summary <- array(0, dim = c(5, length(q.vec), length(method.name), length(pi0.vec))) for (j in seq(length(pi0.vec))) { for (k in seq(length(method.name))) { for (i in seq(nsim)) { FDP.array[i, , k, j] <- sapply(q.vec, FDP, qvalue = qvalue.pi0.list[[j]][[i]][, k], beta = beta.pi0.list[[j]][[i]]) pFDP.array[i, , k, j] <- sapply(q.vec, pFDP, qvalue = qvalue.pi0.list[[j]][[i]][, k], beta = beta.pi0.list[[j]][[i]]) power.array[i, , k, j] <- sapply(q.vec, power, qvalue = qvalue.pi0.list[[j]][[i]][, k], beta = beta.pi0.list[[j]][[i]]) } FDP.summary[, , k, j] <- rbind( avg <- colMeans(FDP.array[, , k, j], na.rm = TRUE), sd <- apply(FDP.array[, , k, j], 2, sd, na.rm = TRUE), n <- colSums(!is.na(FDP.array[, , k, j])), q975 <- apply(FDP.array[, , k, j], 2, quantile, probs = 0.975, na.rm = TRUE), q025 <- apply(FDP.array[, , k, j], 2, quantile, probs = 0.025, na.rm = TRUE), q750 <- apply(FDP.array[, , k, j], 2, quantile, probs = 0.75, na.rm = TRUE), q250 <- apply(FDP.array[, , k, j], 2, quantile, probs = 0.25, na.rm = TRUE) ) pFDP.summary[, , k, j] <- rbind( avg <- colMeans(pFDP.array[, , k, j], na.rm = TRUE), sd <- apply(pFDP.array[, , k, j], 2, sd, na.rm = TRUE), n <- colSums(!is.na(pFDP.array[, , k, j])), q975 <- apply(pFDP.array[, , k, j], 2, quantile, probs = 0.975, na.rm = TRUE), q025 <- apply(pFDP.array[, , k, j], 2, quantile, probs = 0.025, na.rm = TRUE) ) power.summary[, , k, j] <- rbind( avg <- colMeans(power.array[, , k, j], na.rm = TRUE), sd <- apply(power.array[, , k, j], 2, sd, na.rm = TRUE), n <- colSums(!is.na(power.array[, , k, j])), q975 <- apply(power.array[, , k, j], 2, quantile, probs = 0.975, na.rm = TRUE), q025 <- apply(power.array[, , k, j], 2, quantile, probs = 0.025, na.rm = TRUE) ) } }</code></pre> <pre class="r"><code>for (j in seq(length(pi0.vec))) { sd.z <- sapply(z.pi0.list[[j]], sd) Noise <- cut(sd.z, breaks = c(0, quantile(sd.z, probs = 1 : 2 / 3), Inf), labels = c("Deflated Noise", "In-between", "Inflated Noise")) # Noise <- cut(sd.z, breaks = c(0, z.under, z.over, Inf), labels = c("Deflated Noise", "In-between", "Inflated Noise")) pi0.pi0 <- matrix(unlist(pi0.pi0.list[[j]]), byrow = TRUE, length(pi0.pi0.list[[j]])) pi0.pi0.noise <- rbind.data.frame(cbind.data.frame(Noise, pi0.pi0), cbind.data.frame(Noise = rep("All", length(Noise)), pi0.pi0)) pi0.plot <- ggplot(data = melt(pi0.pi0.noise, id.vars = "Noise"), aes(x = variable, y = value, col = variable)) + geom_boxplot() + stat_summary(fun.y = mean, geom = "point", shape = 13, size = 3) + scale_color_manual(values = method.col[-1]) + facet_wrap(~Noise, nrow = 1, ncol = 4) + geom_hline(yintercept = pi0.vec[j], col = "black", linetype = "dashed", size = 1) + scale_x_discrete(labels = method.name[-1]) + labs(x = "", y = expression(hat(pi)[0])) + theme(legend.position = "none", plot.title = element_text(hjust = 0.5, size = 15), axis.title.y = element_text(size = 15), axis.text.x = element_text(size = 15, angle = 45, hjust = 1), axis.text.y = element_text(size = 15), strip.text = element_text(size = 15)) FDP.summary.pi0 <- aperm(FDP.summary[, , , j], c(2, 1, 3)) FDP.summary.pi0.method <- FDP.summary.pi0[, , 1] for (kk in 2 : length(method.name)) { FDP.summary.pi0.method <- rbind.data.frame(FDP.summary.pi0.method, FDP.summary.pi0[, , kk]) } FDP.summary.pi0.method <- cbind.data.frame( rep(factor(seq(method.name)), each = dim(FDP.summary.pi0)[1]), rep(q.vec, length(method.name)), FDP.summary.pi0.method ) colnames(FDP.summary.pi0.method) <- c( "Method", "FDR", "FDP", "sd", "n", "q975", "q025", "q750", "q250" ) FDP.array.pi0 <- aperm(FDP.array[, , , j], c(2, 1, 3)) FDP.pi0.noise <- as.vector(aperm(apply(FDP.array.pi0, c(1, 3), tapply, Noise, mean, na.rm = TRUE), c(2, 1, 3))) sd.pi0.noise <- as.vector(aperm(apply(FDP.array.pi0, c(1, 3), tapply, Noise, sd, na.rm = TRUE), c(2, 1, 3))) n.pi0.noise <- as.vector(aperm(apply(FDP.array.pi0, c(1, 3), tapply, Noise, function(x){sum(!is.na(x))}), c(2, 1, 3))) q975.pi0.noise <- as.vector(aperm(apply(FDP.array.pi0, c(1, 3), tapply, Noise, quantile, probs = 0.975, na.rm = TRUE), c(2, 1, 3))) q025.pi0.noise <- as.vector(aperm(apply(FDP.array.pi0, c(1, 3), tapply, Noise, quantile, probs = 0.025, na.rm = TRUE), c(2, 1, 3))) q750.pi0.noise <- as.vector(aperm(apply(FDP.array.pi0, c(1, 3), tapply, Noise, quantile, probs = 0.75, na.rm = TRUE), c(2, 1, 3))) q250.pi0.noise <- as.vector(aperm(apply(FDP.array.pi0, c(1, 3), tapply, Noise, quantile, probs = 0.25, na.rm = TRUE), c(2, 1, 3))) FDP.summary.pi0.method.noise <- cbind.data.frame( rep(rep(levels(Noise), each = length(q.vec)), length(method.name)), rep(factor(seq(method.name)), each = length(levels(Noise)) * length(q.vec)), rep(q.vec, length(levels(Noise)) * length(method.name)), FDP.pi0.noise, sd.pi0.noise, n.pi0.noise, q975.pi0.noise, q025.pi0.noise, q750.pi0.noise, q250.pi0.noise ) colnames(FDP.summary.pi0.method.noise) <- c( "Noise", "Method", "FDR", "FDP", "sd", "n", "q975", "q025", "q750", "q250" ) FDP.summary.pi0.method.noise <- rbind.data.frame( FDP.summary.pi0.method.noise, cbind.data.frame(Noise = rep("All", dim(FDP.summary.pi0.method)[1]), FDP.summary.pi0.method) ) FDR.calib.plot <- ggplot(data = FDP.summary.pi0.method.noise, aes(x = FDR, y = FDP, group = Method, col = Method)) + geom_line() + geom_ribbon(aes(ymin = q025, ymax = q975, fill = Method), alpha = 0.35, linetype = "blank") + scale_color_manual(labels = method.name, values = method.col) + scale_fill_manual(labels = method.name, values = method.col) + facet_wrap(~Noise, nrow = 1, ncol = 4) + geom_abline(slope = 1, intercept = 0, linetype = "dashed", size = 1, col = "black") + labs(x = "Nominal FDR", y = "FDP") + theme(legend.position = "top", legend.text = element_text(size = 15), plot.title = element_text(hjust = 0.5, size = 15), axis.title.x = element_text(size = 15), axis.title.y = element_text(size = 15), axis.text.x = element_text(angle = 45, size = 15), axis.text.y = element_text(size = 15), strip.text = element_text(size = 15)) FDP.q <- FDP.array[, which(round(q.vec, 4) == q), , j] FDP.q.noise <- rbind.data.frame(cbind.data.frame(Noise, FDP.q), cbind.data.frame(Noise = rep("All", length(Noise)), FDP.q)) FDR.plot <- ggplot(data = melt(FDP.q.noise, id.vars = "Noise"), aes(x = variable, y = value, col = variable)) + geom_boxplot() + stat_summary(fun.y = mean, geom = "point", shape = 13, size = 3) + scale_color_manual(values = method.col) + facet_wrap(~Noise, nrow = 1, ncol = 4) + geom_hline(yintercept = q, col = "black", linetype = "dashed", size = 1) + scale_x_discrete(labels = method.name) + labs(x = "", y = "FDP") + theme(legend.position = "none", plot.title = element_text(hjust = 0.5, size = 15), axis.title.y = element_text(size = 15), axis.text.x = element_text(size = 15, angle = 45, hjust = 1), axis.text.y = element_text(size = 15), strip.text = element_text(size = 15)) TDP.q <- power.array[, which(round(q.vec, 4) == q), , j] TDP.q.noise <- rbind.data.frame(cbind.data.frame(Noise, TDP.q), cbind.data.frame(Noise = rep("All", length(Noise)), TDP.q)) power.plot <- ggplot(data = melt(TDP.q.noise, id.vars = "Noise"), aes(x = variable, y = value, col = variable)) + geom_boxplot() + stat_summary(fun.y = mean, geom = "point", shape = 13, size = 3) + scale_color_manual(values = method.col) + facet_wrap(~Noise, nrow = 1, ncol = 4) + scale_x_discrete(labels = method.name) + labs(x = "", y = "TPP") + theme(legend.position = "none", plot.title = element_text(hjust = 0.5, size = 15), axis.title.y = element_text(size = 15), axis.text.x = element_text(size = 15, angle = 45, hjust = 1), axis.text.y = element_text(size = 15), strip.text = element_text(size = 15)) joint <- ggarrange(FDR.calib.plot, pi0.plot + rremove("x.text"), FDR.plot + rremove("x.text"), power.plot, align = "v", ncol = 1, nrow = 4, heights = c(1.5, 1, 1, 1.2) ) joint <- annotate_figure(joint, top = text_grob(bquote(pi[0] == .(pi0.vec[j])), size = 15) ) print(joint) ggsave(paste0("../output/fig/g4_pi0_", pi0.vec[j], ".pdf"), joint, height = 10, width = 8) }</code></pre> <p><img src="figure/cash_plots.rmd/unnamed-chunk-14-1.png" width="672" style="display: block; margin: auto;" /></p> <details> <summary><em>Expand here to see past versions of unnamed-chunk-14-1.png:</em></summary> <table style = "border-collapse:separate; border-spacing:5px;"> <thead> <tr> <th style="text-align:left;"> Version </th> <th style="text-align:left;"> Author </th> <th style="text-align:left;"> Date </th> </tr> </thead> <tbody> <tr> <td style="text-align:left;"> <a href="https://github.com/LSun/truncash/blob/27ef9e3a7d9105ef2924cfb810167a16779f2af9/docs/figure/cash_plots.rmd/unnamed-chunk-14-1.png" target="_blank">27ef9e3</a> </td> <td style="text-align:left;"> LSun </td> <td style="text-align:left;"> 2018-05-14 </td> </tr> </tbody> </table> </details> <p><img src="figure/cash_plots.rmd/unnamed-chunk-14-2.png" width="672" style="display: block; margin: auto;" /></p> <details> <summary><em>Expand here to see past versions of unnamed-chunk-14-2.png:</em></summary> <table style = "border-collapse:separate; border-spacing:5px;"> <thead> <tr> <th style="text-align:left;"> Version </th> <th style="text-align:left;"> Author </th> <th style="text-align:left;"> Date </th> </tr> </thead> <tbody> <tr> <td style="text-align:left;"> <a href="https://github.com/LSun/truncash/blob/27ef9e3a7d9105ef2924cfb810167a16779f2af9/docs/figure/cash_plots.rmd/unnamed-chunk-14-2.png" target="_blank">27ef9e3</a> </td> <td style="text-align:left;"> LSun </td> <td style="text-align:left;"> 2018-05-14 </td> </tr> </tbody> </table> </details> <p><img src="figure/cash_plots.rmd/unnamed-chunk-14-3.png" width="672" style="display: block; margin: auto;" /></p> <details> <summary><em>Expand here to see past versions of unnamed-chunk-14-3.png:</em></summary> <table style = "border-collapse:separate; border-spacing:5px;"> <thead> <tr> <th style="text-align:left;"> Version </th> <th style="text-align:left;"> Author </th> <th style="text-align:left;"> Date </th> </tr> </thead> <tbody> <tr> <td style="text-align:left;"> <a href="https://github.com/LSun/truncash/blob/27ef9e3a7d9105ef2924cfb810167a16779f2af9/docs/figure/cash_plots.rmd/unnamed-chunk-14-3.png" target="_blank">27ef9e3</a> </td> <td style="text-align:left;"> LSun </td> <td style="text-align:left;"> 2018-05-14 </td> </tr> </tbody> </table> </details> </div> <div id="near-normal-g_5-0.6-nleft0-12right-0.4-nleft0-32right" class="section level2"> <h2>Near normal: <span class="math inline">\(g_5 = 0.6 N\left(0, 1^2\right) + 0.4 N\left(0, 3^2\right)\)</span></h2> <pre class="r"><code>FDP.array <- pFDP.array <- power.array <- array(0, dim = c(nsim, length(q.vec), length(method.name), length(pi0.vec))) FDP.summary <- array(0, dim = c(7, length(q.vec), length(method.name), length(pi0.vec))) pFDP.summary <- power.summary <- array(0, dim = c(5, length(q.vec), length(method.name), length(pi0.vec))) for (j in seq(length(pi0.vec))) { for (k in seq(length(method.name))) { for (i in seq(nsim)) { FDP.array[i, , k, j] <- sapply(q.vec, FDP, qvalue = qvalue.pi0.list[[j]][[i]][, k], beta = beta.pi0.list[[j]][[i]]) pFDP.array[i, , k, j] <- sapply(q.vec, pFDP, qvalue = qvalue.pi0.list[[j]][[i]][, k], beta = beta.pi0.list[[j]][[i]]) power.array[i, , k, j] <- sapply(q.vec, power, qvalue = qvalue.pi0.list[[j]][[i]][, k], beta = beta.pi0.list[[j]][[i]]) } FDP.summary[, , k, j] <- rbind( avg <- colMeans(FDP.array[, , k, j], na.rm = TRUE), sd <- apply(FDP.array[, , k, j], 2, sd, na.rm = TRUE), n <- colSums(!is.na(FDP.array[, , k, j])), q975 <- apply(FDP.array[, , k, j], 2, quantile, probs = 0.975, na.rm = TRUE), q025 <- apply(FDP.array[, , k, j], 2, quantile, probs = 0.025, na.rm = TRUE), q750 <- apply(FDP.array[, , k, j], 2, quantile, probs = 0.75, na.rm = TRUE), q250 <- apply(FDP.array[, , k, j], 2, quantile, probs = 0.25, na.rm = TRUE) ) pFDP.summary[, , k, j] <- rbind( avg <- colMeans(pFDP.array[, , k, j], na.rm = TRUE), sd <- apply(pFDP.array[, , k, j], 2, sd, na.rm = TRUE), n <- colSums(!is.na(pFDP.array[, , k, j])), q975 <- apply(pFDP.array[, , k, j], 2, quantile, probs = 0.975, na.rm = TRUE), q025 <- apply(pFDP.array[, , k, j], 2, quantile, probs = 0.025, na.rm = TRUE) ) power.summary[, , k, j] <- rbind( avg <- colMeans(power.array[, , k, j], na.rm = TRUE), sd <- apply(power.array[, , k, j], 2, sd, na.rm = TRUE), n <- colSums(!is.na(power.array[, , k, j])), q975 <- apply(power.array[, , k, j], 2, quantile, probs = 0.975, na.rm = TRUE), q025 <- apply(power.array[, , k, j], 2, quantile, probs = 0.025, na.rm = TRUE) ) } }</code></pre> <pre class="r"><code>for (j in seq(length(pi0.vec))) { sd.z <- sapply(z.pi0.list[[j]], sd) Noise <- cut(sd.z, breaks = c(0, quantile(sd.z, probs = 1 : 2 / 3), Inf), labels = c("Deflated Noise", "In-between", "Inflated Noise")) # Noise <- cut(sd.z, breaks = c(0, z.under, z.over, Inf), labels = c("Deflated Noise", "In-between", "Inflated Noise")) pi0.pi0 <- matrix(unlist(pi0.pi0.list[[j]]), byrow = TRUE, length(pi0.pi0.list[[j]])) pi0.pi0.noise <- rbind.data.frame(cbind.data.frame(Noise, pi0.pi0), cbind.data.frame(Noise = rep("All", length(Noise)), pi0.pi0)) pi0.plot <- ggplot(data = melt(pi0.pi0.noise, id.vars = "Noise"), aes(x = variable, y = value, col = variable)) + geom_boxplot() + stat_summary(fun.y = mean, geom = "point", shape = 13, size = 3) + scale_color_manual(values = method.col[-1]) + facet_wrap(~Noise, nrow = 1, ncol = 4) + geom_hline(yintercept = pi0.vec[j], col = "black", linetype = "dashed", size = 1) + scale_x_discrete(labels = method.name[-1]) + labs(x = "", y = expression(hat(pi)[0])) + theme(legend.position = "none", plot.title = element_text(hjust = 0.5, size = 15), axis.title.y = element_text(size = 15), axis.text.x = element_text(size = 15, angle = 45, hjust = 1), axis.text.y = element_text(size = 15), strip.text = element_text(size = 15)) FDP.summary.pi0 <- aperm(FDP.summary[, , , j], c(2, 1, 3)) FDP.summary.pi0.method <- FDP.summary.pi0[, , 1] for (kk in 2 : length(method.name)) { FDP.summary.pi0.method <- rbind.data.frame(FDP.summary.pi0.method, FDP.summary.pi0[, , kk]) } FDP.summary.pi0.method <- cbind.data.frame( rep(factor(seq(method.name)), each = dim(FDP.summary.pi0)[1]), rep(q.vec, length(method.name)), FDP.summary.pi0.method ) colnames(FDP.summary.pi0.method) <- c( "Method", "FDR", "FDP", "sd", "n", "q975", "q025", "q750", "q250" ) FDP.array.pi0 <- aperm(FDP.array[, , , j], c(2, 1, 3)) FDP.pi0.noise <- as.vector(aperm(apply(FDP.array.pi0, c(1, 3), tapply, Noise, mean, na.rm = TRUE), c(2, 1, 3))) sd.pi0.noise <- as.vector(aperm(apply(FDP.array.pi0, c(1, 3), tapply, Noise, sd, na.rm = TRUE), c(2, 1, 3))) n.pi0.noise <- as.vector(aperm(apply(FDP.array.pi0, c(1, 3), tapply, Noise, function(x){sum(!is.na(x))}), c(2, 1, 3))) q975.pi0.noise <- as.vector(aperm(apply(FDP.array.pi0, c(1, 3), tapply, Noise, quantile, probs = 0.975, na.rm = TRUE), c(2, 1, 3))) q025.pi0.noise <- as.vector(aperm(apply(FDP.array.pi0, c(1, 3), tapply, Noise, quantile, probs = 0.025, na.rm = TRUE), c(2, 1, 3))) q750.pi0.noise <- as.vector(aperm(apply(FDP.array.pi0, c(1, 3), tapply, Noise, quantile, probs = 0.75, na.rm = TRUE), c(2, 1, 3))) q250.pi0.noise <- as.vector(aperm(apply(FDP.array.pi0, c(1, 3), tapply, Noise, quantile, probs = 0.25, na.rm = TRUE), c(2, 1, 3))) FDP.summary.pi0.method.noise <- cbind.data.frame( rep(rep(levels(Noise), each = length(q.vec)), length(method.name)), rep(factor(seq(method.name)), each = length(levels(Noise)) * length(q.vec)), rep(q.vec, length(levels(Noise)) * length(method.name)), FDP.pi0.noise, sd.pi0.noise, n.pi0.noise, q975.pi0.noise, q025.pi0.noise, q750.pi0.noise, q250.pi0.noise ) colnames(FDP.summary.pi0.method.noise) <- c( "Noise", "Method", "FDR", "FDP", "sd", "n", "q975", "q025", "q750", "q250" ) FDP.summary.pi0.method.noise <- rbind.data.frame( FDP.summary.pi0.method.noise, cbind.data.frame(Noise = rep("All", dim(FDP.summary.pi0.method)[1]), FDP.summary.pi0.method) ) FDR.calib.plot <- ggplot(data = FDP.summary.pi0.method.noise, aes(x = FDR, y = FDP, group = Method, col = Method)) + geom_line() + geom_ribbon(aes(ymin = q025, ymax = q975, fill = Method), alpha = 0.35, linetype = "blank") + scale_color_manual(labels = method.name, values = method.col) + scale_fill_manual(labels = method.name, values = method.col) + facet_wrap(~Noise, nrow = 1, ncol = 4) + geom_abline(slope = 1, intercept = 0, linetype = "dashed", size = 1, col = "black") + labs(x = "Nominal FDR", y = "FDP") + theme(legend.position = "top", legend.text = element_text(size = 15), plot.title = element_text(hjust = 0.5, size = 15), axis.title.x = element_text(size = 15), axis.title.y = element_text(size = 15), axis.text.x = element_text(angle = 45, size = 15), axis.text.y = element_text(size = 15), strip.text = element_text(size = 15)) FDP.q <- FDP.array[, which(round(q.vec, 4) == q), , j] FDP.q.noise <- rbind.data.frame(cbind.data.frame(Noise, FDP.q), cbind.data.frame(Noise = rep("All", length(Noise)), FDP.q)) FDR.plot <- ggplot(data = melt(FDP.q.noise, id.vars = "Noise"), aes(x = variable, y = value, col = variable)) + geom_boxplot() + stat_summary(fun.y = mean, geom = "point", shape = 13, size = 3) + scale_color_manual(values = method.col) + facet_wrap(~Noise, nrow = 1, ncol = 4) + geom_hline(yintercept = q, col = "black", linetype = "dashed", size = 1) + scale_x_discrete(labels = method.name) + labs(x = "", y = "FDP") + theme(legend.position = "none", plot.title = element_text(hjust = 0.5, size = 15), axis.title.y = element_text(size = 15), axis.text.x = element_text(size = 15, angle = 45, hjust = 1), axis.text.y = element_text(size = 15), strip.text = element_text(size = 15)) TDP.q <- power.array[, which(round(q.vec, 4) == q), , j] TDP.q.noise <- rbind.data.frame(cbind.data.frame(Noise, TDP.q), cbind.data.frame(Noise = rep("All", length(Noise)), TDP.q)) power.plot <- ggplot(data = melt(TDP.q.noise, id.vars = "Noise"), aes(x = variable, y = value, col = variable)) + geom_boxplot() + stat_summary(fun.y = mean, geom = "point", shape = 13, size = 3) + scale_color_manual(values = method.col) + facet_wrap(~Noise, nrow = 1, ncol = 4) + scale_x_discrete(labels = method.name) + labs(x = "", y = "TPP") + theme(legend.position = "none", plot.title = element_text(hjust = 0.5, size = 15), axis.title.y = element_text(size = 15), axis.text.x = element_text(size = 15, angle = 45, hjust = 1), axis.text.y = element_text(size = 15), strip.text = element_text(size = 15)) joint <- ggarrange(FDR.calib.plot, pi0.plot + rremove("x.text"), FDR.plot + rremove("x.text"), power.plot, align = "v", ncol = 1, nrow = 4, heights = c(1.5, 1, 1, 1.2) ) joint <- annotate_figure(joint, top = text_grob(bquote(pi[0] == .(pi0.vec[j])), size = 15) ) print(joint) ggsave(paste0("../output/fig/g5_pi0_", pi0.vec[j], ".pdf"), joint, height = 10, width = 8) }</code></pre> <p><img src="figure/cash_plots.rmd/unnamed-chunk-16-1.png" width="672" style="display: block; margin: auto;" /></p> <details> <summary><em>Expand here to see past versions of unnamed-chunk-16-1.png:</em></summary> <table style = "border-collapse:separate; border-spacing:5px;"> <thead> <tr> <th style="text-align:left;"> Version </th> <th style="text-align:left;"> Author </th> <th style="text-align:left;"> Date </th> </tr> </thead> <tbody> <tr> <td style="text-align:left;"> <a href="https://github.com/LSun/truncash/blob/27ef9e3a7d9105ef2924cfb810167a16779f2af9/docs/figure/cash_plots.rmd/unnamed-chunk-16-1.png" target="_blank">27ef9e3</a> </td> <td style="text-align:left;"> LSun </td> <td style="text-align:left;"> 2018-05-14 </td> </tr> </tbody> </table> </details> <p><img src="figure/cash_plots.rmd/unnamed-chunk-16-2.png" width="672" style="display: block; margin: auto;" /></p> <details> <summary><em>Expand here to see past versions of unnamed-chunk-16-2.png:</em></summary> <table style = "border-collapse:separate; border-spacing:5px;"> <thead> <tr> <th style="text-align:left;"> Version </th> <th style="text-align:left;"> Author </th> <th style="text-align:left;"> Date </th> </tr> </thead> <tbody> <tr> <td style="text-align:left;"> <a href="https://github.com/LSun/truncash/blob/27ef9e3a7d9105ef2924cfb810167a16779f2af9/docs/figure/cash_plots.rmd/unnamed-chunk-16-2.png" target="_blank">27ef9e3</a> </td> <td style="text-align:left;"> LSun </td> <td style="text-align:left;"> 2018-05-14 </td> </tr> </tbody> </table> </details> <p><img src="figure/cash_plots.rmd/unnamed-chunk-16-3.png" width="672" style="display: block; margin: auto;" /></p> <details> <summary><em>Expand here to see past versions of unnamed-chunk-16-3.png:</em></summary> <table style = "border-collapse:separate; border-spacing:5px;"> <thead> <tr> <th style="text-align:left;"> Version </th> <th style="text-align:left;"> Author </th> <th style="text-align:left;"> Date </th> </tr> </thead> <tbody> <tr> <td style="text-align:left;"> <a href="https://github.com/LSun/truncash/blob/27ef9e3a7d9105ef2924cfb810167a16779f2af9/docs/figure/cash_plots.rmd/unnamed-chunk-16-3.png" target="_blank">27ef9e3</a> </td> <td style="text-align:left;"> LSun </td> <td style="text-align:left;"> 2018-05-14 </td> </tr> </tbody> </table> </details> </div> <div id="big-normal-g_6-nleft0-52right" class="section level2"> <h2>Big normal: <span class="math inline">\(g_6 = N\left(0, 5^2\right)\)</span></h2> <pre class="r"><code>FDP.array <- pFDP.array <- power.array <- array(0, dim = c(nsim, length(q.vec), length(method.name), length(pi0.vec))) FDP.summary <- array(0, dim = c(7, length(q.vec), length(method.name), length(pi0.vec))) pFDP.summary <- power.summary <- array(0, dim = c(5, length(q.vec), length(method.name), length(pi0.vec))) for (j in seq(length(pi0.vec))) { for (k in seq(length(method.name))) { for (i in seq(nsim)) { FDP.array[i, , k, j] <- sapply(q.vec, FDP, qvalue = qvalue.pi0.list[[j]][[i]][, k], beta = beta.pi0.list[[j]][[i]]) pFDP.array[i, , k, j] <- sapply(q.vec, pFDP, qvalue = qvalue.pi0.list[[j]][[i]][, k], beta = beta.pi0.list[[j]][[i]]) power.array[i, , k, j] <- sapply(q.vec, power, qvalue = qvalue.pi0.list[[j]][[i]][, k], beta = beta.pi0.list[[j]][[i]]) } FDP.summary[, , k, j] <- rbind( avg <- colMeans(FDP.array[, , k, j], na.rm = TRUE), sd <- apply(FDP.array[, , k, j], 2, sd, na.rm = TRUE), n <- colSums(!is.na(FDP.array[, , k, j])), q975 <- apply(FDP.array[, , k, j], 2, quantile, probs = 0.975, na.rm = TRUE), q025 <- apply(FDP.array[, , k, j], 2, quantile, probs = 0.025, na.rm = TRUE), q750 <- apply(FDP.array[, , k, j], 2, quantile, probs = 0.75, na.rm = TRUE), q250 <- apply(FDP.array[, , k, j], 2, quantile, probs = 0.25, na.rm = TRUE) ) pFDP.summary[, , k, j] <- rbind( avg <- colMeans(pFDP.array[, , k, j], na.rm = TRUE), sd <- apply(pFDP.array[, , k, j], 2, sd, na.rm = TRUE), n <- colSums(!is.na(pFDP.array[, , k, j])), q975 <- apply(pFDP.array[, , k, j], 2, quantile, probs = 0.975, na.rm = TRUE), q025 <- apply(pFDP.array[, , k, j], 2, quantile, probs = 0.025, na.rm = TRUE) ) power.summary[, , k, j] <- rbind( avg <- colMeans(power.array[, , k, j], na.rm = TRUE), sd <- apply(power.array[, , k, j], 2, sd, na.rm = TRUE), n <- colSums(!is.na(power.array[, , k, j])), q975 <- apply(power.array[, , k, j], 2, quantile, probs = 0.975, na.rm = TRUE), q025 <- apply(power.array[, , k, j], 2, quantile, probs = 0.025, na.rm = TRUE) ) } }</code></pre> <pre class="r"><code>for (j in seq(length(pi0.vec))) { sd.z <- sapply(z.pi0.list[[j]], sd) Noise <- cut(sd.z, breaks = c(0, quantile(sd.z, probs = 1 : 2 / 3), Inf), labels = c("Deflated Noise", "In-between", "Inflated Noise")) # Noise <- cut(sd.z, breaks = c(0, z.under, z.over, Inf), labels = c("Deflated Noise", "In-between", "Inflated Noise")) pi0.pi0 <- matrix(unlist(pi0.pi0.list[[j]]), byrow = TRUE, length(pi0.pi0.list[[j]])) pi0.pi0.noise <- rbind.data.frame(cbind.data.frame(Noise, pi0.pi0), cbind.data.frame(Noise = rep("All", length(Noise)), pi0.pi0)) pi0.plot <- ggplot(data = melt(pi0.pi0.noise, id.vars = "Noise"), aes(x = variable, y = value, col = variable)) + geom_boxplot() + stat_summary(fun.y = mean, geom = "point", shape = 13, size = 3) + scale_color_manual(values = method.col[-1]) + facet_wrap(~Noise, nrow = 1, ncol = 4) + geom_hline(yintercept = pi0.vec[j], col = "black", linetype = "dashed", size = 1) + scale_x_discrete(labels = method.name[-1]) + labs(x = "", y = expression(hat(pi)[0])) + theme(legend.position = "none", plot.title = element_text(hjust = 0.5, size = 15), axis.title.y = element_text(size = 15), axis.text.x = element_text(size = 15, angle = 45, hjust = 1), axis.text.y = element_text(size = 15), strip.text = element_text(size = 15)) FDP.summary.pi0 <- aperm(FDP.summary[, , , j], c(2, 1, 3)) FDP.summary.pi0.method <- FDP.summary.pi0[, , 1] for (kk in 2 : length(method.name)) { FDP.summary.pi0.method <- rbind.data.frame(FDP.summary.pi0.method, FDP.summary.pi0[, , kk]) } FDP.summary.pi0.method <- cbind.data.frame( rep(factor(seq(method.name)), each = dim(FDP.summary.pi0)[1]), rep(q.vec, length(method.name)), FDP.summary.pi0.method ) colnames(FDP.summary.pi0.method) <- c( "Method", "FDR", "FDP", "sd", "n", "q975", "q025", "q750", "q250" ) FDP.array.pi0 <- aperm(FDP.array[, , , j], c(2, 1, 3)) FDP.pi0.noise <- as.vector(aperm(apply(FDP.array.pi0, c(1, 3), tapply, Noise, mean, na.rm = TRUE), c(2, 1, 3))) sd.pi0.noise <- as.vector(aperm(apply(FDP.array.pi0, c(1, 3), tapply, Noise, sd, na.rm = TRUE), c(2, 1, 3))) n.pi0.noise <- as.vector(aperm(apply(FDP.array.pi0, c(1, 3), tapply, Noise, function(x){sum(!is.na(x))}), c(2, 1, 3))) q975.pi0.noise <- as.vector(aperm(apply(FDP.array.pi0, c(1, 3), tapply, Noise, quantile, probs = 0.975, na.rm = TRUE), c(2, 1, 3))) q025.pi0.noise <- as.vector(aperm(apply(FDP.array.pi0, c(1, 3), tapply, Noise, quantile, probs = 0.025, na.rm = TRUE), c(2, 1, 3))) q750.pi0.noise <- as.vector(aperm(apply(FDP.array.pi0, c(1, 3), tapply, Noise, quantile, probs = 0.75, na.rm = TRUE), c(2, 1, 3))) q250.pi0.noise <- as.vector(aperm(apply(FDP.array.pi0, c(1, 3), tapply, Noise, quantile, probs = 0.25, na.rm = TRUE), c(2, 1, 3))) FDP.summary.pi0.method.noise <- cbind.data.frame( rep(rep(levels(Noise), each = length(q.vec)), length(method.name)), rep(factor(seq(method.name)), each = length(levels(Noise)) * length(q.vec)), rep(q.vec, length(levels(Noise)) * length(method.name)), FDP.pi0.noise, sd.pi0.noise, n.pi0.noise, q975.pi0.noise, q025.pi0.noise, q750.pi0.noise, q250.pi0.noise ) colnames(FDP.summary.pi0.method.noise) <- c( "Noise", "Method", "FDR", "FDP", "sd", "n", "q975", "q025", "q750", "q250" ) FDP.summary.pi0.method.noise <- rbind.data.frame( FDP.summary.pi0.method.noise, cbind.data.frame(Noise = rep("All", dim(FDP.summary.pi0.method)[1]), FDP.summary.pi0.method) ) FDR.calib.plot <- ggplot(data = FDP.summary.pi0.method.noise, aes(x = FDR, y = FDP, group = Method, col = Method)) + geom_line() + geom_ribbon(aes(ymin = q025, ymax = q975, fill = Method), alpha = 0.35, linetype = "blank") + scale_color_manual(labels = method.name, values = method.col) + scale_fill_manual(labels = method.name, values = method.col) + facet_wrap(~Noise, nrow = 1, ncol = 4) + geom_abline(slope = 1, intercept = 0, linetype = "dashed", size = 1, col = "black") + labs(x = "Nominal FDR", y = "FDP") + theme(legend.position = "top", legend.text = element_text(size = 15), plot.title = element_text(hjust = 0.5, size = 15), axis.title.x = element_text(size = 15), axis.title.y = element_text(size = 15), axis.text.x = element_text(angle = 45, size = 15), axis.text.y = element_text(size = 15), strip.text = element_text(size = 15)) FDP.q <- FDP.array[, which(round(q.vec, 4) == q), , j] FDP.q.noise <- rbind.data.frame(cbind.data.frame(Noise, FDP.q), cbind.data.frame(Noise = rep("All", length(Noise)), FDP.q)) FDR.plot <- ggplot(data = melt(FDP.q.noise, id.vars = "Noise"), aes(x = variable, y = value, col = variable)) + geom_boxplot() + stat_summary(fun.y = mean, geom = "point", shape = 13, size = 3) + scale_color_manual(values = method.col) + facet_wrap(~Noise, nrow = 1, ncol = 4) + geom_hline(yintercept = q, col = "black", linetype = "dashed", size = 1) + scale_x_discrete(labels = method.name) + labs(x = "", y = "FDP") + theme(legend.position = "none", plot.title = element_text(hjust = 0.5, size = 15), axis.title.y = element_text(size = 15), axis.text.x = element_text(size = 15, angle = 45, hjust = 1), axis.text.y = element_text(size = 15), strip.text = element_text(size = 15)) TDP.q <- power.array[, which(round(q.vec, 4) == q), , j] TDP.q.noise <- rbind.data.frame(cbind.data.frame(Noise, TDP.q), cbind.data.frame(Noise = rep("All", length(Noise)), TDP.q)) power.plot <- ggplot(data = melt(TDP.q.noise, id.vars = "Noise"), aes(x = variable, y = value, col = variable)) + geom_boxplot() + stat_summary(fun.y = mean, geom = "point", shape = 13, size = 3) + scale_color_manual(values = method.col) + facet_wrap(~Noise, nrow = 1, ncol = 4) + scale_x_discrete(labels = method.name) + labs(x = "", y = "TPP") + theme(legend.position = "none", plot.title = element_text(hjust = 0.5, size = 15), axis.title.y = element_text(size = 15), axis.text.x = element_text(size = 15, angle = 45, hjust = 1), axis.text.y = element_text(size = 15), strip.text = element_text(size = 15)) joint <- ggarrange(FDR.calib.plot, pi0.plot + rremove("x.text"), FDR.plot + rremove("x.text"), power.plot, align = "v", ncol = 1, nrow = 4, heights = c(1.5, 1, 1, 1.2) ) joint <- annotate_figure(joint, top = text_grob(bquote(pi[0] == .(pi0.vec[j])), size = 15) ) print(joint) ggsave(paste0("../output/fig/g6_pi0_", pi0.vec[j], ".pdf"), joint, height = 10, width = 8) }</code></pre> <p><img src="figure/cash_plots.rmd/unnamed-chunk-18-1.png" width="672" style="display: block; margin: auto;" /></p> <details> <summary><em>Expand here to see past versions of unnamed-chunk-18-1.png:</em></summary> <table style = "border-collapse:separate; border-spacing:5px;"> <thead> <tr> <th style="text-align:left;"> Version </th> <th style="text-align:left;"> Author </th> <th style="text-align:left;"> Date </th> </tr> </thead> <tbody> <tr> <td style="text-align:left;"> <a href="https://github.com/LSun/truncash/blob/27ef9e3a7d9105ef2924cfb810167a16779f2af9/docs/figure/cash_plots.rmd/unnamed-chunk-18-1.png" target="_blank">27ef9e3</a> </td> <td style="text-align:left;"> LSun </td> <td style="text-align:left;"> 2018-05-14 </td> </tr> <tr> <td style="text-align:left;"> <a href="https://github.com/LSun/truncash/blob/37ad45698441ee0ae5eb3202f95e0164d77ef5b7/docs/figure/cash_plots.rmd/unnamed-chunk-18-1.png" target="_blank">37ad456</a> </td> <td style="text-align:left;"> LSun </td> <td style="text-align:left;"> 2018-04-27 </td> </tr> </tbody> </table> </details> <p><img src="figure/cash_plots.rmd/unnamed-chunk-18-2.png" width="672" style="display: block; margin: auto;" /></p> <details> <summary><em>Expand here to see past versions of unnamed-chunk-18-2.png:</em></summary> <table style = "border-collapse:separate; border-spacing:5px;"> <thead> <tr> <th style="text-align:left;"> Version </th> <th style="text-align:left;"> Author </th> <th style="text-align:left;"> Date </th> </tr> </thead> <tbody> <tr> <td style="text-align:left;"> <a href="https://github.com/LSun/truncash/blob/27ef9e3a7d9105ef2924cfb810167a16779f2af9/docs/figure/cash_plots.rmd/unnamed-chunk-18-2.png" target="_blank">27ef9e3</a> </td> <td style="text-align:left;"> LSun </td> <td style="text-align:left;"> 2018-05-14 </td> </tr> <tr> <td style="text-align:left;"> <a href="https://github.com/LSun/truncash/blob/37ad45698441ee0ae5eb3202f95e0164d77ef5b7/docs/figure/cash_plots.rmd/unnamed-chunk-18-2.png" target="_blank">37ad456</a> </td> <td style="text-align:left;"> LSun </td> <td style="text-align:left;"> 2018-04-27 </td> </tr> </tbody> </table> </details> <p><img src="figure/cash_plots.rmd/unnamed-chunk-18-3.png" width="672" style="display: block; margin: auto;" /></p> <details> <summary><em>Expand here to see past versions of unnamed-chunk-18-3.png:</em></summary> <table style = "border-collapse:separate; border-spacing:5px;"> <thead> <tr> <th style="text-align:left;"> Version </th> <th style="text-align:left;"> Author </th> <th style="text-align:left;"> Date </th> </tr> </thead> <tbody> <tr> <td style="text-align:left;"> <a href="https://github.com/LSun/truncash/blob/27ef9e3a7d9105ef2924cfb810167a16779f2af9/docs/figure/cash_plots.rmd/unnamed-chunk-18-3.png" target="_blank">27ef9e3</a> </td> <td style="text-align:left;"> LSun </td> <td style="text-align:left;"> 2018-05-14 </td> </tr> </tbody> </table> </details> </div> <div id="skew-g_7-14-nleft-2-22right-14-nleft-1-1.52right-13-nleft0-12right-1-6-nleft1-12right" class="section level2"> <h2>Skew: <span class="math inline">\(g_7 = 1/4 N\left(-2, 2^2\right) + 1/4 N\left(-1, 1.5^2\right) + 1/3 N\left(0, 1^2\right) + 1 / 6 N\left(1, 1^2\right)\)</span></h2> <pre class="r"><code>FDP.array <- pFDP.array <- power.array <- array(0, dim = c(nsim, length(q.vec), length(method.name), length(pi0.vec))) FDP.summary <- array(0, dim = c(7, length(q.vec), length(method.name), length(pi0.vec))) pFDP.summary <- power.summary <- array(0, dim = c(5, length(q.vec), length(method.name), length(pi0.vec))) for (j in seq(length(pi0.vec))) { for (k in seq(length(method.name))) { for (i in seq(nsim)) { FDP.array[i, , k, j] <- sapply(q.vec, FDP, qvalue = qvalue.pi0.list[[j]][[i]][, k], beta = beta.pi0.list[[j]][[i]]) pFDP.array[i, , k, j] <- sapply(q.vec, pFDP, qvalue = qvalue.pi0.list[[j]][[i]][, k], beta = beta.pi0.list[[j]][[i]]) power.array[i, , k, j] <- sapply(q.vec, power, qvalue = qvalue.pi0.list[[j]][[i]][, k], beta = beta.pi0.list[[j]][[i]]) } FDP.summary[, , k, j] <- rbind( avg <- colMeans(FDP.array[, , k, j], na.rm = TRUE), sd <- apply(FDP.array[, , k, j], 2, sd, na.rm = TRUE), n <- colSums(!is.na(FDP.array[, , k, j])), q975 <- apply(FDP.array[, , k, j], 2, quantile, probs = 0.975, na.rm = TRUE), q025 <- apply(FDP.array[, , k, j], 2, quantile, probs = 0.025, na.rm = TRUE), q750 <- apply(FDP.array[, , k, j], 2, quantile, probs = 0.75, na.rm = TRUE), q250 <- apply(FDP.array[, , k, j], 2, quantile, probs = 0.25, na.rm = TRUE) ) pFDP.summary[, , k, j] <- rbind( avg <- colMeans(pFDP.array[, , k, j], na.rm = TRUE), sd <- apply(pFDP.array[, , k, j], 2, sd, na.rm = TRUE), n <- colSums(!is.na(pFDP.array[, , k, j])), q975 <- apply(pFDP.array[, , k, j], 2, quantile, probs = 0.975, na.rm = TRUE), q025 <- apply(pFDP.array[, , k, j], 2, quantile, probs = 0.025, na.rm = TRUE) ) power.summary[, , k, j] <- rbind( avg <- colMeans(power.array[, , k, j], na.rm = TRUE), sd <- apply(power.array[, , k, j], 2, sd, na.rm = TRUE), n <- colSums(!is.na(power.array[, , k, j])), q975 <- apply(power.array[, , k, j], 2, quantile, probs = 0.975, na.rm = TRUE), q025 <- apply(power.array[, , k, j], 2, quantile, probs = 0.025, na.rm = TRUE) ) } }</code></pre> <pre class="r"><code>for (j in seq(length(pi0.vec))) { sd.z <- sapply(z.pi0.list[[j]], sd) Noise <- cut(sd.z, breaks = c(0, quantile(sd.z, probs = 1 : 2 / 3), Inf), labels = c("Deflated Noise", "In-between", "Inflated Noise")) # Noise <- cut(sd.z, breaks = c(0, z.under, z.over, Inf), labels = c("Deflated Noise", "In-between", "Inflated Noise")) pi0.pi0 <- matrix(unlist(pi0.pi0.list[[j]]), byrow = TRUE, length(pi0.pi0.list[[j]])) pi0.pi0.noise <- rbind.data.frame(cbind.data.frame(Noise, pi0.pi0), cbind.data.frame(Noise = rep("All", length(Noise)), pi0.pi0)) pi0.plot <- ggplot(data = melt(pi0.pi0.noise, id.vars = "Noise"), aes(x = variable, y = value, col = variable)) + geom_boxplot() + stat_summary(fun.y = mean, geom = "point", shape = 13, size = 3) + scale_color_manual(values = method.col[-1]) + facet_wrap(~Noise, nrow = 1, ncol = 4) + geom_hline(yintercept = pi0.vec[j], col = "black", linetype = "dashed", size = 1) + scale_x_discrete(labels = method.name[-1]) + labs(x = "", y = expression(hat(pi)[0])) + theme(legend.position = "none", plot.title = element_text(hjust = 0.5, size = 15), axis.title.y = element_text(size = 15), axis.text.x = element_text(size = 15, angle = 45, hjust = 1), axis.text.y = element_text(size = 15), strip.text = element_text(size = 15)) FDP.summary.pi0 <- aperm(FDP.summary[, , , j], c(2, 1, 3)) FDP.summary.pi0.method <- FDP.summary.pi0[, , 1] for (kk in 2 : length(method.name)) { FDP.summary.pi0.method <- rbind.data.frame(FDP.summary.pi0.method, FDP.summary.pi0[, , kk]) } FDP.summary.pi0.method <- cbind.data.frame( rep(factor(seq(method.name)), each = dim(FDP.summary.pi0)[1]), rep(q.vec, length(method.name)), FDP.summary.pi0.method ) colnames(FDP.summary.pi0.method) <- c( "Method", "FDR", "FDP", "sd", "n", "q975", "q025", "q750", "q250" ) FDP.array.pi0 <- aperm(FDP.array[, , , j], c(2, 1, 3)) FDP.pi0.noise <- as.vector(aperm(apply(FDP.array.pi0, c(1, 3), tapply, Noise, mean, na.rm = TRUE), c(2, 1, 3))) sd.pi0.noise <- as.vector(aperm(apply(FDP.array.pi0, c(1, 3), tapply, Noise, sd, na.rm = TRUE), c(2, 1, 3))) n.pi0.noise <- as.vector(aperm(apply(FDP.array.pi0, c(1, 3), tapply, Noise, function(x){sum(!is.na(x))}), c(2, 1, 3))) q975.pi0.noise <- as.vector(aperm(apply(FDP.array.pi0, c(1, 3), tapply, Noise, quantile, probs = 0.975, na.rm = TRUE), c(2, 1, 3))) q025.pi0.noise <- as.vector(aperm(apply(FDP.array.pi0, c(1, 3), tapply, Noise, quantile, probs = 0.025, na.rm = TRUE), c(2, 1, 3))) q750.pi0.noise <- as.vector(aperm(apply(FDP.array.pi0, c(1, 3), tapply, Noise, quantile, probs = 0.75, na.rm = TRUE), c(2, 1, 3))) q250.pi0.noise <- as.vector(aperm(apply(FDP.array.pi0, c(1, 3), tapply, Noise, quantile, probs = 0.25, na.rm = TRUE), c(2, 1, 3))) FDP.summary.pi0.method.noise <- cbind.data.frame( rep(rep(levels(Noise), each = length(q.vec)), length(method.name)), rep(factor(seq(method.name)), each = length(levels(Noise)) * length(q.vec)), rep(q.vec, length(levels(Noise)) * length(method.name)), FDP.pi0.noise, sd.pi0.noise, n.pi0.noise, q975.pi0.noise, q025.pi0.noise, q750.pi0.noise, q250.pi0.noise ) colnames(FDP.summary.pi0.method.noise) <- c( "Noise", "Method", "FDR", "FDP", "sd", "n", "q975", "q025", "q750", "q250" ) FDP.summary.pi0.method.noise <- rbind.data.frame( FDP.summary.pi0.method.noise, cbind.data.frame(Noise = rep("All", dim(FDP.summary.pi0.method)[1]), FDP.summary.pi0.method) ) FDR.calib.plot <- ggplot(data = FDP.summary.pi0.method.noise, aes(x = FDR, y = FDP, group = Method, col = Method)) + geom_line() + geom_ribbon(aes(ymin = q025, ymax = q975, fill = Method), alpha = 0.35, linetype = "blank") + scale_color_manual(labels = method.name, values = method.col) + scale_fill_manual(labels = method.name, values = method.col) + facet_wrap(~Noise, nrow = 1, ncol = 4) + geom_abline(slope = 1, intercept = 0, linetype = "dashed", size = 1, col = "black") + labs(x = "Nominal FDR", y = "FDP") + theme(legend.position = "top", legend.text = element_text(size = 15), plot.title = element_text(hjust = 0.5, size = 15), axis.title.x = element_text(size = 15), axis.title.y = element_text(size = 15), axis.text.x = element_text(angle = 45, size = 15), axis.text.y = element_text(size = 15), strip.text = element_text(size = 15)) FDP.q <- FDP.array[, which(round(q.vec, 4) == q), , j] FDP.q.noise <- rbind.data.frame(cbind.data.frame(Noise, FDP.q), cbind.data.frame(Noise = rep("All", length(Noise)), FDP.q)) FDR.plot <- ggplot(data = melt(FDP.q.noise, id.vars = "Noise"), aes(x = variable, y = value, col = variable)) + geom_boxplot() + stat_summary(fun.y = mean, geom = "point", shape = 13, size = 3) + scale_color_manual(values = method.col) + facet_wrap(~Noise, nrow = 1, ncol = 4) + geom_hline(yintercept = q, col = "black", linetype = "dashed", size = 1) + scale_x_discrete(labels = method.name) + labs(x = "", y = "FDP") + theme(legend.position = "none", plot.title = element_text(hjust = 0.5, size = 15), axis.title.y = element_text(size = 15), axis.text.x = element_text(size = 15, angle = 45, hjust = 1), axis.text.y = element_text(size = 15), strip.text = element_text(size = 15)) TDP.q <- power.array[, which(round(q.vec, 4) == q), , j] TDP.q.noise <- rbind.data.frame(cbind.data.frame(Noise, TDP.q), cbind.data.frame(Noise = rep("All", length(Noise)), TDP.q)) power.plot <- ggplot(data = melt(TDP.q.noise, id.vars = "Noise"), aes(x = variable, y = value, col = variable)) + geom_boxplot() + stat_summary(fun.y = mean, geom = "point", shape = 13, size = 3) + scale_color_manual(values = method.col) + facet_wrap(~Noise, nrow = 1, ncol = 4) + scale_x_discrete(labels = method.name) + labs(x = "", y = "TPP") + theme(legend.position = "none", plot.title = element_text(hjust = 0.5, size = 15), axis.title.y = element_text(size = 15), axis.text.x = element_text(size = 15, angle = 45, hjust = 1), axis.text.y = element_text(size = 15), strip.text = element_text(size = 15)) joint <- ggarrange(FDR.calib.plot, pi0.plot + rremove("x.text"), FDR.plot + rremove("x.text"), power.plot, align = "v", ncol = 1, nrow = 4, heights = c(1.5, 1, 1, 1.2) ) joint <- annotate_figure(joint, top = text_grob(bquote(pi[0] == .(pi0.vec[j])), size = 15) ) print(joint) ggsave(paste0("../output/fig/g7_pi0_", pi0.vec[j], ".pdf"), joint, height = 10, width = 8) }</code></pre> <p><img src="figure/cash_plots.rmd/unnamed-chunk-20-1.png" width="672" style="display: block; margin: auto;" /></p> <details> <summary><em>Expand here to see past versions of unnamed-chunk-20-1.png:</em></summary> <table style = "border-collapse:separate; border-spacing:5px;"> <thead> <tr> <th style="text-align:left;"> Version </th> <th style="text-align:left;"> Author </th> <th style="text-align:left;"> Date </th> </tr> </thead> <tbody> <tr> <td style="text-align:left;"> <a href="https://github.com/LSun/truncash/blob/27ef9e3a7d9105ef2924cfb810167a16779f2af9/docs/figure/cash_plots.rmd/unnamed-chunk-20-1.png" target="_blank">27ef9e3</a> </td> <td style="text-align:left;"> LSun </td> <td style="text-align:left;"> 2018-05-14 </td> </tr> <tr> <td style="text-align:left;"> <a href="https://github.com/LSun/truncash/blob/37ad45698441ee0ae5eb3202f95e0164d77ef5b7/docs/figure/cash_plots.rmd/unnamed-chunk-20-1.png" target="_blank">37ad456</a> </td> <td style="text-align:left;"> LSun </td> <td style="text-align:left;"> 2018-04-27 </td> </tr> </tbody> </table> </details> <p><img src="figure/cash_plots.rmd/unnamed-chunk-20-2.png" width="672" style="display: block; margin: auto;" /></p> <details> <summary><em>Expand here to see past versions of unnamed-chunk-20-2.png:</em></summary> <table style = "border-collapse:separate; border-spacing:5px;"> <thead> <tr> <th style="text-align:left;"> Version </th> <th style="text-align:left;"> Author </th> <th style="text-align:left;"> Date </th> </tr> </thead> <tbody> <tr> <td style="text-align:left;"> <a href="https://github.com/LSun/truncash/blob/27ef9e3a7d9105ef2924cfb810167a16779f2af9/docs/figure/cash_plots.rmd/unnamed-chunk-20-2.png" target="_blank">27ef9e3</a> </td> <td style="text-align:left;"> LSun </td> <td style="text-align:left;"> 2018-05-14 </td> </tr> </tbody> </table> </details> <p><img src="figure/cash_plots.rmd/unnamed-chunk-20-3.png" width="672" style="display: block; margin: auto;" /></p> <details> <summary><em>Expand here to see past versions of unnamed-chunk-20-3.png:</em></summary> <table style = "border-collapse:separate; border-spacing:5px;"> <thead> <tr> <th style="text-align:left;"> Version </th> <th style="text-align:left;"> Author </th> <th style="text-align:left;"> Date </th> </tr> </thead> <tbody> <tr> <td style="text-align:left;"> <a href="https://github.com/LSun/truncash/blob/27ef9e3a7d9105ef2924cfb810167a16779f2af9/docs/figure/cash_plots.rmd/unnamed-chunk-20-3.png" target="_blank">27ef9e3</a> </td> <td style="text-align:left;"> LSun </td> <td style="text-align:left;"> 2018-05-14 </td> </tr> </tbody> </table> </details> </div> <div id="small-normal-g_8-nleft0-12right" class="section level2"> <h2>Small normal: <span class="math inline">\(g_8 = N\left(0, 1^2\right)\)</span></h2> <pre class="r"><code>FDP.array <- pFDP.array <- power.array <- array(0, dim = c(nsim, length(q.vec), length(method.name), length(pi0.vec))) FDP.summary <- array(0, dim = c(7, length(q.vec), length(method.name), length(pi0.vec))) pFDP.summary <- power.summary <- array(0, dim = c(5, length(q.vec), length(method.name), length(pi0.vec))) for (j in seq(length(pi0.vec))) { for (k in seq(length(method.name))) { for (i in seq(nsim)) { FDP.array[i, , k, j] <- sapply(q.vec, FDP, qvalue = qvalue.pi0.list[[j]][[i]][, k], beta = beta.pi0.list[[j]][[i]]) pFDP.array[i, , k, j] <- sapply(q.vec, pFDP, qvalue = qvalue.pi0.list[[j]][[i]][, k], beta = beta.pi0.list[[j]][[i]]) power.array[i, , k, j] <- sapply(q.vec, power, qvalue = qvalue.pi0.list[[j]][[i]][, k], beta = beta.pi0.list[[j]][[i]]) } FDP.summary[, , k, j] <- rbind( avg <- colMeans(FDP.array[, , k, j], na.rm = TRUE), sd <- apply(FDP.array[, , k, j], 2, sd, na.rm = TRUE), n <- colSums(!is.na(FDP.array[, , k, j])), q975 <- apply(FDP.array[, , k, j], 2, quantile, probs = 0.975, na.rm = TRUE), q025 <- apply(FDP.array[, , k, j], 2, quantile, probs = 0.025, na.rm = TRUE), q750 <- apply(FDP.array[, , k, j], 2, quantile, probs = 0.75, na.rm = TRUE), q250 <- apply(FDP.array[, , k, j], 2, quantile, probs = 0.25, na.rm = TRUE) ) pFDP.summary[, , k, j] <- rbind( avg <- colMeans(pFDP.array[, , k, j], na.rm = TRUE), sd <- apply(pFDP.array[, , k, j], 2, sd, na.rm = TRUE), n <- colSums(!is.na(pFDP.array[, , k, j])), q975 <- apply(pFDP.array[, , k, j], 2, quantile, probs = 0.975, na.rm = TRUE), q025 <- apply(pFDP.array[, , k, j], 2, quantile, probs = 0.025, na.rm = TRUE) ) power.summary[, , k, j] <- rbind( avg <- colMeans(power.array[, , k, j], na.rm = TRUE), sd <- apply(power.array[, , k, j], 2, sd, na.rm = TRUE), n <- colSums(!is.na(power.array[, , k, j])), q975 <- apply(power.array[, , k, j], 2, quantile, probs = 0.975, na.rm = TRUE), q025 <- apply(power.array[, , k, j], 2, quantile, probs = 0.025, na.rm = TRUE) ) } }</code></pre> <pre class="r"><code>for (j in seq(length(pi0.vec))) { sd.z <- sapply(z.pi0.list[[j]], sd) Noise <- cut(sd.z, breaks = c(0, quantile(sd.z, probs = 1 : 2 / 3), Inf), labels = c("Deflated Noise", "In-between", "Inflated Noise")) # Noise <- cut(sd.z, breaks = c(0, z.under, z.over, Inf), labels = c("Deflated Noise", "In-between", "Inflated Noise")) pi0.pi0 <- matrix(unlist(pi0.pi0.list[[j]]), byrow = TRUE, length(pi0.pi0.list[[j]])) pi0.pi0.noise <- rbind.data.frame(cbind.data.frame(Noise, pi0.pi0), cbind.data.frame(Noise = rep("All", length(Noise)), pi0.pi0)) pi0.plot <- ggplot(data = melt(pi0.pi0.noise, id.vars = "Noise"), aes(x = variable, y = value, col = variable)) + geom_boxplot() + stat_summary(fun.y = mean, geom = "point", shape = 13, size = 3) + scale_color_manual(values = method.col[-1]) + facet_wrap(~Noise, nrow = 1, ncol = 4) + geom_hline(yintercept = pi0.vec[j], col = "black", linetype = "dashed", size = 1) + scale_x_discrete(labels = method.name[-1]) + labs(x = "", y = expression(hat(pi)[0])) + theme(legend.position = "none", plot.title = element_text(hjust = 0.5, size = 15), axis.title.y = element_text(size = 15), axis.text.x = element_text(size = 15, angle = 45, hjust = 1), axis.text.y = element_text(size = 15), strip.text = element_text(size = 15)) FDP.summary.pi0 <- aperm(FDP.summary[, , , j], c(2, 1, 3)) FDP.summary.pi0.method <- FDP.summary.pi0[, , 1] for (kk in 2 : length(method.name)) { FDP.summary.pi0.method <- rbind.data.frame(FDP.summary.pi0.method, FDP.summary.pi0[, , kk]) } FDP.summary.pi0.method <- cbind.data.frame( rep(factor(seq(method.name)), each = dim(FDP.summary.pi0)[1]), rep(q.vec, length(method.name)), FDP.summary.pi0.method ) colnames(FDP.summary.pi0.method) <- c( "Method", "FDR", "FDP", "sd", "n", "q975", "q025", "q750", "q250" ) FDP.array.pi0 <- aperm(FDP.array[, , , j], c(2, 1, 3)) FDP.pi0.noise <- as.vector(aperm(apply(FDP.array.pi0, c(1, 3), tapply, Noise, mean, na.rm = TRUE), c(2, 1, 3))) sd.pi0.noise <- as.vector(aperm(apply(FDP.array.pi0, c(1, 3), tapply, Noise, sd, na.rm = TRUE), c(2, 1, 3))) n.pi0.noise <- as.vector(aperm(apply(FDP.array.pi0, c(1, 3), tapply, Noise, function(x){sum(!is.na(x))}), c(2, 1, 3))) q975.pi0.noise <- as.vector(aperm(apply(FDP.array.pi0, c(1, 3), tapply, Noise, quantile, probs = 0.975, na.rm = TRUE), c(2, 1, 3))) q025.pi0.noise <- as.vector(aperm(apply(FDP.array.pi0, c(1, 3), tapply, Noise, quantile, probs = 0.025, na.rm = TRUE), c(2, 1, 3))) q750.pi0.noise <- as.vector(aperm(apply(FDP.array.pi0, c(1, 3), tapply, Noise, quantile, probs = 0.75, na.rm = TRUE), c(2, 1, 3))) q250.pi0.noise <- as.vector(aperm(apply(FDP.array.pi0, c(1, 3), tapply, Noise, quantile, probs = 0.25, na.rm = TRUE), c(2, 1, 3))) FDP.summary.pi0.method.noise <- cbind.data.frame( rep(rep(levels(Noise), each = length(q.vec)), length(method.name)), rep(factor(seq(method.name)), each = length(levels(Noise)) * length(q.vec)), rep(q.vec, length(levels(Noise)) * length(method.name)), FDP.pi0.noise, sd.pi0.noise, n.pi0.noise, q975.pi0.noise, q025.pi0.noise, q750.pi0.noise, q250.pi0.noise ) colnames(FDP.summary.pi0.method.noise) <- c( "Noise", "Method", "FDR", "FDP", "sd", "n", "q975", "q025", "q750", "q250" ) FDP.summary.pi0.method.noise <- rbind.data.frame( FDP.summary.pi0.method.noise, cbind.data.frame(Noise = rep("All", dim(FDP.summary.pi0.method)[1]), FDP.summary.pi0.method) ) FDR.calib.plot <- ggplot(data = FDP.summary.pi0.method.noise, aes(x = FDR, y = FDP, group = Method, col = Method)) + geom_line() + geom_ribbon(aes(ymin = q025, ymax = q975, fill = Method), alpha = 0.35, linetype = "blank") + scale_color_manual(labels = method.name, values = method.col) + scale_fill_manual(labels = method.name, values = method.col) + facet_wrap(~Noise, nrow = 1, ncol = 4) + geom_abline(slope = 1, intercept = 0, linetype = "dashed", size = 1, col = "black") + labs(x = "Nominal FDR", y = "FDP") + theme(legend.position = "top", legend.text = element_text(size = 15), plot.title = element_text(hjust = 0.5, size = 15), axis.title.x = element_text(size = 15), axis.title.y = element_text(size = 15), axis.text.x = element_text(angle = 45, size = 15), axis.text.y = element_text(size = 15), strip.text = element_text(size = 15)) FDP.q <- FDP.array[, which(round(q.vec, 4) == q), , j] FDP.q.noise <- rbind.data.frame(cbind.data.frame(Noise, FDP.q), cbind.data.frame(Noise = rep("All", length(Noise)), FDP.q)) FDR.plot <- ggplot(data = melt(FDP.q.noise, id.vars = "Noise"), aes(x = variable, y = value, col = variable)) + geom_boxplot() + stat_summary(fun.y = mean, geom = "point", shape = 13, size = 3) + scale_color_manual(values = method.col) + facet_wrap(~Noise, nrow = 1, ncol = 4) + geom_hline(yintercept = q, col = "black", linetype = "dashed", size = 1) + scale_x_discrete(labels = method.name) + labs(x = "", y = "FDP") + theme(legend.position = "none", plot.title = element_text(hjust = 0.5, size = 15), axis.title.y = element_text(size = 15), axis.text.x = element_text(size = 15, angle = 45, hjust = 1), axis.text.y = element_text(size = 15), strip.text = element_text(size = 15)) TDP.q <- power.array[, which(round(q.vec, 4) == q), , j] TDP.q.noise <- rbind.data.frame(cbind.data.frame(Noise, TDP.q), cbind.data.frame(Noise = rep("All", length(Noise)), TDP.q)) power.plot <- ggplot(data = melt(TDP.q.noise, id.vars = "Noise"), aes(x = variable, y = value, col = variable)) + geom_boxplot() + stat_summary(fun.y = mean, geom = "point", shape = 13, size = 3) + scale_color_manual(values = method.col) + facet_wrap(~Noise, nrow = 1, ncol = 4) + scale_x_discrete(labels = method.name) + labs(x = "", y = "TPP") + theme(legend.position = "none", plot.title = element_text(hjust = 0.5, size = 15), axis.title.y = element_text(size = 15), axis.text.x = element_text(size = 15, angle = 45, hjust = 1), axis.text.y = element_text(size = 15), strip.text = element_text(size = 15)) joint <- ggarrange(FDR.calib.plot, pi0.plot + rremove("x.text"), FDR.plot + rremove("x.text"), power.plot, align = "v", ncol = 1, nrow = 4, heights = c(1.5, 1, 1, 1.2) ) joint <- annotate_figure(joint, top = text_grob(bquote(pi[0] == .(pi0.vec[j])), size = 15) ) print(joint) ggsave(paste0("../output/fig/g8_pi0_", pi0.vec[j], ".pdf"), joint, height = 10, width = 8) }</code></pre> <p><img src="figure/cash_plots.rmd/unnamed-chunk-22-1.png" width="672" style="display: block; margin: auto;" /></p> <details> <summary><em>Expand here to see past versions of unnamed-chunk-22-1.png:</em></summary> <table style = "border-collapse:separate; border-spacing:5px;"> <thead> <tr> <th style="text-align:left;"> Version </th> <th style="text-align:left;"> Author </th> <th style="text-align:left;"> Date </th> </tr> </thead> <tbody> <tr> <td style="text-align:left;"> <a href="https://github.com/LSun/truncash/blob/b7cf71b4d05a1ea70fdad8da02796d7c0ddc50e8/docs/figure/cash_plots.rmd/unnamed-chunk-22-1.png" target="_blank">b7cf71b</a> </td> <td style="text-align:left;"> LSun </td> <td style="text-align:left;"> 2018-05-14 </td> </tr> <tr> <td style="text-align:left;"> <a href="https://github.com/LSun/truncash/blob/37ad45698441ee0ae5eb3202f95e0164d77ef5b7/docs/figure/cash_plots.rmd/unnamed-chunk-22-1.png" target="_blank">37ad456</a> </td> <td style="text-align:left;"> LSun </td> <td style="text-align:left;"> 2018-04-27 </td> </tr> </tbody> </table> </details> <p><img src="figure/cash_plots.rmd/unnamed-chunk-22-2.png" width="672" style="display: block; margin: auto;" /></p> <details> <summary><em>Expand here to see past versions of unnamed-chunk-22-2.png:</em></summary> <table style = "border-collapse:separate; border-spacing:5px;"> <thead> <tr> <th style="text-align:left;"> Version </th> <th style="text-align:left;"> Author </th> <th style="text-align:left;"> Date </th> </tr> </thead> <tbody> <tr> <td style="text-align:left;"> <a href="https://github.com/LSun/truncash/blob/b7cf71b4d05a1ea70fdad8da02796d7c0ddc50e8/docs/figure/cash_plots.rmd/unnamed-chunk-22-2.png" target="_blank">b7cf71b</a> </td> <td style="text-align:left;"> LSun </td> <td style="text-align:left;"> 2018-05-14 </td> </tr> </tbody> </table> </details> <p><img src="figure/cash_plots.rmd/unnamed-chunk-22-3.png" width="672" style="display: block; margin: auto;" /></p> <details> <summary><em>Expand here to see past versions of unnamed-chunk-22-3.png:</em></summary> <table style = "border-collapse:separate; border-spacing:5px;"> <thead> <tr> <th style="text-align:left;"> Version </th> <th style="text-align:left;"> Author </th> <th style="text-align:left;"> Date </th> </tr> </thead> <tbody> <tr> <td style="text-align:left;"> <a href="https://github.com/LSun/truncash/blob/b7cf71b4d05a1ea70fdad8da02796d7c0ddc50e8/docs/figure/cash_plots.rmd/unnamed-chunk-22-3.png" target="_blank">b7cf71b</a> </td> <td style="text-align:left;"> LSun </td> <td style="text-align:left;"> 2018-05-14 </td> </tr> </tbody> </table> </details> </div> <div id="small-normal-g_9-nleft0-1.52right" class="section level2"> <h2>Small normal: <span class="math inline">\(g_9 = N\left(0, 1.5^2\right)\)</span></h2> <pre class="r"><code>FDP.array <- pFDP.array <- power.array <- array(0, dim = c(nsim, length(q.vec), length(method.name), length(pi0.vec))) FDP.summary <- array(0, dim = c(7, length(q.vec), length(method.name), length(pi0.vec))) pFDP.summary <- power.summary <- array(0, dim = c(5, length(q.vec), length(method.name), length(pi0.vec))) for (j in seq(length(pi0.vec))) { for (k in seq(length(method.name))) { for (i in seq(nsim)) { FDP.array[i, , k, j] <- sapply(q.vec, FDP, qvalue = qvalue.pi0.list[[j]][[i]][, k], beta = beta.pi0.list[[j]][[i]]) pFDP.array[i, , k, j] <- sapply(q.vec, pFDP, qvalue = qvalue.pi0.list[[j]][[i]][, k], beta = beta.pi0.list[[j]][[i]]) power.array[i, , k, j] <- sapply(q.vec, power, qvalue = qvalue.pi0.list[[j]][[i]][, k], beta = beta.pi0.list[[j]][[i]]) } FDP.summary[, , k, j] <- rbind( avg <- colMeans(FDP.array[, , k, j], na.rm = TRUE), sd <- apply(FDP.array[, , k, j], 2, sd, na.rm = TRUE), n <- colSums(!is.na(FDP.array[, , k, j])), q975 <- apply(FDP.array[, , k, j], 2, quantile, probs = 0.975, na.rm = TRUE), q025 <- apply(FDP.array[, , k, j], 2, quantile, probs = 0.025, na.rm = TRUE), q750 <- apply(FDP.array[, , k, j], 2, quantile, probs = 0.75, na.rm = TRUE), q250 <- apply(FDP.array[, , k, j], 2, quantile, probs = 0.25, na.rm = TRUE) ) pFDP.summary[, , k, j] <- rbind( avg <- colMeans(pFDP.array[, , k, j], na.rm = TRUE), sd <- apply(pFDP.array[, , k, j], 2, sd, na.rm = TRUE), n <- colSums(!is.na(pFDP.array[, , k, j])), q975 <- apply(pFDP.array[, , k, j], 2, quantile, probs = 0.975, na.rm = TRUE), q025 <- apply(pFDP.array[, , k, j], 2, quantile, probs = 0.025, na.rm = TRUE) ) power.summary[, , k, j] <- rbind( avg <- colMeans(power.array[, , k, j], na.rm = TRUE), sd <- apply(power.array[, , k, j], 2, sd, na.rm = TRUE), n <- colSums(!is.na(power.array[, , k, j])), q975 <- apply(power.array[, , k, j], 2, quantile, probs = 0.975, na.rm = TRUE), q025 <- apply(power.array[, , k, j], 2, quantile, probs = 0.025, na.rm = TRUE) ) } }</code></pre> <pre class="r"><code>for (j in seq(length(pi0.vec))) { sd.z <- sapply(z.pi0.list[[j]], sd) Noise <- cut(sd.z, breaks = c(0, quantile(sd.z, probs = 1 : 2 / 3), Inf), labels = c("Deflated Noise", "In-between", "Inflated Noise")) # Noise <- cut(sd.z, breaks = c(0, z.under, z.over, Inf), labels = c("Deflated Noise", "In-between", "Inflated Noise")) pi0.pi0 <- matrix(unlist(pi0.pi0.list[[j]]), byrow = TRUE, length(pi0.pi0.list[[j]])) pi0.pi0.noise <- rbind.data.frame(cbind.data.frame(Noise, pi0.pi0), cbind.data.frame(Noise = rep("All", length(Noise)), pi0.pi0)) pi0.plot <- ggplot(data = melt(pi0.pi0.noise, id.vars = "Noise"), aes(x = variable, y = value, col = variable)) + geom_boxplot() + stat_summary(fun.y = mean, geom = "point", shape = 13, size = 3) + scale_color_manual(values = method.col[-1]) + facet_wrap(~Noise, nrow = 1, ncol = 4) + geom_hline(yintercept = pi0.vec[j], col = "black", linetype = "dashed", size = 1) + scale_x_discrete(labels = method.name[-1]) + labs(x = "", y = expression(hat(pi)[0])) + theme(legend.position = "none", plot.title = element_text(hjust = 0.5, size = 15), axis.title.y = element_text(size = 15), axis.text.x = element_text(size = 15, angle = 45, hjust = 1), axis.text.y = element_text(size = 15), strip.text = element_text(size = 15)) FDP.summary.pi0 <- aperm(FDP.summary[, , , j], c(2, 1, 3)) FDP.summary.pi0.method <- FDP.summary.pi0[, , 1] for (kk in 2 : length(method.name)) { FDP.summary.pi0.method <- rbind.data.frame(FDP.summary.pi0.method, FDP.summary.pi0[, , kk]) } FDP.summary.pi0.method <- cbind.data.frame( rep(factor(seq(method.name)), each = dim(FDP.summary.pi0)[1]), rep(q.vec, length(method.name)), FDP.summary.pi0.method ) colnames(FDP.summary.pi0.method) <- c( "Method", "FDR", "FDP", "sd", "n", "q975", "q025", "q750", "q250" ) FDP.array.pi0 <- aperm(FDP.array[, , , j], c(2, 1, 3)) FDP.pi0.noise <- as.vector(aperm(apply(FDP.array.pi0, c(1, 3), tapply, Noise, mean, na.rm = TRUE), c(2, 1, 3))) sd.pi0.noise <- as.vector(aperm(apply(FDP.array.pi0, c(1, 3), tapply, Noise, sd, na.rm = TRUE), c(2, 1, 3))) n.pi0.noise <- as.vector(aperm(apply(FDP.array.pi0, c(1, 3), tapply, Noise, function(x){sum(!is.na(x))}), c(2, 1, 3))) q975.pi0.noise <- as.vector(aperm(apply(FDP.array.pi0, c(1, 3), tapply, Noise, quantile, probs = 0.975, na.rm = TRUE), c(2, 1, 3))) q025.pi0.noise <- as.vector(aperm(apply(FDP.array.pi0, c(1, 3), tapply, Noise, quantile, probs = 0.025, na.rm = TRUE), c(2, 1, 3))) q750.pi0.noise <- as.vector(aperm(apply(FDP.array.pi0, c(1, 3), tapply, Noise, quantile, probs = 0.75, na.rm = TRUE), c(2, 1, 3))) q250.pi0.noise <- as.vector(aperm(apply(FDP.array.pi0, c(1, 3), tapply, Noise, quantile, probs = 0.25, na.rm = TRUE), c(2, 1, 3))) FDP.summary.pi0.method.noise <- cbind.data.frame( rep(rep(levels(Noise), each = length(q.vec)), length(method.name)), rep(factor(seq(method.name)), each = length(levels(Noise)) * length(q.vec)), rep(q.vec, length(levels(Noise)) * length(method.name)), FDP.pi0.noise, sd.pi0.noise, n.pi0.noise, q975.pi0.noise, q025.pi0.noise, q750.pi0.noise, q250.pi0.noise ) colnames(FDP.summary.pi0.method.noise) <- c( "Noise", "Method", "FDR", "FDP", "sd", "n", "q975", "q025", "q750", "q250" ) FDP.summary.pi0.method.noise <- rbind.data.frame( FDP.summary.pi0.method.noise, cbind.data.frame(Noise = rep("All", dim(FDP.summary.pi0.method)[1]), FDP.summary.pi0.method) ) FDR.calib.plot <- ggplot(data = FDP.summary.pi0.method.noise, aes(x = FDR, y = FDP, group = Method, col = Method)) + geom_line() + geom_ribbon(aes(ymin = q025, ymax = q975, fill = Method), alpha = 0.35, linetype = "blank") + scale_color_manual(labels = method.name, values = method.col) + scale_fill_manual(labels = method.name, values = method.col) + facet_wrap(~Noise, nrow = 1, ncol = 4) + geom_abline(slope = 1, intercept = 0, linetype = "dashed", size = 1, col = "black") + labs(x = "Nominal FDR", y = "FDP") + theme(legend.position = "top", legend.text = element_text(size = 15), plot.title = element_text(hjust = 0.5, size = 15), axis.title.x = element_text(size = 15), axis.title.y = element_text(size = 15), axis.text.x = element_text(angle = 45, size = 15), axis.text.y = element_text(size = 15), strip.text = element_text(size = 15)) FDP.q <- FDP.array[, which(round(q.vec, 4) == q), , j] FDP.q.noise <- rbind.data.frame(cbind.data.frame(Noise, FDP.q), cbind.data.frame(Noise = rep("All", length(Noise)), FDP.q)) FDR.plot <- ggplot(data = melt(FDP.q.noise, id.vars = "Noise"), aes(x = variable, y = value, col = variable)) + geom_boxplot() + stat_summary(fun.y = mean, geom = "point", shape = 13, size = 3) + scale_color_manual(values = method.col) + facet_wrap(~Noise, nrow = 1, ncol = 4) + geom_hline(yintercept = q, col = "black", linetype = "dashed", size = 1) + scale_x_discrete(labels = method.name) + labs(x = "", y = "FDP") + theme(legend.position = "none", plot.title = element_text(hjust = 0.5, size = 15), axis.title.y = element_text(size = 15), axis.text.x = element_text(size = 15, angle = 45, hjust = 1), axis.text.y = element_text(size = 15), strip.text = element_text(size = 15)) TDP.q <- power.array[, which(round(q.vec, 4) == q), , j] TDP.q.noise <- rbind.data.frame(cbind.data.frame(Noise, TDP.q), cbind.data.frame(Noise = rep("All", length(Noise)), TDP.q)) power.plot <- ggplot(data = melt(TDP.q.noise, id.vars = "Noise"), aes(x = variable, y = value, col = variable)) + geom_boxplot() + stat_summary(fun.y = mean, geom = "point", shape = 13, size = 3) + scale_color_manual(values = method.col) + facet_wrap(~Noise, nrow = 1, ncol = 4) + scale_x_discrete(labels = method.name) + labs(x = "", y = "TPP") + theme(legend.position = "none", plot.title = element_text(hjust = 0.5, size = 15), axis.title.y = element_text(size = 15), axis.text.x = element_text(size = 15, angle = 45, hjust = 1), axis.text.y = element_text(size = 15), strip.text = element_text(size = 15)) joint <- ggarrange(FDR.calib.plot, pi0.plot + rremove("x.text"), FDR.plot + rremove("x.text"), power.plot, align = "v", ncol = 1, nrow = 4, heights = c(1.5, 1, 1, 1.2) ) joint <- annotate_figure(joint, top = text_grob(bquote(pi[0] == .(pi0.vec[j])), size = 15) ) print(joint) ggsave(paste0("../output/fig/g9_pi0_", pi0.vec[j], ".pdf"), joint, height = 10, width = 8) }</code></pre> <p><img src="figure/cash_plots.rmd/unnamed-chunk-24-1.png" width="672" style="display: block; margin: auto;" /></p> <details> <summary><em>Expand here to see past versions of unnamed-chunk-24-1.png:</em></summary> <table style = "border-collapse:separate; border-spacing:5px;"> <thead> <tr> <th style="text-align:left;"> Version </th> <th style="text-align:left;"> Author </th> <th style="text-align:left;"> Date </th> </tr> </thead> <tbody> <tr> <td style="text-align:left;"> <a href="https://github.com/LSun/truncash/blob/b7cf71b4d05a1ea70fdad8da02796d7c0ddc50e8/docs/figure/cash_plots.rmd/unnamed-chunk-24-1.png" target="_blank">b7cf71b</a> </td> <td style="text-align:left;"> LSun </td> <td style="text-align:left;"> 2018-05-14 </td> </tr> <tr> <td style="text-align:left;"> <a href="https://github.com/LSun/truncash/blob/564f9cbc4a8c3126ba03c320d03add8cc56c0aad/docs/figure/cash_plots.rmd/unnamed-chunk-24-1.png" target="_blank">564f9cb</a> </td> <td style="text-align:left;"> LSun </td> <td style="text-align:left;"> 2018-05-06 </td> </tr> </tbody> </table> </details> <p><img src="figure/cash_plots.rmd/unnamed-chunk-24-2.png" width="672" style="display: block; margin: auto;" /></p> <details> <summary><em>Expand here to see past versions of unnamed-chunk-24-2.png:</em></summary> <table style = "border-collapse:separate; border-spacing:5px;"> <thead> <tr> <th style="text-align:left;"> Version </th> <th style="text-align:left;"> Author </th> <th style="text-align:left;"> Date </th> </tr> </thead> <tbody> <tr> <td style="text-align:left;"> <a href="https://github.com/LSun/truncash/blob/b7cf71b4d05a1ea70fdad8da02796d7c0ddc50e8/docs/figure/cash_plots.rmd/unnamed-chunk-24-2.png" target="_blank">b7cf71b</a> </td> <td style="text-align:left;"> LSun </td> <td style="text-align:left;"> 2018-05-14 </td> </tr> </tbody> </table> </details> <p><img src="figure/cash_plots.rmd/unnamed-chunk-24-3.png" width="672" style="display: block; margin: auto;" /></p> <details> <summary><em>Expand here to see past versions of unnamed-chunk-24-3.png:</em></summary> <table style = "border-collapse:separate; border-spacing:5px;"> <thead> <tr> <th style="text-align:left;"> Version </th> <th style="text-align:left;"> Author </th> <th style="text-align:left;"> Date </th> </tr> </thead> <tbody> <tr> <td style="text-align:left;"> <a href="https://github.com/LSun/truncash/blob/b7cf71b4d05a1ea70fdad8da02796d7c0ddc50e8/docs/figure/cash_plots.rmd/unnamed-chunk-24-3.png" target="_blank">b7cf71b</a> </td> <td style="text-align:left;"> LSun </td> <td style="text-align:left;"> 2018-05-14 </td> </tr> </tbody> </table> </details> </div> <div id="session-information" class="section level2"> <h2>Session information</h2> <pre class="r"><code>sessionInfo()</code></pre> <pre><code>R version 3.4.3 (2017-11-30) Platform: x86_64-apple-darwin15.6.0 (64-bit) Running under: macOS High Sierra 10.13.4 Matrix products: default BLAS: /Library/Frameworks/R.framework/Versions/3.4/Resources/lib/libRblas.0.dylib LAPACK: /Library/Frameworks/R.framework/Versions/3.4/Resources/lib/libRlapack.dylib locale: [1] en_US.UTF-8/en_US.UTF-8/en_US.UTF-8/C/en_US.UTF-8/en_US.UTF-8 attached base packages: [1] grid stats graphics grDevices utils datasets methods [8] base other attached packages: [1] ggpubr_0.1.6 magrittr_1.5 cowplot_0.9.2 [4] scales_0.5.0 RColorBrewer_1.1-2 gridExtra_2.3 [7] ggplot2_2.2.1 reshape2_1.4.3 qvalue_2.10.0 [10] locfdr_1.1-8 ashr_2.2-2 Rmosek_8.0.69 [13] CVXR_0.95 REBayes_1.2 Matrix_1.2-12 [16] SQUAREM_2017.10-1 EQL_1.0-0 ttutils_1.0-1 [19] PolynomF_1.0-1 loaded via a namespace (and not attached): [1] purrr_0.2.4 splines_3.4.3 lattice_0.20-35 [4] colorspace_1.3-2 htmltools_0.3.6 yaml_2.1.18 [7] gmp_0.5-13.1 rlang_0.1.6 R.oo_1.21.0 [10] pillar_1.0.1 glue_1.2.0 Rmpfr_0.6-1 [13] R.utils_2.6.0 bit64_0.9-7 bindrcpp_0.2 [16] bindr_0.1 scs_1.1-1 foreach_1.4.4 [19] plyr_1.8.4 stringr_1.3.0 munsell_0.4.3 [22] gtable_0.2.0 workflowr_1.0.1 R.methodsS3_1.7.1 [25] codetools_0.2-15 evaluate_0.10.1 labeling_0.3 [28] knitr_1.20 doParallel_1.0.11 pscl_1.5.2 [31] parallel_3.4.3 Rcpp_0.12.16 backports_1.1.2 [34] truncnorm_1.0-7 bit_1.1-12 digest_0.6.15 [37] stringi_1.1.6 dplyr_0.7.4 rprojroot_1.3-2 [40] ECOSolveR_0.4 tools_3.4.3 lazyeval_0.2.1 [43] tibble_1.4.1 pkgconfig_2.0.1 whisker_0.3-2 [46] MASS_7.3-47 assertthat_0.2.0 rmarkdown_1.9 [49] iterators_1.0.9 R6_2.2.2 git2r_0.21.0 [52] compiler_3.4.3 </code></pre> </div> <!-- Adjust MathJax settings so that all math formulae are shown using TeX fonts only; see http://docs.mathjax.org/en/latest/configuration.html. This will make the presentation more consistent at the cost of the webpage sometimes taking slightly longer to load. Note that this only works because the footer is added to webpages before the MathJax javascript. --> <script type="text/x-mathjax-config"> MathJax.Hub.Config({ "HTML-CSS": { availableFonts: ["TeX"] } }); </script> <hr> <p> This reproducible <a href="http://rmarkdown.rstudio.com">R Markdown</a> analysis was created with <a href="https://github.com/jdblischak/workflowr">workflowr</a> 1.0.1 </p> <hr> </div> </div> </div> <script> // add bootstrap table styles to pandoc tables function bootstrapStylePandocTables() { $('tr.header').parent('thead').parent('table').addClass('table table-condensed'); } $(document).ready(function () { bootstrapStylePandocTables(); }); </script> <!-- dynamically load mathjax for compatibility with self-contained --> <script> (function () { var script = document.createElement("script"); script.type = "text/javascript"; script.src = "https://mathjax.rstudio.com/latest/MathJax.js?config=TeX-AMS-MML_HTMLorMML"; document.getElementsByTagName("head")[0].appendChild(script); })(); </script> </body> </html>