<!DOCTYPE html>

<html xmlns="http://www.w3.org/1999/xhtml">

<head>

<meta charset="utf-8" />
<meta http-equiv="Content-Type" content="text/html; charset=utf-8" />
<meta name="generator" content="pandoc" />


<meta name="author" content="Lei Sun" />

<meta name="date" content="2017-06-03" />

<title>Real Data with Simulated Signals: Part V</title>

<script src="site_libs/jquery-1.11.3/jquery.min.js"></script>
<meta name="viewport" content="width=device-width, initial-scale=1" />
<link href="site_libs/bootstrap-3.3.5/css/cosmo.min.css" rel="stylesheet" />
<script src="site_libs/bootstrap-3.3.5/js/bootstrap.min.js"></script>
<script src="site_libs/bootstrap-3.3.5/shim/html5shiv.min.js"></script>
<script src="site_libs/bootstrap-3.3.5/shim/respond.min.js"></script>
<script src="site_libs/jqueryui-1.11.4/jquery-ui.min.js"></script>
<link href="site_libs/tocify-1.9.1/jquery.tocify.css" rel="stylesheet" />
<script src="site_libs/tocify-1.9.1/jquery.tocify.js"></script>
<script src="site_libs/navigation-1.1/tabsets.js"></script>
<link href="site_libs/highlightjs-9.12.0/textmate.css" rel="stylesheet" />
<script src="site_libs/highlightjs-9.12.0/highlight.js"></script>
<link href="site_libs/font-awesome-4.5.0/css/font-awesome.min.css" rel="stylesheet" />

<style type="text/css">code{white-space: pre;}</style>
<style type="text/css">
  pre:not([class]) {
    background-color: white;
  }
</style>
<script type="text/javascript">
if (window.hljs) {
  hljs.configure({languages: []});
  hljs.initHighlightingOnLoad();
  if (document.readyState && document.readyState === "complete") {
    window.setTimeout(function() { hljs.initHighlighting(); }, 0);
  }
}
</script>



<style type="text/css">
h1 {
  font-size: 34px;
}
h1.title {
  font-size: 38px;
}
h2 {
  font-size: 30px;
}
h3 {
  font-size: 24px;
}
h4 {
  font-size: 18px;
}
h5 {
  font-size: 16px;
}
h6 {
  font-size: 12px;
}
.table th:not([align]) {
  text-align: left;
}
</style>


</head>

<body>

<style type = "text/css">
.main-container {
  max-width: 940px;
  margin-left: auto;
  margin-right: auto;
}
code {
  color: inherit;
  background-color: rgba(0, 0, 0, 0.04);
}
img {
  max-width:100%;
  height: auto;
}
.tabbed-pane {
  padding-top: 12px;
}
button.code-folding-btn:focus {
  outline: none;
}
</style>


<style type="text/css">
/* padding for bootstrap navbar */
body {
  padding-top: 51px;
  padding-bottom: 40px;
}
/* offset scroll position for anchor links (for fixed navbar)  */
.section h1 {
  padding-top: 56px;
  margin-top: -56px;
}

.section h2 {
  padding-top: 56px;
  margin-top: -56px;
}
.section h3 {
  padding-top: 56px;
  margin-top: -56px;
}
.section h4 {
  padding-top: 56px;
  margin-top: -56px;
}
.section h5 {
  padding-top: 56px;
  margin-top: -56px;
}
.section h6 {
  padding-top: 56px;
  margin-top: -56px;
}
</style>

<script>
// manage active state of menu based on current page
$(document).ready(function () {
  // active menu anchor
  href = window.location.pathname
  href = href.substr(href.lastIndexOf('/') + 1)
  if (href === "")
    href = "index.html";
  var menuAnchor = $('a[href="' + href + '"]');

  // mark it active
  menuAnchor.parent().addClass('active');

  // if it's got a parent navbar menu mark it active as well
  menuAnchor.closest('li.dropdown').addClass('active');
});
</script>


<div class="container-fluid main-container">

<!-- tabsets -->
<script>
$(document).ready(function () {
  window.buildTabsets("TOC");
});
</script>

<!-- code folding -->




<script>
$(document).ready(function ()  {

    // move toc-ignore selectors from section div to header
    $('div.section.toc-ignore')
        .removeClass('toc-ignore')
        .children('h1,h2,h3,h4,h5').addClass('toc-ignore');

    // establish options
    var options = {
      selectors: "h1,h2,h3",
      theme: "bootstrap3",
      context: '.toc-content',
      hashGenerator: function (text) {
        return text.replace(/[.\\/?&!#<>]/g, '').replace(/\s/g, '_').toLowerCase();
      },
      ignoreSelector: ".toc-ignore",
      scrollTo: 0
    };
    options.showAndHide = true;
    options.smoothScroll = true;

    // tocify
    var toc = $("#TOC").tocify(options).data("toc-tocify");
});
</script>

<style type="text/css">

#TOC {
  margin: 25px 0px 20px 0px;
}
@media (max-width: 768px) {
#TOC {
  position: relative;
  width: 100%;
}
}


.toc-content {
  padding-left: 30px;
  padding-right: 40px;
}

div.main-container {
  max-width: 1200px;
}

div.tocify {
  width: 20%;
  max-width: 260px;
  max-height: 85%;
}

@media (min-width: 768px) and (max-width: 991px) {
  div.tocify {
    width: 25%;
  }
}

@media (max-width: 767px) {
  div.tocify {
    width: 100%;
    max-width: none;
  }
}

.tocify ul, .tocify li {
  line-height: 20px;
}

.tocify-subheader .tocify-item {
  font-size: 0.90em;
  padding-left: 25px;
  text-indent: 0;
}

.tocify .list-group-item {
  border-radius: 0px;
}


</style>

<!-- setup 3col/9col grid for toc_float and main content  -->
<div class="row-fluid">
<div class="col-xs-12 col-sm-4 col-md-3">
<div id="TOC" class="tocify">
</div>
</div>

<div class="toc-content col-xs-12 col-sm-8 col-md-9">




<div class="navbar navbar-default  navbar-fixed-top" role="navigation">
  <div class="container">
    <div class="navbar-header">
      <button type="button" class="navbar-toggle collapsed" data-toggle="collapse" data-target="#navbar">
        <span class="icon-bar"></span>
        <span class="icon-bar"></span>
        <span class="icon-bar"></span>
      </button>
      <a class="navbar-brand" href="index.html">truncash</a>
    </div>
    <div id="navbar" class="navbar-collapse collapse">
      <ul class="nav navbar-nav">
        <li>
  <a href="index.html">Home</a>
</li>
<li>
  <a href="about.html">About</a>
</li>
<li>
  <a href="license.html">License</a>
</li>
      </ul>
      <ul class="nav navbar-nav navbar-right">
        <li>
  <a href="https://github.com/LSun/truncash">
    <span class="fa fa-github"></span>
     
  </a>
</li>
      </ul>
    </div><!--/.nav-collapse -->
  </div><!--/.container -->
</div><!--/.navbar -->

<div class="fluid-row" id="header">



<h1 class="title toc-ignore">Real Data with Simulated Signals: Part V</h1>
<h4 class="author"><em>Lei Sun</em></h4>
<h4 class="date"><em>2017-06-03</em></h4>

</div>


<!-- The file analysis/chunks.R contains chunks that define default settings
shared across the workflowr files. -->
<!-- Update knitr chunk options -->
<!-- Insert the date the file was last updated -->
<p><strong>Last updated:</strong> 2017-12-21</p>
<!-- Insert the code version (Git commit SHA1) if Git repository exists and R
 package git2r is installed -->
<p><strong>Code version:</strong> 6e42447</p>
<!-- Add your analysis here -->
<pre class="r"><code>library(edgeR)
library(limma)
library(sva)
library(cate)
library(vicar)
library(ashr)
library(pROC)
source(&quot;../code/gdash.R&quot;)</code></pre>
<pre class="r"><code>mat = readRDS(&quot;../data/liver.sim.rds&quot;)</code></pre>
<pre class="r"><code>counts_to_summary = function (counts, design) {
  dgecounts = edgeR::calcNormFactors(edgeR::DGEList(counts = counts, group = design[, 2]))
  v = limma::voom(dgecounts, design, plot = FALSE)
  lim = limma::lmFit(v)
  r.ebayes = limma::eBayes(lim)
  p = r.ebayes$p.value[, 2]
  t = r.ebayes$t[, 2]
  z = sign(t) * qnorm(1 - p/2)
  betahat = lim$coefficients[,2]
  sebetahat = betahat / z
  return (list(betahat = betahat, sebetahat = sebetahat, z = z))
}</code></pre>
<pre class="r"><code>one_sim &lt;- function (mat, ngene, nsamp, pi0, sd) {
## add simulated signals
mat.sim = seqgendiff::poisthin(t(mat), nsamp = nsamp, ngene = ngene, gselect = &quot;random&quot;, signal_params = list(mean = 0, sd = sd), prop_null = pi0)
counts = t(mat.sim$Y) ## ngene * nsamples matrix 
design = mat.sim$X
beta = mat.sim$beta
which_signal = (beta != 0)

## methods using summary statistics only
summary = counts_to_summary(counts, design)

fit.pvalue = (1 - pnorm(abs(summary$z))) * 2
fit.BH = p.adjust(fit.pvalue, method = &quot;BH&quot;)
fit.qvalue = qvalue::qvalue(fit.pvalue)
fit.locfdr = locfdr::locfdr(summary$z, bre = round(ngene / 20), plot = 0)
fit.ash = ashr::ash(summary$betahat, summary$sebetahat, mixcompdist = &quot;normal&quot;, method = &quot;fdr&quot;)
fit.gdash = gdash(summary$betahat, summary$sebetahat)
fit.gdash.ash = ashr::ash(summary$betahat, summary$sebetahat, fixg = TRUE, g = fit.gdash$fitted_g)

## methods using data matrix
Y = t(log(counts + 0.5))
X = design

num_sv &lt;- sva::num.sv(dat = t(Y), mod = X, method = &quot;be&quot;)

mout &lt;- vicar::mouthwash(Y = Y, X = X, k = num_sv, cov_of_interest = 2, include_intercept = FALSE)

cate_cate &lt;- cate::cate.fit(X.primary = X[, 2, drop = FALSE], X.nuis = X[, -2, drop = FALSE], Y = Y, r = num_sv, adj.method = &quot;rr&quot;)

sva_sva &lt;- sva::sva(dat = t(Y), mod = X, mod0 = X[, -2, drop = FALSE], n.sv = num_sv)
X.sva &lt;- cbind(X, sva_sva$sv)
lmout &lt;- limma::lmFit(object = t(Y), design = X.sva)
eout  &lt;- limma::ebayes(lmout)
svaout           &lt;- list()
svaout$betahat   &lt;- lmout$coefficients[, 2]
svaout$sebetahat &lt;- lmout$stdev.unscaled[, 2] * sqrt(eout$s2.post)
svaout$pvalues   &lt;- eout$p.value[, 2]

## result: roc auc
roc_res = c(
  pvalue = pROC::roc(response = which_signal, predictor = fit.pvalue)$auc,
  BH = pROC::roc(response = which_signal, predictor = fit.BH)$auc,
  qvalue = pROC::roc(response = which_signal, predictor = fit.qvalue$lfdr)$auc,
  locfdr = pROC::roc(response = which_signal, predictor = fit.locfdr$fdr)$auc,
  ash = pROC::roc(response = which_signal, predictor = ashr::get_lfdr(fit.ash))$auc,
  cash = pROC::roc(response = which_signal, predictor = ashr::get_lfdr(fit.gdash.ash))$auc,
  mouthwash = pROC::roc(response = which_signal, predictor = c(mout$result$lfdr))$auc,
  cate = pROC::roc(response = which_signal, predictor = c(cate_cate$beta.p.value))$auc,
  sva = pROC::roc(response = which_signal, predictor = c(svaout$pvalues))$auc
)

## ash with summary statistics
method_list &lt;- list()

method_list$cate           &lt;- list()
method_list$cate$betahat   &lt;- c(cate_cate$beta)
method_list$cate$sebetahat &lt;- c(sqrt(cate_cate$beta.cov.row * cate_cate$beta.cov.col) / sqrt(nrow(X)))

method_list$sva             &lt;- list()
method_list$sva$betahat     &lt;- c(svaout$betahat)
method_list$sva$sebetahat   &lt;- c(svaout$sebetahat)

ashfit &lt;- lapply(method_list, FUN = function(x) {ashr::ash(x$betahat, x$sebetahat, mixcompdist = &quot;normal&quot;, method = &quot;fdr&quot;)})
ashfit$ash &lt;- fit.ash
ashfit$cash &lt;- fit.gdash.ash
ashfit$mouthwash &lt;- mout
ashfit = ashfit[c(&quot;ash&quot;, &quot;cash&quot;, &quot;mouthwash&quot;, &quot;cate&quot;, &quot;sva&quot;)]

## pi0
pi0_res &lt;- sapply(ashfit, FUN = ashr::get_pi0)
pi0_res &lt;- c(
  qvalue = fit.qvalue$pi0,
  locfdr = min(1, fit.locfdr$fp0[&quot;mlest&quot;, &quot;p0&quot;]),
  pi0_res
  )

## mse
mse_res &lt;- sapply(ashfit, FUN = function(x) {mean((ashr::get_pm(x) - beta)^2)})
mse_res &lt;- c(ols = mean((summary$betahat - beta)^2), mse_res)

## pFDP calibration
pFDP_alpha = function (alpha, tail_stat, true, obs) {
  return(1 - mean(true[tail_stat &lt;= alpha]))
}
pFSP_alpha = function (alpha, tail_stat, true, obs) {
  return(mean(sign(obs[tail_stat &lt;= alpha]) != sign(true[tail_stat &lt;= alpha])))
}

tail_cali_list = function (alpha_list, tail_cali_alpha, tail_stat, true, obs) {
  sapply(alpha_list, tail_cali_alpha, tail_stat, true, obs)
}
alpha_list = seq(0, 0.2, by = 0.001)
pFDP &lt;- sapply(
  ashfit, FUN = function (x) {
    tail_cali_list(alpha_list, pFDP_alpha, ashr::get_qvalue(x), which_signal, x$data$x)
  }
)
pFDP_BH = tail_cali_list(alpha_list, pFDP_alpha, fit.BH, which_signal, summary$betahat)
pFDP_qvalue = tail_cali_list(alpha_list, pFDP_alpha, fit.qvalue$qvalues, which_signal, summary$betahat)
pFDP_res = cbind(BH = pFDP_BH, qvalue = pFDP_qvalue, pFDP)

## pFSR calibration
pFSP_res &lt;- sapply(
  ashfit, FUN = function (x) {
  tail_cali_list(alpha_list, pFSP_alpha, ashr::get_svalue(x), beta, x$data$x)
  }
)

return(list(pi = pi0_res, mse = mse_res, auc = roc_res, alpha = alpha_list, pFDP = pFDP_res, pFSP = pFSP_res))
}</code></pre>
<pre class="r"><code>n_sim = function (n, mat, ngene, nsamp, pi0, sd) {
  pi0_list = mse_list = auc_list = pFDP_list = pFSP_list = list()
  for (i in 1 : n) {
    one_res = one_sim(mat, ngene, nsamp, pi0, sd)
    pi0_list[[i]] = one_res$pi
    mse_list[[i]] = one_res$mse
    auc_list[[i]] = one_res$auc
    pFDP_list[[i]] = one_res$pFDP
    pFSP_list[[i]] = one_res$pFSP
  }
  alpha_vec = one_res$alpha
  pi0_mat = matrix(unlist(pi0_list), nrow = n, byrow = TRUE)
  colnames(pi0_mat) = names(pi0_list[[1]])
  mse_mat = matrix(unlist(mse_list), nrow = n, byrow = TRUE)
  colnames(mse_mat) = names(mse_list[[1]])
  auc_mat = matrix(unlist(auc_list), nrow = n, byrow = TRUE)
  colnames(auc_mat) = names(auc_list[[1]])
  pFDP_mat = list()
  for (j in 1 : ncol(pFDP_list[[1]])) {
    pFDP_mat[[j]] = t(sapply(pFDP_list, FUN = function(x) {rbind(x[, j])}))
  }
  names(pFDP_mat) = colnames(pFDP_list[[1]])
  pFSP_mat = list()
  for (j in 1 : ncol(pFSP_list[[1]])) {
    pFSP_mat[[j]] = t(sapply(pFSP_list, FUN = function(x) {rbind(x[, j])}))
  }
  names(pFSP_mat) = colnames(pFSP_list[[1]])
  return(list(pi0 = pi0_mat, mse = mse_mat, auc = auc_mat, alpha = alpha_vec, pFDP = pFDP_mat, pFSP = pFSP_mat))
}</code></pre>
<pre class="r"><code>sd = 0.6
pi0 = 0.9
ngene = 1e3
nsamp = 10
nsim = 100

set.seed(777)
system.time(res &lt;- n_sim(nsim, mat, ngene, nsamp, pi0, sd))</code></pre>
<pre><code>Number of significant surrogate variables is:  2 
Iteration (out of 5 ):1  2  3  4  5  Number of significant surrogate variables is:  2 
Iteration (out of 5 ):1  2  3  4  5  Number of significant surrogate variables is:  2 
Iteration (out of 5 ):1  2  3  4  5  Number of significant surrogate variables is:  2 
Iteration (out of 5 ):1  2  3  4  5  </code></pre>
<pre><code>Warning in locfdr::locfdr(summary$z, bre = round(ngene/20), plot = 0): CM
estimation failed, middle of histogram non-normal</code></pre>
<pre><code>Number of significant surrogate variables is:  1 
Iteration (out of 5 ):1  2  3  4  5  Number of significant surrogate variables is:  2 
Iteration (out of 5 ):1  2  3  4  5  </code></pre>
<pre><code>Warning in locfdr::locfdr(summary$z, bre = round(ngene/20), plot = 0): CM
estimation failed, middle of histogram non-normal</code></pre>
<pre><code>Number of significant surrogate variables is:  2 
Iteration (out of 5 ):1  2  3  4  5  Number of significant surrogate variables is:  2 
Iteration (out of 5 ):1  2  3  4  5  </code></pre>
<pre><code>Warning in locfdr::locfdr(summary$z, bre = round(ngene/20), plot = 0): CM
estimation failed, middle of histogram non-normal</code></pre>
<pre><code>Number of significant surrogate variables is:  2 
Iteration (out of 5 ):1  2  3  4  5  Number of significant surrogate variables is:  2 
Iteration (out of 5 ):1  2  3  4  5  Number of significant surrogate variables is:  2 
Iteration (out of 5 ):1  2  3  4  5  Number of significant surrogate variables is:  3 
Iteration (out of 5 ):1  2  3  4  5  Number of significant surrogate variables is:  2 
Iteration (out of 5 ):1  2  3  4  5  </code></pre>
<pre><code>Warning in locfdr::locfdr(summary$z, bre = round(ngene/20), plot = 0): CM
estimation failed, middle of histogram non-normal</code></pre>
<pre><code>Number of significant surrogate variables is:  2 
Iteration (out of 5 ):1  2  3  4  5  Number of significant surrogate variables is:  3 
Iteration (out of 5 ):1  2  3  4  5  Number of significant surrogate variables is:  2 
Iteration (out of 5 ):1  2  3  4  5  Number of significant surrogate variables is:  2 
Iteration (out of 5 ):1  2  3  4  5  Number of significant surrogate variables is:  2 
Iteration (out of 5 ):1  2  3  4  5  Number of significant surrogate variables is:  2 
Iteration (out of 5 ):1  2  3  4  5  Number of significant surrogate variables is:  3 
Iteration (out of 5 ):1  2  3  4  5  Number of significant surrogate variables is:  2 
Iteration (out of 5 ):1  2  3  4  5  Number of significant surrogate variables is:  3 
Iteration (out of 5 ):1  2  3  4  5  Number of significant surrogate variables is:  2 
Iteration (out of 5 ):1  2  3  4  5  </code></pre>
<pre><code>Warning in locfdr::locfdr(summary$z, bre = round(ngene/20), plot = 0): CM
estimation failed, middle of histogram non-normal</code></pre>
<pre><code>Number of significant surrogate variables is:  1 
Iteration (out of 5 ):1  2  3  4  5  Number of significant surrogate variables is:  2 
Iteration (out of 5 ):1  2  3  4  5  Number of significant surrogate variables is:  3 
Iteration (out of 5 ):1  2  3  4  5  Number of significant surrogate variables is:  2 
Iteration (out of 5 ):1  2  3  4  5  </code></pre>
<pre><code>Warning in locfdr::locfdr(summary$z, bre = round(ngene/20), plot = 0): CM
estimation failed, middle of histogram non-normal</code></pre>
<pre><code>Number of significant surrogate variables is:  2 
Iteration (out of 5 ):1  2  3  4  5  </code></pre>
<pre><code>Warning in locfdr::locfdr(summary$z, bre = round(ngene/20), plot = 0): CM
estimation failed, middle of histogram non-normal</code></pre>
<pre><code>Number of significant surrogate variables is:  2 
Iteration (out of 5 ):1  2  3  4  5  Number of significant surrogate variables is:  2 
Iteration (out of 5 ):1  2  3  4  5  Number of significant surrogate variables is:  2 
Iteration (out of 5 ):1  2  3  4  5  Number of significant surrogate variables is:  2 
Iteration (out of 5 ):1  2  3  4  5  Number of significant surrogate variables is:  1 
Iteration (out of 5 ):1  2  3  4  5  Number of significant surrogate variables is:  2 
Iteration (out of 5 ):1  2  3  4  5  Number of significant surrogate variables is:  1 
Iteration (out of 5 ):1  2  3  4  5  Number of significant surrogate variables is:  3 
Iteration (out of 5 ):1  2  3  4  5  Number of significant surrogate variables is:  1 
Iteration (out of 5 ):1  2  3  4  5  Number of significant surrogate variables is:  3 
Iteration (out of 5 ):1  2  3  4  5  Number of significant surrogate variables is:  3 
Iteration (out of 5 ):1  2  3  4  5  Number of significant surrogate variables is:  2 
Iteration (out of 5 ):1  2  3  4  5  Number of significant surrogate variables is:  2 
Iteration (out of 5 ):1  2  3  4  5  Number of significant surrogate variables is:  2 
Iteration (out of 5 ):1  2  3  4  5  Number of significant surrogate variables is:  2 
Iteration (out of 5 ):1  2  3  4  5  Number of significant surrogate variables is:  2 
Iteration (out of 5 ):1  2  3  4  5  Number of significant surrogate variables is:  1 
Iteration (out of 5 ):1  2  3  4  5  Number of significant surrogate variables is:  2 
Iteration (out of 5 ):1  2  3  4  5  Number of significant surrogate variables is:  2 
Iteration (out of 5 ):1  2  3  4  5  Number of significant surrogate variables is:  2 
Iteration (out of 5 ):1  2  3  4  5  Number of significant surrogate variables is:  2 
Iteration (out of 5 ):1  2  3  4  5  Number of significant surrogate variables is:  2 
Iteration (out of 5 ):1  2  3  4  5  Number of significant surrogate variables is:  2 
Iteration (out of 5 ):1  2  3  4  5  Number of significant surrogate variables is:  2 
Iteration (out of 5 ):1  2  3  4  5  Number of significant surrogate variables is:  2 
Iteration (out of 5 ):1  2  3  4  5  Number of significant surrogate variables is:  1 
Iteration (out of 5 ):1  2  3  4  5  </code></pre>
<pre><code>Warning in locfdr::locfdr(summary$z, bre = round(ngene/20), plot = 0): CM
estimation failed, middle of histogram non-normal</code></pre>
<pre><code>Number of significant surrogate variables is:  2 
Iteration (out of 5 ):1  2  3  4  5  Number of significant surrogate variables is:  2 
Iteration (out of 5 ):1  2  3  4  5  </code></pre>
<pre><code>Warning in locfdr::locfdr(summary$z, bre = round(ngene/20), plot = 0): CM
estimation failed, middle of histogram non-normal</code></pre>
<pre><code>Warning in log(rowSums(sweep(x = exp(ldmix - ldmax), MARGIN = 2, STATS =
pi_vals, : NaNs produced</code></pre>
<pre><code>Number of significant surrogate variables is:  2 
Iteration (out of 5 ):1  2  3  4  5  Number of significant surrogate variables is:  2 
Iteration (out of 5 ):1  2  3  4  5  Number of significant surrogate variables is:  2 
Iteration (out of 5 ):1  2  3  4  5  Number of significant surrogate variables is:  3 
Iteration (out of 5 ):1  2  3  4  5  Number of significant surrogate variables is:  3 
Iteration (out of 5 ):1  2  3  4  5  </code></pre>
<pre><code>Warning in locfdr::locfdr(summary$z, bre = round(ngene/20), plot = 0): CM
estimation failed, middle of histogram non-normal</code></pre>
<pre><code>Number of significant surrogate variables is:  3 
Iteration (out of 5 ):1  2  3  4  5  Number of significant surrogate variables is:  2 
Iteration (out of 5 ):1  2  3  4  5  Number of significant surrogate variables is:  3 
Iteration (out of 5 ):1  2  3  4  5  Number of significant surrogate variables is:  2 
Iteration (out of 5 ):1  2  3  4  5  Number of significant surrogate variables is:  2 
Iteration (out of 5 ):1  2  3  4  5  Number of significant surrogate variables is:  2 
Iteration (out of 5 ):1  2  3  4  5  Number of significant surrogate variables is:  2 
Iteration (out of 5 ):1  2  3  4  5  </code></pre>
<pre><code>Warning in locfdr::locfdr(summary$z, bre = round(ngene/20), plot = 0): CM
estimation failed, middle of histogram non-normal</code></pre>
<pre><code>Number of significant surrogate variables is:  3 
Iteration (out of 5 ):1  2  3  4  5  Number of significant surrogate variables is:  3 
Iteration (out of 5 ):1  2  3  4  5  Number of significant surrogate variables is:  2 
Iteration (out of 5 ):1  2  3  4  5  </code></pre>
<pre><code>Warning in locfdr::locfdr(summary$z, bre = round(ngene/20), plot = 0): CM
estimation failed, middle of histogram non-normal</code></pre>
<pre><code>Number of significant surrogate variables is:  2 
Iteration (out of 5 ):1  2  3  4  5  </code></pre>
<pre><code>Warning in locfdr::locfdr(summary$z, bre = round(ngene/20), plot = 0): CM
estimation failed, middle of histogram non-normal</code></pre>
<pre><code>Number of significant surrogate variables is:  3 
Iteration (out of 5 ):1  2  3  4  5  Number of significant surrogate variables is:  3 
Iteration (out of 5 ):1  2  3  4  5  Number of significant surrogate variables is:  2 
Iteration (out of 5 ):1  2  3  4  5  </code></pre>
<pre><code>Warning in locfdr::locfdr(summary$z, bre = round(ngene/20), plot = 0): CM
estimation failed, middle of histogram non-normal</code></pre>
<pre><code>Number of significant surrogate variables is:  2 
Iteration (out of 5 ):1  2  3  4  5  </code></pre>
<pre><code>Warning in locfdr::locfdr(summary$z, bre = round(ngene/20), plot = 0): CM
estimation failed, middle of histogram non-normal</code></pre>
<pre><code>Number of significant surrogate variables is:  2 
Iteration (out of 5 ):1  2  3  4  5  Number of significant surrogate variables is:  2 
Iteration (out of 5 ):1  2  3  4  5  Number of significant surrogate variables is:  2 
Iteration (out of 5 ):1  2  3  4  5  Number of significant surrogate variables is:  3 
Iteration (out of 5 ):1  2  3  4  5  </code></pre>
<pre><code>Warning in locfdr::locfdr(summary$z, bre = round(ngene/20), plot = 0): CM
estimation failed, middle of histogram non-normal</code></pre>
<pre><code>Number of significant surrogate variables is:  3 
Iteration (out of 5 ):1  2  3  4  5  Number of significant surrogate variables is:  2 
Iteration (out of 5 ):1  2  3  4  5  Number of significant surrogate variables is:  2 
Iteration (out of 5 ):1  2  3  4  5  </code></pre>
<pre><code>Warning in locfdr::locfdr(summary$z, bre = round(ngene/20), plot = 0): CM
estimation failed, middle of histogram non-normal</code></pre>
<pre><code>Number of significant surrogate variables is:  2 
Iteration (out of 5 ):1  2  3  4  5  Number of significant surrogate variables is:  2 
Iteration (out of 5 ):1  2  3  4  5  Number of significant surrogate variables is:  2 
Iteration (out of 5 ):1  2  3  4  5  </code></pre>
<pre><code>Warning in locfdr::locfdr(summary$z, bre = round(ngene/20), plot = 0): CM
estimation failed, middle of histogram non-normal</code></pre>
<pre><code>Number of significant surrogate variables is:  2 
Iteration (out of 5 ):1  2  3  4  5  Number of significant surrogate variables is:  3 
Iteration (out of 5 ):1  2  3  4  5  Number of significant surrogate variables is:  2 
Iteration (out of 5 ):1  2  3  4  5  Number of significant surrogate variables is:  2 
Iteration (out of 5 ):1  2  3  4  5  Number of significant surrogate variables is:  2 
Iteration (out of 5 ):1  2  3  4  5  Number of significant surrogate variables is:  2 
Iteration (out of 5 ):1  2  3  4  5  Number of significant surrogate variables is:  2 
Iteration (out of 5 ):1  2  3  4  5  Number of significant surrogate variables is:  2 
Iteration (out of 5 ):1  2  3  4  5  Number of significant surrogate variables is:  2 
Iteration (out of 5 ):1  2  3  4  5  Number of significant surrogate variables is:  2 
Iteration (out of 5 ):1  2  3  4  5  Number of significant surrogate variables is:  2 
Iteration (out of 5 ):1  2  3  4  5  Number of significant surrogate variables is:  3 
Iteration (out of 5 ):1  2  3  4  5  Number of significant surrogate variables is:  2 
Iteration (out of 5 ):1  2  3  4  5  Number of significant surrogate variables is:  3 
Iteration (out of 5 ):1  2  3  4  5  </code></pre>
<pre><code>    user   system  elapsed 
1703.469  381.549 2135.044 </code></pre>
<p><img src="figure/real_data_simulation_5.rmd/unnamed-chunk-7-1.png" width="672" style="display: block; margin: auto;" /><img src="figure/real_data_simulation_5.rmd/unnamed-chunk-7-2.png" width="672" style="display: block; margin: auto;" /><img src="figure/real_data_simulation_5.rmd/unnamed-chunk-7-3.png" width="672" style="display: block; margin: auto;" /></p>
<p><img src="figure/real_data_simulation_5.rmd/unnamed-chunk-8-1.png" width="672" style="display: block; margin: auto;" /><img src="figure/real_data_simulation_5.rmd/unnamed-chunk-8-2.png" width="672" style="display: block; margin: auto;" /><img src="figure/real_data_simulation_5.rmd/unnamed-chunk-8-3.png" width="672" style="display: block; margin: auto;" /><img src="figure/real_data_simulation_5.rmd/unnamed-chunk-8-4.png" width="672" style="display: block; margin: auto;" /></p>
<section id="session-information" class="level2">
<h2>Session information</h2>
<!-- Insert the session information into the document -->
<pre class="r"><code>sessionInfo()</code></pre>
<pre><code>R version 3.4.3 (2017-11-30)
Platform: x86_64-apple-darwin15.6.0 (64-bit)
Running under: macOS High Sierra 10.13.2

Matrix products: default
BLAS: /Library/Frameworks/R.framework/Versions/3.4/Resources/lib/libRblas.0.dylib
LAPACK: /Library/Frameworks/R.framework/Versions/3.4/Resources/lib/libRlapack.dylib

locale:
[1] en_US.UTF-8/en_US.UTF-8/en_US.UTF-8/C/en_US.UTF-8/en_US.UTF-8

attached base packages:
[1] stats     graphics  grDevices utils     datasets  methods   base     

other attached packages:
 [1] Rmosek_8.0.69       PolynomF_1.0-1      CVXR_0.94-4        
 [4] REBayes_1.2         Matrix_1.2-12       SQUAREM_2017.10-1  
 [7] EQL_1.0-0           ttutils_1.0-1       pROC_1.10.0        
[10] ashr_2.2-2          vicar_0.1.6         cate_1.0.4         
[13] sva_3.26.0          BiocParallel_1.12.0 genefilter_1.60.0  
[16] mgcv_1.8-22         nlme_3.1-131        edgeR_3.20.2       
[19] limma_3.34.4       

loaded via a namespace (and not attached):
 [1] Biobase_2.38.0       svd_0.4.1            bit64_0.9-7         
 [4] splines_3.4.3        foreach_1.4.4        ECOSolveR_0.3-2     
 [7] R.utils_2.6.0        stats4_3.4.3         blob_1.1.0          
[10] yaml_2.1.16          RSQLite_2.0          backports_1.1.2     
[13] lattice_0.20-35      digest_0.6.13        colorspace_1.3-2    
[16] R.oo_1.21.0          htmltools_0.3.6      plyr_1.8.4          
[19] XML_3.98-1.9         esaBcv_1.2.1         xtable_1.8-2        
[22] corpcor_1.6.9        scales_0.5.0         scs_1.1-1           
[25] git2r_0.20.0         tibble_1.3.4         annotate_1.56.1     
[28] gmp_0.5-13.1         IRanges_2.12.0       ggplot2_2.2.1       
[31] BiocGenerics_0.24.0  lazyeval_0.2.1       Rmpfr_0.6-1         
[34] survival_2.41-3      magrittr_1.5         memoise_1.1.0       
[37] evaluate_0.10.1      R.methodsS3_1.7.1    doParallel_1.0.11   
[40] MASS_7.3-47          truncnorm_1.0-7      tools_3.4.3         
[43] matrixStats_0.52.2   stringr_1.2.0        S4Vectors_0.16.0    
[46] munsell_0.4.3        locfit_1.5-9.1       AnnotationDbi_1.40.0
[49] compiler_3.4.3       rlang_0.1.4          grid_3.4.3          
[52] leapp_1.2            RCurl_1.95-4.8       iterators_1.0.9     
[55] bitops_1.0-6         rmarkdown_1.8        gtable_0.2.0        
[58] codetools_0.2-15     DBI_0.7              R6_2.2.2            
[61] ruv_0.9.6            knitr_1.17           bit_1.1-12          
[64] rprojroot_1.3-1      stringi_1.1.6        pscl_1.5.2          
[67] parallel_3.4.3       Rcpp_0.12.14        </code></pre>
</section>

<hr>
<p>
    This <a href="http://rmarkdown.rstudio.com">R Markdown</a> site was created with <a href="https://github.com/jdblischak/workflowr">workflowr</a>
</p>
<hr>

<!-- To enable disqus, uncomment the section below and provide your disqus_shortname -->

<!-- disqus
  <div id="disqus_thread"></div>
    <script type="text/javascript">
        /* * * CONFIGURATION VARIABLES: EDIT BEFORE PASTING INTO YOUR WEBPAGE * * */
        var disqus_shortname = 'rmarkdown'; // required: replace example with your forum shortname

        /* * * DON'T EDIT BELOW THIS LINE * * */
        (function() {
            var dsq = document.createElement('script'); dsq.type = 'text/javascript'; dsq.async = true;
            dsq.src = '//' + disqus_shortname + '.disqus.com/embed.js';
            (document.getElementsByTagName('head')[0] || document.getElementsByTagName('body')[0]).appendChild(dsq);
        })();
    </script>
    <noscript>Please enable JavaScript to view the <a href="http://disqus.com/?ref_noscript">comments powered by Disqus.</a></noscript>
    <a href="http://disqus.com" class="dsq-brlink">comments powered by <span class="logo-disqus">Disqus</span></a>
-->


</div>
</div>

</div>

<script>

// add bootstrap table styles to pandoc tables
function bootstrapStylePandocTables() {
  $('tr.header').parent('thead').parent('table').addClass('table table-condensed');
}
$(document).ready(function () {
  bootstrapStylePandocTables();
});


</script>

<!-- dynamically load mathjax for compatibility with self-contained -->
<script>
  (function () {
    var script = document.createElement("script");
    script.type = "text/javascript";
    script.src  = "https://mathjax.rstudio.com/latest/MathJax.js?config=TeX-AMS-MML_HTMLorMML";
    document.getElementsByTagName("head")[0].appendChild(script);
  })();
</script>

</body>
</html>