cashr
Last updated: 2018-10-05
workflowr checks: (Click a bullet for more information) ✔ R Markdown file: up-to-date
Great! Since the R Markdown file has been committed to the Git repository, you know the exact version of the code that produced these results.
✔ Environment: empty
Great job! The global environment was empty. Objects defined in the global environment can affect the analysis in your R Markdown file in unknown ways. For reproduciblity it’s best to always run the code in an empty environment.
✔ Seed:
set.seed(12345)
The command set.seed(12345)
was run prior to running the code in the R Markdown file. Setting a seed ensures that any results that rely on randomness, e.g. subsampling or permutations, are reproducible.
✔ Session information: recorded
Great job! Recording the operating system, R version, and package versions is critical for reproducibility.
✔ Repository version: 49f870a
wflow_publish
or wflow_git_commit
). workflowr only checks the R Markdown file, but you know if there are other scripts or data files that it depends on. Below is the status of the Git repository when the results were generated:
Ignored files:
Ignored: .DS_Store
Ignored: .Rhistory
Ignored: .Rproj.user/
Ignored: analysis/.DS_Store
Ignored: analysis/BH_robustness_cache/
Ignored: analysis/FDR_Null_cache/
Ignored: analysis/FDR_null_betahat_cache/
Ignored: analysis/Rmosek_cache/
Ignored: analysis/StepDown_cache/
Ignored: analysis/alternative2_cache/
Ignored: analysis/alternative_cache/
Ignored: analysis/ash_gd_cache/
Ignored: analysis/average_cor_gtex_2_cache/
Ignored: analysis/average_cor_gtex_cache/
Ignored: analysis/brca_cache/
Ignored: analysis/cash_deconv_cache/
Ignored: analysis/cash_fdr_1_cache/
Ignored: analysis/cash_fdr_2_cache/
Ignored: analysis/cash_fdr_3_cache/
Ignored: analysis/cash_fdr_4_cache/
Ignored: analysis/cash_fdr_5_cache/
Ignored: analysis/cash_fdr_6_cache/
Ignored: analysis/cash_paper_fig_leukemia_cache/
Ignored: analysis/cash_plots_2_cache/
Ignored: analysis/cash_plots_3_cache/
Ignored: analysis/cash_plots_cache/
Ignored: analysis/cash_sim_1_cache/
Ignored: analysis/cash_sim_2_cache/
Ignored: analysis/cash_sim_3_cache/
Ignored: analysis/cash_sim_4_cache/
Ignored: analysis/cash_sim_5_cache/
Ignored: analysis/cash_sim_6_cache/
Ignored: analysis/cash_sim_7_cache/
Ignored: analysis/correlated_z_2_cache/
Ignored: analysis/correlated_z_3_cache/
Ignored: analysis/correlated_z_cache/
Ignored: analysis/create_null_cache/
Ignored: analysis/cutoff_null_cache/
Ignored: analysis/design_matrix_2_cache/
Ignored: analysis/design_matrix_cache/
Ignored: analysis/diagnostic_ash_cache/
Ignored: analysis/diagnostic_correlated_z_2_cache/
Ignored: analysis/diagnostic_correlated_z_3_cache/
Ignored: analysis/diagnostic_correlated_z_cache/
Ignored: analysis/diagnostic_plot_2_cache/
Ignored: analysis/diagnostic_plot_cache/
Ignored: analysis/efron_leukemia_cache/
Ignored: analysis/fitting_normal_cache/
Ignored: analysis/gaussian_derivatives_2_cache/
Ignored: analysis/gaussian_derivatives_3_cache/
Ignored: analysis/gaussian_derivatives_4_cache/
Ignored: analysis/gaussian_derivatives_5_cache/
Ignored: analysis/gaussian_derivatives_cache/
Ignored: analysis/gd-ash_cache/
Ignored: analysis/gd_delta_cache/
Ignored: analysis/gd_lik_2_cache/
Ignored: analysis/gd_lik_cache/
Ignored: analysis/gd_w_cache/
Ignored: analysis/knockoff_10_cache/
Ignored: analysis/knockoff_2_cache/
Ignored: analysis/knockoff_3_cache/
Ignored: analysis/knockoff_4_cache/
Ignored: analysis/knockoff_5_cache/
Ignored: analysis/knockoff_6_cache/
Ignored: analysis/knockoff_7_cache/
Ignored: analysis/knockoff_8_cache/
Ignored: analysis/knockoff_9_cache/
Ignored: analysis/knockoff_cache/
Ignored: analysis/knockoff_var_cache/
Ignored: analysis/marginal_z_alternative_cache/
Ignored: analysis/marginal_z_cache/
Ignored: analysis/mosek_reg_2_cache/
Ignored: analysis/mosek_reg_4_cache/
Ignored: analysis/mosek_reg_5_cache/
Ignored: analysis/mosek_reg_6_cache/
Ignored: analysis/mosek_reg_cache/
Ignored: analysis/pihat0_null_cache/
Ignored: analysis/plot_diagnostic_cache/
Ignored: analysis/poster_obayes17_cache/
Ignored: analysis/real_data_simulation_2_cache/
Ignored: analysis/real_data_simulation_3_cache/
Ignored: analysis/real_data_simulation_4_cache/
Ignored: analysis/real_data_simulation_5_cache/
Ignored: analysis/real_data_simulation_cache/
Ignored: analysis/rmosek_primal_dual_2_cache/
Ignored: analysis/rmosek_primal_dual_cache/
Ignored: analysis/seqgendiff_cache/
Ignored: analysis/simulated_correlated_null_2_cache/
Ignored: analysis/simulated_correlated_null_3_cache/
Ignored: analysis/simulated_correlated_null_cache/
Ignored: analysis/simulation_real_se_2_cache/
Ignored: analysis/simulation_real_se_cache/
Ignored: analysis/smemo_2_cache/
Ignored: data/LSI/
Ignored: docs/.DS_Store
Ignored: docs/figure/.DS_Store
Ignored: output/fig/
Untracked files:
Untracked: docs/figure/cash_paper_fig_leukemia.rmd/
Unstaged changes:
Modified: code/gdfit.R
Note that any generated files, e.g. HTML, png, CSS, etc., are not included in this status report because it is ok for generated content to have uncommitted changes.
File | Version | Author | Date | Message |
---|---|---|---|---|
rmd | 49f870a | LSun | 2018-10-05 | wflow_publish(c(“cash_paper_fig_leukemia.rmd”, “cash_paper_fig1.rmd”, |
library(ggplot2)
FDP.list <- readRDS("~/Desktop/temp1/FDP.list.rds")
z.list <- readRDS("~/Desktop/temp1/z.list.rds")
pi0.list <- readRDS("~/Desktop/temp1/pi0.list.rds")
pi0.vec <- c(0.5, 0.9, 0.99)
q.vec <- seq(0.001, 0.20, by = 0.001)
q <- 0.1
method.name.FDR <- c("cashr", "BH", "qvalue", "ashr", "locfdr")
method.col.FDR <- scales::hue_pal()(length(method.name.FDR))[c(5, 1, 2, 4, 3)]
#####################################
boxplot.quantile <- function(x) {
r <- quantile(x, probs = c(0.10, 0.25, 0.5, 0.75, 0.90))
names(r) <- c("ymin", "lower", "middle", "upper", "ymax")
r
}
###############################
sd.z <- sapply(z.list, sd)
Noise <- cut(sd.z, breaks = c(0, quantile(sd.z, probs = 1 : 2 / 3), Inf), labels = c("Deflated Noise", "In-between", "Inflated Noise"))
###############################
pi0.0.9 <- which(pi0.list == 0.9)
sd.z.0.9 <- sd.z[pi0.0.9]
typical.noise <- pi0.0.9[order(sd.z.0.9)[floor(quantile(seq(sd.z.0.9), c(0.15, 0.5, 0.91)))]]
z.list.sel <- z.list[typical.noise]
names(z.list.sel) <- c("Deflated Noise", "In-between", "Inflated Noise")
z.sep.ggdata <- reshape2::melt(z.list.sel, value.name = "z")
z.sep.plot <- ggplot(data = z.sep.ggdata, aes(x = z)) +
geom_histogram(aes(y = ..density..), binwidth = 0.2) +
facet_wrap(~L1, nrow = 1) +
stat_function(fun = dnorm, aes(color = "N(0, 1)"), lwd = 1.5, show.legend = TRUE) +
scale_color_manual(values = "blue") +
theme(axis.title.x = element_text(size = 15),
axis.text.x = element_text(size = 10),
axis.title.y = element_text(size = 15),
axis.text.y = element_text(size = 10),
strip.text = element_text(size = 15),
# strip.text = element_blank(),
legend.position = "left",
legend.title = element_blank(),
legend.text = element_text(size = 12),
legend.key = element_blank()
)
#########################################
FDP.q <- FDP.list[[which(q.vec == q)]]
FDP.q.noise.mat <- rbind.data.frame(
cbind.data.frame(Noise = rep("All", length(Noise)),
pi0 = factor(do.call(rbind, pi0.list)),
FDP.q),
cbind.data.frame(Noise,
pi0 = factor(do.call(rbind, pi0.list)),
FDP.q)
)
FDP.q.ggdata <- reshape2::melt(FDP.q.noise.mat, id.vars = c("Noise", "pi0"), variable.name = "Method", value.name = "FDP")
FDP.q.ggdata$Method <- factor(FDP.q.ggdata$Method, levels = c("CASH", "BHq", "qvalue", "ASH", "locfdr"))
FDP.q.ggdata$Method <- plyr::mapvalues(FDP.q.ggdata$Method, from = c("CASH", "BHq", "qvalue", "ASH", "locfdr"), to = c("cashr", "BH", "qvalue", "ashr", "locfdr"))
FDP.q.ggdata.0.9 <- FDP.q.ggdata[FDP.q.ggdata$pi0 == 0.9, ]
# FDP.q.all.sep.plot <- ggplot(data = FDP.q.ggdata, aes(x = pi0, y = FDP, fill = Method, color = Method)) +
# stat_summary(fun.data = boxplot.quantile, geom = "boxplot", position = "dodge") +
# stat_summary(fun.y = mean, geom = "point", position = position_dodge(width = 0.9), show.legend = TRUE) +
# scale_color_manual(labels = method.name.FDR, values = method.col.FDR) +
# scale_fill_manual(labels = method.name.FDR, values = alpha(method.col.FDR, 0.35)) +
# facet_wrap(~Noise, nrow = 1) +
# geom_hline(yintercept = q, col = "black", linetype = "dashed", size = 1) +
# labs(x = expression(pi[0]), y = "FDP", title = bquote(paste("Nominal FDR = ", .(q)))) +
# theme(plot.title = element_text(size = 12, hjust = 0),
# axis.title.x = element_text(size = 15),
# axis.text.x = element_text(size = 10),
# axis.title.y = element_text(size = 15),
# axis.text.y = element_text(size = 10),
# strip.text = element_text(size = 15),
# legend.position = "bottom",
# legend.background = element_rect(color = "grey"),
# legend.text = element_text(size = 12)
# )
FDP.q.all.sep.plot <- ggplot(data = FDP.q.ggdata.0.9, aes(x = Method, y = FDP, fill = Method, color = Method)) +
stat_summary(fun.data = boxplot.quantile, geom = "boxplot", aes(width = 0.5), position = position_dodge(), show.legend = FALSE) +
coord_flip() +
stat_summary(fun.y = mean, geom = "point", position = position_dodge(width = 0.9), show.legend = FALSE) +
scale_x_discrete(limits = rev(levels(FDP.q.ggdata.0.9$Method))) +
scale_color_manual(labels = method.name.FDR, values = method.col.FDR) +
scale_fill_manual(labels = method.name.FDR, values = alpha(method.col.FDR, 0.35)) +
facet_wrap(~Noise, nrow = 1) +
geom_hline(yintercept = q, col = "black", linetype = "dashed", size = 1) +
labs(x = expression(pi[0]), y = "FDP", title = bquote(paste("Nominal FDR = ", .(q), " (", g[1], " is Gaussian; ", pi[0] == 0.9, ")"))) +
theme(plot.title = element_text(size = 12, hjust = 0),
axis.title.y = element_blank(),
axis.text.y = element_text(size = 15),
axis.title.x = element_text(size = 15),
axis.text.x = element_text(size = 10),
strip.text = element_text(size = 15),
legend.position = "bottom",
legend.background = element_rect(color = "grey"),
legend.text = element_text(size = 12)
)
Warning: Ignoring unknown aesthetics: width
###############################################
blank.ggdata <- data.frame()
blank.plot <- ggplot(data = blank.ggdata) +
theme(panel.background = element_blank(),
panel.border = element_blank(),
panel.grid.major = element_blank(),
panel.grid.minor = element_blank(),
plot.background = element_blank()) +
geom_blank()
z.sep.plot.save <- gridExtra::arrangeGrob(blank.plot, z.sep.plot, nrow = 1, widths = c(0.55, 3.5))
FDP.q.sep.plot.save <- gridExtra::arrangeGrob(z.sep.plot.save, FDP.q.all.sep.plot, heights = c(1, 1.2))
ggsave("../output/fig/paper/FDP.q.sep.pdf", FDP.q.sep.plot.save, height = 5, width = 10)
sessionInfo()
R version 3.4.3 (2017-11-30)
Platform: x86_64-apple-darwin15.6.0 (64-bit)
Running under: macOS High Sierra 10.13.6
Matrix products: default
BLAS: /Library/Frameworks/R.framework/Versions/3.4/Resources/lib/libRblas.0.dylib
LAPACK: /Library/Frameworks/R.framework/Versions/3.4/Resources/lib/libRlapack.dylib
locale:
[1] en_US.UTF-8/en_US.UTF-8/en_US.UTF-8/C/en_US.UTF-8/en_US.UTF-8
attached base packages:
[1] stats graphics grDevices utils datasets methods base
other attached packages:
[1] ggplot2_2.2.1
loaded via a namespace (and not attached):
[1] Rcpp_0.12.16 knitr_1.20 whisker_0.3-2
[4] magrittr_1.5 workflowr_1.1.1 munsell_0.4.3
[7] colorspace_1.3-2 rlang_0.2.0 stringr_1.3.1
[10] plyr_1.8.4 tools_3.4.3 grid_3.4.3
[13] gtable_0.2.0 R.oo_1.22.0 git2r_0.21.0
[16] htmltools_0.3.6 yaml_2.1.19 lazyeval_0.2.1
[19] rprojroot_1.3-2 digest_0.6.15 tibble_1.4.2
[22] gridExtra_2.3 reshape2_1.4.3 R.utils_2.6.0
[25] evaluate_0.10.1 rmarkdown_1.9 labeling_0.3
[28] stringi_1.2.2 pillar_1.2.2 compiler_3.4.3
[31] scales_0.5.0 backports_1.1.2 R.methodsS3_1.7.1
This reproducible R Markdown analysis was created with workflowr 1.1.1