Last updated: 2017-12-21
Code version: 6e42447
n = 1e4
m = 5
set.seed(777)
zmat = matrix(rnorm(n * m, 0, sd = sqrt(2)), nrow = m, byrow = TRUE)
library(ashr)
source("../code/ecdfz.R")
res = list()
for (i in 1:m) {
  z = zmat[i, ]
  p = (1 - pnorm(abs(z))) * 2
  bh.fd = sum(p.adjust(p, method = "BH") <= 0.05)
  pihat0.ash = get_pi0(ash(z, 1, method = "fdr"))
  ecdfz.fit = ecdfz.optimal(z)
  res[[i]] = list(z = z, p = p, bh.fd = bh.fd, pihat0.ash = pihat0.ash, ecdfz.fit = ecdfz.fit)
}
Example 1 : Number of Discoveries: 246 ; pihat0 = 0.3245191 
Log-likelihood with N(0, 2): -17704.62 
Log-likelihood with Gaussian Derivatives: -17702.15 
Log-likelihood ratio between true N(0, 2) and fitted Gaussian derivatives: -2.473037 
Normalized weights:
1 : -0.0126888368547959 ; 2 : 0.717062378249889 ; 3 : -0.0184536200134752 ; 4 : 0.649465525394262 ; 5 : 0.00859163522314002 ; 6 : 0.521325079359314 ; 7 : 0.0334885164431775 ; 8 : 0.22636494735755 ;

Zoom in to the left tail:

Zoom in to the right tail:






Example 2 : Number of Discoveries: 218 ; pihat0 = 0.3007316 
Log-likelihood with N(0, 2): -17620.91 
Log-likelihood with Gaussian Derivatives: -17618.13 
Log-likelihood ratio between true N(0, 2) and fitted Gaussian derivatives: -2.787631 
Normalized weights:
1 : 0.0102680011779709 ; 2 : 0.696012169853609 ; 3 : 0.0113000171720435 ; 4 : 0.544236663386519 ; 5 : -0.0208432030918437 ; 6 : 0.359654087688657 ; 7 : 0.00449356234470338 ; 8 : 0.129368209367989 ;

Zoom in to the left tail:

Zoom in to the right tail:






Example 3 : Number of Discoveries: 201 ; pihat0 = 0.3524008 
Log-likelihood with N(0, 2): -17627.66 
Log-likelihood with Gaussian Derivatives: -17623.26 
Log-likelihood ratio between true N(0, 2) and fitted Gaussian derivatives: -4.397359 
Normalized weights:
1 : 0.000611199281683122 ; 2 : 0.697833563596919 ; 3 : -9.24232505276873e-05 ; 4 : 0.593310577011007 ; 5 : 0.0690423192366928 ; 6 : 0.402719962212205 ; 7 : 0.0821756084741036 ; 8 : 0.137136244590824 ;

Zoom in to the left tail:

Zoom in to the right tail:






Example 4 : Number of Discoveries: 134 ; pihat0 = 0.3039997 
Log-likelihood with N(0, 2): -17572.28 
Log-likelihood with Gaussian Derivatives: -17589.35 
Log-likelihood ratio between true N(0, 2) and fitted Gaussian derivatives: 17.07424 
Normalized weights:
1 : -0.00303021567753385 ; 2 : 0.667140676046508 ; 3 : -0.00744442518950379 ; 4 : 0.4335954662891 ; 5 : 0.00652056989516479 ; 6 : 0.163579551221406 ; 7 : 0.0434395776822699 ;

Zoom in to the left tail:

Zoom in to the right tail:






Example 5 : Number of Discoveries: 201 ; pihat0 = 0.3864133 
Log-likelihood with N(0, 2): -17602.8 
Log-likelihood with Gaussian Derivatives: -17607.36 
Log-likelihood ratio between true N(0, 2) and fitted Gaussian derivatives: 4.565327 
Normalized weights:
1 : -0.0149505230188178 ; 2 : 0.681006373173563 ; 3 : -0.029408092099831 ; 4 : 0.526597120212115 ; 5 : -0.0649823448928799 ; 6 : 0.248323484516014 ; 7 : -0.077154633635199 ;

Zoom in to the left tail:

Zoom in to the right tail:






sessionInfo()
R version 3.4.3 (2017-11-30)
Platform: x86_64-apple-darwin15.6.0 (64-bit)
Running under: macOS High Sierra 10.13.2
Matrix products: default
BLAS: /Library/Frameworks/R.framework/Versions/3.4/Resources/lib/libRblas.0.dylib
LAPACK: /Library/Frameworks/R.framework/Versions/3.4/Resources/lib/libRlapack.dylib
locale:
[1] en_US.UTF-8/en_US.UTF-8/en_US.UTF-8/C/en_US.UTF-8/en_US.UTF-8
attached base packages:
[1] stats     graphics  grDevices utils     datasets  methods   base     
loaded via a namespace (and not attached):
 [1] compiler_3.4.3  backports_1.1.2 magrittr_1.5    rprojroot_1.3-1
 [5] tools_3.4.3     htmltools_0.3.6 yaml_2.1.16     Rcpp_0.12.14   
 [9] stringi_1.1.6   rmarkdown_1.8   knitr_1.17      git2r_0.20.0   
[13] stringr_1.2.0   digest_0.6.13   evaluate_0.10.1
This R Markdown site was created with workflowr