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1 Introduction

This note serves as a final project for MA 822, which is intended to give a brief introduction to ADE-type

singularities. The main goal is to understand the ADHM construction, given by Nakajima [Nak99][Nak07],

of moduli space of framed torsion-free sheaves over the ALE spaces. In order to understand this fascinating

object, we first have a glimpse of the minimal resolution of ADE-type singularities, which admits a hyper-

kalher metric that is ALE (asymptotically locally Euclidean) [Kro89]. From algebraic geometric perspective,

the minimal resolution can also be constructed via blowing up. The incident graph of the exceptional divisors

is the corresponding Dynkin diagram. This phenomenon can be understood via the (derived) Mckay corre-

spondence [KV98], which provides important examples of noncommutative crepant resolutions. Using the

technique developed by Cho, Hong and Lau [CHL15], the authors also realize such constructions as mirror

symmetry phenomenons [HLT24].

2 Finite Subgroups of SL(2,C)

The story starts by considering the action of a finite subgroup Γ on C2.

Given the standard hermitian inner product on C2 defined by < z,w >:= z · w̄ and a finite subgroup

Γ ⊂ SL(2,C). Notice that Γ acts naturally on C2. Averaging the inner product by the group Γ, we arrive

at a hermitian inner product which is invariant with respect to Γ. This shows that Γ is conjugate to a finite

subgroup of the special unitary group SU(2). Hence, the classification of finite subgroups of SL(2,C) is

equivalent to the classification of finite subgroups of SU(2).

The idea to classify the finite subgroups of SU(2) is to consider the double cover

π : SU(2) ↠ SO(3)

Thus any finite subgroup G of SU(2) defines a finite subgroup Ḡ of rotations of R3. Conversely, every

Ḡ ⊂ SO(3) can be lifted to a finite subgroup of SU(2) such that the kernel is of order ≤ 2. From this and

the classical classification of finite subgroups of SO(3) as symmetry groups of regular polyhedra, we obtain

the following.

Proposition 2.1. Any finite subgroup of SU(2) is one of the following groups:

1. The cyclic group Z/nZ for n > 1.

2. The binary dihedral group BD2n for n > 1, the preimage of the dihedral group D2n under π.

3. The binary tetrahedral group BT, the preimage of the tetrahedral group T under π.

4. The binary octahedral group BO, the preimage of the octahedral group O under π.
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5. The binary dodecahedral group BD, the preimage of the dodecahedral group D under π.

To be more precise, here we choose a basis of C2 and write down the generators of the action explicitly.

Let ϵn := e2πi/n.

1. Γ is a cyclic group of order n. A generator is given by the matrix

g1 =

[
ϵn 0

0 ϵ−1
n

]

2. Γ is a binary dihedral group of order 4n. Its generators are given by the matrices

g1 =

[
ϵ2n 0

0 ϵ−1
2n

]
, g2 =

[
0 i

i 0

]

3. Γ is a binary tetrahedral group of order 24. Its generators are given by the matrices

g1 =

[
ϵ4 0

0 ϵ−1
4

]
, g2 =

[
0 i

i 0

]
, g3 =

1

1− i

[
1 i

1 −i

]

4. Γ is a binary octahedral group of order 48. Its generators are

g1 =

[
ϵ8 0

0 ϵ−1
8

]
, g2 =

[
0 i

i 0

]
, g3 =

1

1− i

[
1 i

1 −i

]

5. Γ is a binary icosahedra group of order 120. Its generators are

g1 =

[
ϵ10 0

0 ϵ−1
10

]
, g2 =

[
0 i

i 0

]
, g3 =

1√
5

[
ϵ5 − ϵ45 ϵ25 − ϵ35
ϵ25 − ϵ35 −ϵ5 + ϵ45

]

The McKay correspondence, named after John McKay, states that there is a one-to-one correspondence

between the McKay graphs of the finite subgroups of SL(2,C) and the extended Dynkin diagrams, which

appear in the ADE classification of the simple Lie algebras. Here we recall the definition of McKay graphs.

Definition 2.1. Let Γ be a finite subgroup and ρ0 be its linear representation. The McKay graph of the pair

(Γ, ρ0) is defined to be a graph, where the vertices correspond to irreducible representations ρi of Γ. A vertex

ρi is connected to the vertex ρj by an edge pointing to ρj if ρj is a direct summand of ρ0⊗ρi. Then the weight

mij of the arrow is the number of times this constituent appears in ρ0 ⊗ ρi.

The McKay correspondence classifies the possible groups Γ via their McKay graphs. More precisely, we

have the following.

Theorem 2.1 (J. McKay). Let Γ be a nontrivial finite subgroup of SU(2) and ρ0 be its natural 2-dimensional

representation defined by the inclusion. Then, the McKay graph of (Γ, ρ0) is an affine ADE type Dynkin

diagram.

Here we provide an explicit calculation of the cyclic group.

Example 2.1. Let G = Cn =< g0 > be a cyclic group of order n. Since Cn is an abelian group, every linear

representation ρ : Cn → GL(V ) decomposes into the direct sum of 1-dimensional representations

V =

n−1∑
0

Vk,
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Figure 1: The McKay Correspondence

where Vk := {v ∈ V : ρ0(g0)(v) = e2πik/nv}. So Cn has n irreducible representations.

If we consider ρ0 : Cn → SU(2) given by the matrix[
ϵn 0

0 ϵ−1
n

]
,

we find that ρ0 = ρ1 ⊕ ρ−1. Thus ρ0 ⊗ ρk = ρk−1 ⊕ ρk+1. Hence, the Mckay graph (Cn, ρ0) is the Dynkin

diagram of affine Ãn−1.

3 Construction of ALE spaces

3.1 Quiver Varieties

In this subsection, we fix notaions for quiver varieties. Let (I, E) be a finite graph of an affine type, where I

is the set of vertices and E the set of edges. Let A be the adjacency matrix of the graph. Then C=2I-A is

a (symmetric) Cartan matrix of an affine type.

Example 3.1. Let (I, E) be the graph of affine A1. Then the cartan matrix is

C =

[
2 −2

−2 2

]

where the elements 2 on the diagonal imply the graph has no self-loops.
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Let H be the set of pairs consisting of an edge together with its orientation. For h ∈ H, we denote s(h)

(resp. t(h)) the source (resp. target) vertex of h. For h ∈ H, we denote h̄ the same edge as h with the

reverse orientation. An orientation Ω of the graph is a subset Ω ⊂ H such that Ω̄ ∪ Ω = H, Ω̄ ∩ Ω = ∅. The

orientation defines a function ϵ : H → {±1} given by ϵ(h) = 1 if h ∈ Ω and = −1 if h ∈ Ω̄.

Let V = ⊕i∈IVi be an I-graded vector space. We define its dimension vector by dimV := (dimVi)i∈I ∈
ZI
≥0. If V

1, V 2 are I-graded vector spaces, we introduce vector spaces

L(V 1, V 2) := ⊕i∈IHom(V 1
i , V

2
i )

which is the space of linear maps among the vector spaces over the same vertices. Note that this is not the

morphism of representations of a quiver. We also introduce

E(V 1, V 2) := ⊕h∈HHom(V 1
s(h), V

2
t(h)).

Example 3.2. Let (I, E) be the graph of affine A1. If we take an I-graded vector space V , then E(V, V ) is

the representation space of the doubling of affine A1. In general, this is also true for a fixed graph and an

I-graded vector space.

For B = (Bh) ∈ E(V 1, V 2), C = (Ch) ∈ E(V 2, V 3), we define a multiplication of B and C by

CB = (
∑

t(h)=i

ChBh̄)i ∈ L(V 1, V 3).

Multiplications ba,Ba of a ∈ L(V 1, V 2), b ∈ L(V 2, V 3), B ∈ E(V 2, V 3) are defined in similar manner. If

a ∈ L(V 1, V 1), its trace tr(a) is understood as
∑

k tr(ak).

Let V,W be I-graded vector spaces. We define

M(V,W ) := E(V, V )⊕ L(V,W )⊕⊕L(W,V ).

Remark. M(V,W ) can be understood as the representation space of the double quiver with framing at each

vertex. Doubling of a quiver plays an important role since it’s isomorphic to the cotangent space of the

original quiver representation.

The elements in M(V,W ) will be denoted by B, a, b respectively. This space has a holomorphic symplectic

form given by

ω((B, a, b), (B′, a′, b′)) := tr(ϵBB) + tr(ab′ − a′b),

where ϵB is an element of E(V, V ) defined by (ϵB)h = ϵ(h)Bh.

Let G := GV be the Lie group
∏

i GL(Vi). It acts on M(V,W ) via

g · (B, a, b) 7→ (gBg−1, ag−1, gb).

Hence it preserves the symplectic form. The moment map is given by

µ(B, a, b) = ϵBB + ab ∈ L(V, V ),

where the dual of the Lie algebra of G is identified with L(V, V ) via the trace.

Let ζC = (ζC,i) ∈ CI . We define a corresponding element in the center of LieG by ⊕iζC,iidVi
, where we

delete the summand corresponding to i if Vi = 0. Let µ−1(ζC) be an affine algebraic variety (not necessarily

irreducible) defined as the zero set of µ− ζC. The group G acts on µ−1(ζC).

We now define the stability conditions.

For ζR = (ζR,i)i∈I ∈ RI , let ζR · dimV :=
∑

i ζR,idimVi.
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Definition 3.1. A point (B, a, b) ∈ M is ζR-semistable if the following two conditions are satisfied:

1. If an I-graded subspace S of V is contained in Ker b and B-invariant, then ζR · dimS ≤ 0.

2. If an I-graded subspace T of V contains in Ima and B-invariant, then ζR · dimT ≤ ζR · dimV.

We say (B, a, b) is ζR-stable if the strict inequalities hold in 1, 2 unless S = 0, T = V respectively.

Remark. Note that (B, a, b) is ζR-(semi)stable if and only if (B∗, a∗, b∗) is −ζR-(semi)stable.

When defining the resolution of ADE singularities, we also need the stability condition for B ∈ E(V, V ),

i.e. when W = 0.

Definition 3.2. Suppose that ζR · dimV = 0. A point B ∈ E(V, V ) is ζR-semistable if for any I-graded

subspace S of V that is B−invariant, then ζR · dimS ≤ 0.

A point B is ζR-stable if the strict equality holds unless S = 0 or S = V.

This definition coincides with the above for ζR-semistable, but not for ζR-stable.

Now we can define the quiver varieties.

Let Hs
ζR,ζC

(resp. Hss
ζR,ζC

be the set of ζR-stable (resp. ζR-semistable) points in µ−1(ζC).

We say two ζR-semistable points (B, a, b), (B′, a′, b′) are S-equivalent when the closures of GV -orbits

intersect in Hss
ζR,ζC

. We denote the pair (ζR, ζC) by ζ for brevity. We define

Mζ := Mζ(V,W ) := Hss
ζR,ζC

/ ∼

Mreg
ζ := Mreg

ζ (V,W ) := Hs
ζR,ζC

/ ∼

where ∼ denotes the S−equivalence relation. These can be defined as quotients in the geometric invariant

theory.

One may curious about how the space changes according to the parameter ζ. In order to answer this

question, we need to introduce the chamber structure. Since the chamber structure comes from the wall

defined by the root system, let’s briefly recall some related notions to gain a better understanding.

Definition 3.3. A root system Φ of a set of vectors in Rn such that

1. Φ spans Rn and 0 /∈ Φ.

2. If α ∈ Φ and λα ∈ Φ, then λ = ±1.

3. Φ is closed under reflection through the hyperplane normal to α.

4. If α, β ∈ Φ, then ⟨α, β⟩ := 2(α,β)
(β,β) ∈ Z.

Definition 3.4. A set of positive roots of a root system Φ is a set Φ+ ⊂ Φ such that

1. For every α ∈ Φ, exactly one of α and −α is in Φ+.

2. If α, β ∈ Φ+, and if α+ β is a root, then β ∈ Φ+.

Definition 3.5. α ∈ Φ+ is a simple root if it’s not the sum of other two positive roots.

Given a root system. We can build a Dynkin diagram that remembers the simple roots’ information. We

first take the set of simple roots and draw one node for each simple root. For every pair of simple roots α

and β, we draw a number of lines between the vertices equal to < α, β >< β, α >, which is guaranteed to be
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an integer. If one simple root is longer than another, we draw an arrow pointing to the shorter one. If two

simple roots have the same length, we omit the arrow.

Fix a dimension vector v. Let

R+ := {θ = (θi) ∈ ZI
≥0|θtCθ ≤ 2} \ {0}

R+(v) := {θ = (θi) ∈ R+|θi ≤ dimCVi for all i}

Dθ := {x = (xi) ∈ RI |x · θ = 0} for θ ∈ R+

When the graph is of affine type, R+ is the set of positive roots of the corresponding Dynkin diagram, and

Dθ is the wall defined by the root θ. If the parameter ζ is generic i.e. not on the wall defined by the roots,

we have the following proposition.

Proposition 3.1. [Nak94] Suppose

ζ = (ζR, ζC) ∈ (R⊕ C)I \
⋃

θ∈R+(v)

(R⊕ C)⊗Dθ.

Then every semistable point is stable, so that the regular locus Mreg
ζ coincides with Mζ .

Fix a complex parameter ζC and move a real parameter ζR. A connected component of

RI \
⋃

θ∈R+(v),ζC·θ=0

Dθ

is called a chamber.

Moreover, we have the following relation for the real parameter in the same chamber.

Lemma 3.1. Take two real parameters ζR and ζ
′

R so that both (ζR, ζC) and (ζ
′

R, ζC) are generic. If ζR and

ζ
′

R are in the same chamber, the corresponding stability conditions are equivalent.

3.2 Resolution of Kleinian Singularities

3.2.1 Algebraic Geometry Approach

In this subsection, we will consider the minimal resolution of C2/Γ, where Γ is a finite subgroup in SU(2).

The quotient space has a double singularity at the origins. This feature is essential for a lot of reasons. Before

constructing the resolution, let’s define the multiplicity of a singular point.

Definition 3.6. Let X be a hypersurface in a neighborhood of x, i.e. X is given by a single equation f = 0

in an affine space Z. Then the multiplicity of X at x, denoted by µ(X,x), is defined to be the integer n such

that f ∈ mn \mn+1, where m is the maximal ideal of OZ,x.

Let Γ be a finite subgroup of SU(2). It acts on C2 naturally. It’s interesting to consider the quotient

space C2/Γ. Based on McKay correspondence, see theorem ??, we have the following explicit classifications

of C2/Γ.

Theorem 3.2. Let Γ be a finite subgroup of SU(2) and C2 := SpecC[x, y]. Then the quotient space C2/Γ

has the following forms:

1. An case: C2/Γ ∼= SpecC[X,Y, Z]/(XY − Zn).

2. Dn case: C2/Γ ∼= SpecC[X,Y, Z]/(X2 + ZY 2 + Zn−1), n ≥ 4.
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3. E6 case: C2/Γ ∼= SpecC[X,Y, Z]/(X2 + Y 3 + Z4).

4. E7 case: C2/Γ ∼= SpecC[X,Y, Z]/(X2 + Y 3 + Y Z3).

5. E8 case: C2/Γ ∼= SpecC[X,Y, Z]/(X2 + Y 3 + Z5).

Proof. For simplicity, we will only prove the quotient space of a cyclic subgroup. The proof of other cases

can be found in [?].

Notice that the generator g1 of Γ := Z/nZ acts on (x, y) via g1 ·(x, y) = (ϵnx, ϵ
−1
n y). Hence, X := xn, Y :=

yn, Z := xy are invariant under the group action.

On the other hand, suppose f := xayb is a monomial invariant under the group action. Then g1 ·
f = ϵa−b

n xayb = xayb. Hence, a − b ≡ 0 (modn). Thus f is a multiple of X,Y, Z. Therefore, we know

C[x, y]Γ ∼= C[X,Y, Z]/(XY − Zn). In particular, C2/Γ ∼= SpecC[X,Y, Z]/(XY − Zn).

The other cases are similar to the A type, but the generators are more complicated to find.

Remark. By definition of the multiplicity, we know C2/Γ has a double singularity at the origin. The

resolution of these kinds of singularity is crepant.

Lemma 3.3. Let P ∈ X ⊂ A3 be an isolated double point, and let σ : X1 → X be the blowup of X at the

isolated double point P . Then σ∗KX
∼= KX1 .

Proof. This formally comes from the adjunction formula and the double point.

We abuse the notation, let σ : B → A3 be the blowup of A3 at P. Then X1 is the strict transform of X

under this blowup. Since P has codimension 3 in A3, we know

KB = σ∗KA3 + 2E,

where E is the exceptional divisor.

Note that X has a double singularity at P . Thus as a divisor

σ∗(X) = X1 + 2E.

By adjunction formula, we know

KX1
= (KB +X1)|X1

= (σ∗KA3 + 2E + σ∗(X)− 2E)|X1
= (σ∗((KA3 +X)|X)) = σ∗KX .

Therefore, the resolutions of C2/Γ are crepant resolutions.

Based on this important feature, we know the exceptional fibers are all (−2)−curve.

Corollary 3.1. Let σ : X1 → X be the blowup of X at the isolated double point P . Then the exceptional

fiber E has self-intersection number equals to −2.

Proof. This also follows from the adjunction formula.

By adjunction formula, we get ωE
∼= ωX1

⊗ OX1
(E)⊗ OE . Taking the degree on both sides implies

2g − 2 = E.(E +KX1
) = E.(E + σ∗KX).

Since E has genus 0, and E.σ∗KX = 0, we attain E.E = −2.

With this preparation, we can start to consider the resolution of C2/Γ. The idea is simple. We will do

successive blowing up at the singular points. And then we will show the first smooth variety we get is the

minimal resolution of C2/Γ.
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Theorem 3.4. The quotient space C2/Γ can be resolved by successively blowing up the singular points.

In this note, we won’t try to prove this theorem, but some convincing examples will be computed con-

cretely.

Example 3.3 (A1 case). The first example we consider is C2//(Z/2Z). By theorem 3.2, we know X :=

C2/(Z/2Z) ∼= SpecC[x1, x2, x3]/(x1x2 − x2
3).

First, we consider blowup of A3 at the origin, denoted by Y := BlO(A3). We consider the blowup as the

closure of the graph of φ, where φ : A3 \ {0} → P2 via φ(x1, x2, x3) = [x1, x2, x3]. In other words, φ takes a

point to the line containing the point and the origin. Therefore, it’s not hard to see that

Y := graphφ = {((x1, x2, x3)× [y1, y2, y3]) ∈ A3 × P2|xiyj = xjyi,∀i, j}.

Since X1 is the strict transform of X,

X1
∼= φ−1(X \ 0) = {((x1, x2, x3)× [y1, y2, y3]) ∈ A3 × P2|xiyj = xjyi, x1x2 = x2

3, y1y2 = y23 ,∀i, j}.

By looking at the Jacobian matrix of X1, we know X1 is regular. Denote σ be the blowup map. Then the

exceptional curve E := σ−1(0) ⊂ X1 is a degree 2 curve in P2 with self intersection number −2. In fact, X1

is isomorphic to KP1 , the total space of canonical bundle over P1.

Example 3.4 (A3 case). Resolving X := C2//(Z/4Z) ∼= SpecC[x1, x2, x3]/(x
2
1+x2

2−x4
3) is more intereting.

This example can represent the standard procedure for resolving the Klein singularities. In this case, we need

to blowup twice. The second blowup will be computed locally. To be more rigorous, we need to show that

blowup gives a birational morphism, which allows us to perform blowup locally and then glue along with other

charts. But that would go beyond the scope of this project.

Similar to the above example, we first consider the blowup of A3 at the origin.

Y := graphφ = {((x1, x2, x3)× [y1, y2, y3]) ∈ A3 × P2|xiyj = xjyi,∀i, j}.

Y can be covered by three affine charts. More precisely, let Zi := D(yi) be the open subscheme of Y

with yi doesn’t equal zero. Then Z1 := {((x1, x2, x3) × [1, y2, y3]) ∈ A3 × P2|x2 = x1y2, x3 = x1y3} ∼=
SpecC[x1, y2, y3] ∼= A3. Similarly, we find that Zi

∼= A3 for i = 2, 3.

We try to analyze X1 using these local charts. Notice that X1 ∩ Z1
∼= φ−1(X \ 0) ∩ Z1 = {((x1, x2, x3)×

[1, y2, y3]) ∈ A3 × P2|x2 = x1y2, x3 = x1y3, x
2
1 + x2

2 − x4
3 = 0} ∼= {((x1, x2, x3) × [1, y2, y3]) ∈ A3 × P2|x2 =

x1y2, x3 = x1y3, x
2
1 + x2

1y
2
2 − x4

1y
4
3 = 0} ∼= SpecC[x1, y2, y3]/(1 + y22 − x2

1y
4
3).

Similarly, we can compute

X1 ∩ Z2
∼= SpecC[y1, x2, y3]/(y

2
1 + 1− x2

2y
4
3).

The most interesting part is X1∩Z3
∼= {((x1, x2, x3)× [y1, y2, 1]) ∈ A3×P2|x1 = x3y1, x2 = x3y2, x

2
1+x2

2−
x4
3 = 0} ∼= {((x1, x2, x3)× [y1, y2, 1]) ∈ A3 × P2|x1 = x3y1, x2 = x3y2, x

2
3y

2
1 + x2

3y
2
2 − x4

3 = x2
3(y

2
1 + y22 − x2

3) =

0} ∼= SpecC[x3, y1, y2]/(y
2
1 + y22 − x2

3).

By computing the Jacobian matrix, we know the first two charts are smooth, but X1 ∩ Z3 still has a

singularity at the origin. Furthermore, we claim that σ−1
1 (0) consists of two intersecting exceptional

curves! This is because σ−1
1 (0) ∩ Z3

∼= SpecC[y1, y2]/(y21 + y22) contains two irreducible components V1 :=

V (y1 + iy2) and V2 := V (y1 − iy2). Notice that σ−1
1 (0) ∩ Z1 = SpecC[y3]. The transition map of P2 tells

us that this curve is glued with V1 to get an exceptional curve E1
∼= P1. Similarly for V2, so we have two

exceptional curves E1 ∪ E2.
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To resolve the remaining singular point, we do the blowing up again in the chart X1 ∩ Z3. This is the

same as A1 case. Hence, we get one more exceptional curve E3.

In the end, we get three exceptional divisors, which are E3 and the strict transformation of E1 and E2,

denoted by Ẽ1, Ẽ2 respectively. Since E1 and E2 intersect at the blowup point, Ẽ1, Ẽ2 no longer intersect. But

they all intersect E3. Therefore, if we draw a node of each irreducible component of the exceptional divisors

and draw an edge if they intersect, we will attain the A3 type Dynkin diagram.

We can resolve other Klein singularities using similar techniques. Each time, we only blow up the isolated

double point. Based on previous discussions, the subsequent blowups are crepant resolutions

and the exceptional fiber only contains (−2)-curves. In fact, the first nonsingular complex surface we

get is the minimal resolution of the singularities. Furthermore, they are all Calabi-Yau variety! Let’s first

show they are minimal resolutions using Castelnuovo′s theorem and then prove the minimal resolutions are

all Calabi-Yau variety.

Theorem 3.5 (Castelnuovo). If Y is a curve on a nonsingular projective surface X, with Y ∼= P1 and

Y 2 = −1, then there exists a morphism f : X → X0 to a nonsingular projective surface X0, and a point

P ∈ X0, such that X is isomorphic via f to the blowup of X0 with center P , and Y is the exceptional curve.

Corollary 3.2. A nonsingular projective surface X is a minimal surface if and only if it doesn’t have the

exceptional curve of the first type, i.e. (−1)-curve.

Proof. If X doesn’t have any (−1) curves but not minimal, then there exists a nonsingular projective surface

Y such that f : X → Y is the blowup of Y with center at some point P . However, since Y is nonsingular,

f−1(P ) is a (−1) curve. Contradiction.

On the other hand, if X is a minimal surface, then by Castelnuovo′s theorem, it cannot have (−1) curve,

otherwise we can contract the (−1) curve to obtain another nonsingular projective surface.

Corollary 3.3. Let Γ be a finite subgroup of C2. Then the first nonsingular surface we obtain when resolving

C2/Γ is a minimal surface.

Proof. By construction, we know the resolution only contains (−2)-curves in its exceptional fiber. Hence it’s

minimal.

Another important corollary is that the minimal resolution of C2/Γ is a Calabi-Yau variety. By this, we

mean the canonical bundle of the resolution space is trivial.

Corollary 3.4. Let σ : X̃ := ˜C2/Γ → X := C2/Γ be the minimal resolution. Then the canonical bundle ωX̃

is trivial.

Proof. According to the construction, we know X is attained by successive blowing up at the double singu-

larities. Hence, σ∗ωX
∼= ωX̃ .

But X is an affine variety. Any line bundles over X are trivial. Thus ωX̃ is also trivial.

Remark. Later, using the hyperkahler construction, the minimal resolution is automatically Calabi-Yau, since

the hyperkahler manifolds are all Calabi-Yau.

The behavior of the exceptional fiber in the A3 case is not a coincidence. In fact, we have the following

surprising fact:

Theorem 3.6. Let Γ be a finite subgroup in SU(2). Let π : ˜C/Γ → C/Γ be the minimal resolution. Then

the exceptional fiber of π−1(0) is a tree of (−2)-curves, whose incidence graph is the Dynkin diagram of Γ.

This theorem tells us the behavior of the exceptional divisors. They form a cycle of P1, which has

self-intersection number equal to −2 and each curve only intersects the adjacent curve.
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3.2.2 Toric Geometry Approach

Notice that only An type singularities are toric varieties. The corresponding cone of An singularity is

generated by the arrows (0, 1) and (n+ 1, 1) in R2.

This toric variety X := C/(Z/(n+1)Z) has double singularity at the toric origin. Resolution corresponds

to inserting the arrows (i, 1) for i = 1, 2, · · · , n in the cone picture. By the Orbit−Cone correspondence, we

know these n arrows correspond to n toric divisors, which are exactly the exceptional curves P1.

Using the toric geometry technique, we can verify that each exceptional curve has self-intersection number

equals to −2. And they have intersection number 1 for the adjacent divisors.

3.2.3 Differential Geometry Approach

Another approach to get the minimal resolution of C2/Γ is introduced by Kronheimer [Kro89] using quiver

representation and Hyperkahler quotient. In this section, we briefly summarize the construction so are some

main results.

We first take and fix an affine Dynkin graph. Let I be the set of vertexes. Let 0 ∈ I be the vertex

corresponding to the simple root, which is the negative of the highest weight root of the corresponding simple

Lie algebra. Let δ be the vector in the kernel of the affine Cartan matrix whose 0−component is equal to 1.

Let Gδ be the complex Lie group using the symbol above.

Example 3.5. If we consider A type Dynkyn diagram, δ = (1, 1, · · · , 1). Gδ
∼= C∗ × · · · × C∗.

Choose the hyperkahler parameter ζ0 = (ζ0R, ζ
0
C) ∈ R3 ⊗ Z, where Z ⊂ R[I] is the level 0 hyperplane

{x ∈ R[I]|x · δ = 0}. We further assume that ζ0 is generic, i.e., it’s not contained in any R3 ⊗Dθ where Dθ

is a real root hyperplane. (ζ0 is not on the wall).

As before, we consider the representation of the double quiver with framing at each vertex. But this time,

we take zero-dimensional representation at the framing vertexes. Namely, we consider M(δ, 0).

Since C∗ still acts trivially on M(δ, 0), we define

Xζ0 = {ξ ∈ M(δ, 0)|µ(ξ) = −ζ0C}//(−ζ0
R)
Gδ (1)

where ′//′
(−ζ0

R)
means the GIT quotient with respect to the parameter (−ζ0R). As we assume ζ0 is generic, by

lemma 3.1, we have

Xζ0 = Hs
(−ζ0

R ,−ζ0
C)
/(Gδ/C∗),

where Hs
(−ζ0

R ,−ζ0
C)

is the set of (−ζR)−stable points in µ−1
C (−ζ0C) as before. Kronheimer showed the following

result of Xζ0 .

Theorem 3.7 ([Kro89]). If ζ0 is generic, then

1. Xζ0 is a 4-dimensional hyperkahler manifold. In particular, a smooth complex surface.

2. Xζ0 is diffeomorphic to the minimal resolution of C2/Γ, where Γ is the finite subgroup of SL2(C)
associated to the affine Dynkin graph.

3. Xζ0 has a hyperkahler metric, which is ALE (asymptotically locally Euclidean) of order 4, i.e., there

is a compact subset K ⊂ Xζ0 and a diffeomorphic Xζ0 \K → (C2 \ Br(0))/Γ under which the metric

is approximated by the standard Euclidean metric on C2/Γ; it is written in the Euclidean coordinate

(xi)
4
i=1

gij = δij + aij

with ∂paij = O(r−4−p), p ≥ 0, where r2 =
∑

x2
i and ∂ denotes the differentiation with respect to the

coordinates xi.
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The key point of the first statement is showing that ζ0 is generic ensuring the group acts freely on the

moment map level. Hence, we can apply the hyperkahler reduction.

Here we only give the reason why the resolution is minimal. This is based on the vanishing of the first

Chern class. In fact, the first Chern class is zero implying that Xζ0 has no exceptional curve of the first kind.

Lemma 3.8. Given a rank k locally free sheaf or vector bundle E. Then c1(E) = c1(detE), where detE is

the determinant bundle of E.

Proof. Given an arbitrary vector bundle E of rank k. By splitting principle, we can assume E is the direct

sum of k line bundles L1 ⊕ L2 · · · ⊕ Lk. Then c1(E) =
∑

i c1(Li).

On the other hand, detE = ⊗iLi. Hence, c1(detE) =
∑

i c1(Li).

Corollary 3.5. If a complex surface X has vanishing first Chern class, then it contains no exceptional curves

of first kind.

Proof. If X has zero first Chern class, i.e. c1(TX) = 0, by lemma 3.8, c1(ωX) = 0.

Suppose X contains an exceptional curve of the first kind. Then KX = f∗KY + E, where f : X → Y is

the monoidal transformation and E is the exceptional curve. But c1(ωX) = 0 implies f∗KY = −E, which is

impossible. Thus X doesn’t contain the exceptional curve of the first kind.

4 Moduli Space of Framed Torsion Free Sheaves

In this section, we try to analyze the moduli space of framed torsion free sheaves over Xζ0 := ˜C2/Γ following

[Nak94]. In fact, we hope to describe the moduli space set theoretically. Though it’s possible to give a

complex-analytic structure on the framed moduli space, we don’t try to do so.

We first introduce the compactification of Xζ0 . When Xζ0 is the minimal resolution of C2/Γ, the com-

pactification X̄ζ0 is obtained by considering P2/Γ and resolve the singularity at the origin, but keep the

singularity on the line at infinity l∞ untouched.

For general Xζ0 , we have a coordinate system at the end Xζ0 \K → (C2 \Br(0))/Γ such that the complex

structure is approximated by the standard one on C2/Γ up to order O(r−4). Let X̄ζ0 = Xζ0 ∪ l∞, where

l∞ = P1/Γ.We endow a structure of a differential orbifold so that (X0
ζ \K)∪l∞ is identified with P2\Br(0))/Γ

via the coordinate system at the end. Here the ’orbifold’ means that we remember the action of Γ on the

neighborhood Ũ = P2 \Br(0) of l∞. According to [Nak94], X̄0
ζ can be given a structure of a complex analytic

orbifold.

Definition 4.1. Given a torsion-free sheaf E on X̄0
ζ . A framing Φ is a fixed isomorphism from E|l∞ to

(ρ⊗ OP1)/Γ, where ρ is a representation of Γ. In other words, framing is a fixed trivialization of E at l∞.

Let ζ0R ∈ R[I] be the parameter for the stability condition, in the level 0 hyperplane ζ0R · δ = 0 as in the

previous section. We take a parameter ζR from the chamber containing ζ0R in its closure with ζR ·δ < 0. These

conditions uniquely determine the chamber containing ζR. As ζR is not contained in any root hyperplane, the

stability and semistability are equivalent for ζR. Then we have the following nice description of the moduli

space of framed torsion-free sheaves.

Theorem 4.1. There is a bijection between M(ζR,ζ0
C)
(V,W ) and the framed moduli space of torsion-free

sheaves (E,Φ) on Xζ0 , where W corresponding to the representation of Γ, and V is given by Chern classes

of E by the formula:

c1(E) =
∑
i ̸=0

uic1(Ri), where U = W − CV,
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ch2(E) =
∑
i

uich2(Ri) + 2V · δch2(O(l∞)).

This bijection is given by a three-term complex that arises from the Beilinson spectral sequence called

monad. More details can be found in the Chapter II of [Nak99].

5 Noncommutative Crepant Resolution

5.1 Introduction to noncommutative geometry and NCCRs

In this section, we give a brief introduction to noncommutative crepant resolution (NCCR).

Let’s introduce some notations. Let Λ be a ring. We write Λ−Mod as the category of Λ-module without

any hypothesis of finite generation.

Definition 5.1. Let Λ be a ring and M ∈ Λ−Mod.

1. Denote by addM the full subcategory of Λ−Mod containing all direct summands of finite direct sums

of copies of M

2. Say M is a generator (for Λ−mod) if every finitely generated left Λ-module is homomorphic image of

a finite direct sum of copies of M . Equivalently, Λ ∈ addM .

3. Say M is a progenerator if M is a finitely generated projective module and M is a generator. Equiva-

lently, addΛ = addM .

Theorem 5.1 (Morita Equivalence). The following are equivalent for rings Λ and Γ.

1. There is an equivalence of abelian categories Λ−mod ∼= Γ−mod.

2. There exists a progenerator P ∈ Λ−mod such that Γ ∼= EndΛ(P ).

3. There exists a (Λ − Γ)-bimodule P such that the functor HomΛ(P,−) : Λ − mod → Γ − mod is an

equivalence.

In this case, we say Λ and Γ are Morita equivalence.

Remark. Notice that Λ⊕n is a progenerator. Thus by the theorem, we know Λ is Morita equivalent to

Γ = EndΛ(Λ
⊕n) = Mn(Λ).

Corollary 5.1. Let Λ be a ring and M,N two Λ-modules such that addM = addN . Then EndΛ(M) and

EndΛ(N) are Morita equivalent via the functors HomΛ(M,N)⊗EndΛ(M) − and HomΛ(N,M)⊗EndΛ(N) −.

The following cousin of Morita equivalence will be essential later.

Proposition 5.1. Let Λ be a ring and M a finitely generated Λ-module which is a generator. Set Γ =

EndΛ(M). Then the functor

HomΛ(M,−) : Λ−mod → Γ−mod

is fully faithful, and restricts to an equivalence

HomΛ(M,−) : addM → addΓ.

In particular, the indecomposable projective Γ-modules are precisely the modules of the forms HomΛ(M,N)

for N an indecomposable module in addM.
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On the geometric side, it has long been standard operating procedure to study a variety or scheme X by

investigating the sheaves on X, particularly those of algebraic origin, the quasicoherent sheaves. Now one

may ask what information, if any, is lost in the passage from the geometric object X to the category coh(X)

or Qcoh(X). In fact, we have the following:

Theorem 5.2 (Gabriel-Rosenberg Reconstruction). A scheme X can be reconstructed up to isomorphism

from the abelian category Qcoh(X).

For projective schemes, Serre’s fundamental construction describes the quasicoherent sheaves on X in

terms of the graded modules over the homogenous coordinate ring. Explicitly, let A be a finitely generated

graded algebra over a field, and set X = Proj A. Let GrMod , resp. grmodA, denote the category of graded,

resp. finitely generated graded, A-modules. The graded modules annihilated by A≥n for n >> 0 form a

subcategory TorsA, resp. torsA, and

TailsA := GrModA/TorsA, tailsA = grmodA/torsA

are defined to be the quotient categories. This means two graded modules M and N are equivalent isomorphic

in TailsA if and only if M≥n and N≥n agree as graded modules for large enough n.

Theorem 5.3. Let A be a finitely generated graded algebra over A0 = k, a field, and set X = Proj A.

Then the functor Γ∗ : cohX → tailsA, defined by sending a coherent sheaf F to the image in tailsA of

⊕n=−∞H0(X,F (n)), defines an equivalence of categories coh(X) ∼= tailsA.

Remark. This is why people define coherent sheaves over a noncommuatative graded algebra as tailsA.

Definition 5.2. If (R,m) is a local ring and M ∈ modR, we define the depth of M to be

depthRM := min{i ≥ 0|ExtiR(R/m,M) ̸= 0}.

For M ∈ modR it’s always true that depthM ≤ dimM ≤ dimR ≤ dimR/m m/m2 < ∞. We say M is a

(maximal) Cohen-Macaulay (CM) module if depthM = dimR. We say R is a CM ring if RR ∈ CM R, and

we say R is Gorenstein if it’s CM and furthermore inj.dimR < ∞.

Definition 5.3. When R is not necessarily local, we define M to be CM module if all its localizations at the

maximal ideal are CM Rm-module.

Definition 5.4. Let R be a (equicodimensional normal) Cohen-Macaulay (CM) ring. A noncommutative

crepant resolution (NCCR) of R is by definition a ring of the form EndR(M) for some reflexive R-module

M such that

1. EndR(M) ∈ CM R

2. gl.dim EndR(M) = dimR

In the definition, the first condition turns to correspond to the geometric property of crepancy.

Theorem 5.4. Suppose f : Y → SpecR is a projective birational map, where Y and R are both normal

Gorenstein of dimension d. If Y is derived equivalent to a ring Λ, then the following are equivalent:

1. f is crepant

2. Λ ∈ CM R.

In this case, Λ ∼= EndR(M) for some reflexive R-module M.
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This theorem has the following important corollary.

Corollary 5.2. Suppose f : Y → SpecR is a projective birational map between d-dimensional Gorenstein

normal varieties. If Y is derived equivalent to a ring Λ, then the following are equivalent:

1. Λ is a noncommutative crepant resolution.

2. f : Y → SpecR is a crepant resolution.

Remark. As the motivation of the second condition, we recall that R is a regular local commutative ring if

and only if gl.dimR < ∞. For an irreducible variety V , V is nonsingular if and only if gl.dimV < ∞ if

and only if gl.dimV = dimO(V ). Although the definition is made in the CM setting, to get any relationship

with the geometry it turns out to be necessary to require that R is Gorenstein. This is because for a CM

ring R, there might exist M ∈ CM R with gl.dimEndR(M) < ∞ but gl.dimEndR(M) ̸= dimR. This will

not happen for Gorenstein ring.

Definition 5.5. A canonical module or dualizing module for a Noetherian commutative ring R is a finitely

generated module M such that for any maximal ideal m, ExtnR(R/m,M) has dimension 1 if n = height(m),

otherwise zero.

In all the geometric situations, we will be interested in (or when R is Gorenstein) a canonical module

does exist.

Lemma 5.5. Suppose that (R,m) is a local CM normal domain of dimension d with a canonical module,

and let M ∈ ref R.

1. (Reflexive equivalence) M induces equivalences of categories

addM proj EndR(M)

ref R refR EndR(M)

where the horiztontal arrows are equivalences induced by HomR(M,−).

2. (The Auslander- Buchsbaum Formula)

(a) If Λ := EndR(M) is a NCCR, then for all X ∈ modΛ we have

depthRX + proj.dimΛX = dimR.

In particular, this implies CM R ∼= Proj Λ.

(b) If R is Gorenstein and Λ := EndR(M) ∈ CM R, then for all X ∈ modΛ with proj.dimΛM < ∞
we have

depthRX + proj.dimΛX = dimR.

The special case M = R, namely Λ := EndR(R) ∼= R, gives the classical Auslander-Buchsbaum formula.

As a first application, we have:

Lemma 5.6. Suppose R is a local Gorenstein normal domain, M ∈ CM R with EndR(M) ∈ CM R. Then

gl.dimEndR(M) < ∞ if and only if gl.dimEndR(M) = dimR.

The second application of the Auslander-Buchsbaum formula is the uniqueness theorem of 2-dimensional

NCCR.
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Theorem 5.7. Let (R,m) be a local CM normal domain of dimension 2 with a canonical module. If R has

a NCCR, then all NCCRs of R are Morita equivalent.

Remark. All these theorems hold in the non-local setting, provided that we additionally assume that R is

equicodimensional. And the theorem gives uniqueness of 2-dimensional NCCRs, but NCCRs do not exist for

all local CM normal domain of dimension 2.

In dimension three, the situation is more complicated, but can still be controlled. In algebraic geometry,

when passing from surfaces to 3-folds we often replace the idea of a minimal resolution with a crepant

resolution, and these are not unique up to isomorphism. However, by a result of Bridgeland, all crepant

resolutions a of a given SpecR are unique up to derived equivalence. Using this as motivation, we thus ask

whether all NCCRs for a given R are derived equivalent.

Remark. This is the best that we can hope for. In fact, there are examples of NCCRs that are not Morita

equivalent.

Theorem 5.8. Suppose that (R,m) is a normal CM domain with a canonical module, such that dimR = 3.

Then all NCCRs of R are derived equivalent.

In the commutative world, we have the following theorem:

Theorem 5.9 ([Bri00]). Let X be a complex threefold with terminal singularities. Let f : Y → X and

f ′ : Y ′ → X be crepant resolutions of X. Then Db(Coh(Y )) is equivalent to Db(Coh(Y ′)).

This proved Bondal-Orlov conjecture in dimension 3.

5.2 Tilting

We are interested in possible equivalences between Db(coh Y ) and Db(modΛ). To achieve this, we need two

other nice subcategories.

Definition 5.6. We define Perf(Y ) ⊂ Db(coh Y ) to be all those complexes that are locally quasi-isomorphic

to bounded complexes consisting of vector bundles of finite ranks. We denote Kb(proj Λ) ⊂ Db(modΛ) to be

all those complexes isomorphic to bounded complexes of finitely generated projective Λ-modules.

Furthermore, any equivalence between Db(coh Y ) and Db(modΛ) must restrict to an equivalence between

Perf(Y ) and Kb(proj Λ). Now the point is that Kb(projΛ) has a very special object ΛΛ, considered as a

complex in degree zero. So we need Perf(Y ) to contain an object that behaves in the same way as ΛΛ does.

Hence, it’s important to analyze the properties of ΛΛ.

The first property is Hom-vanishing in the derived category. More precisely, HomDb(modΛ)(ΛΛ,ΛΛ[i]) = 0

for i ̸= 0.

Secondly, ΛΛ ’generates’ Kb(proj Λ).

Definition 5.7. Let C be a triangulated category. A full subcategory D is called a triangulated subcategory if

1. 0 ∈ D

2. D is closed under shifts and finite sums

3. If X → Y → Z → X[1] is a triangle in C, then if any two of {X,Y, Z} is in D, then so is the third.

If further D is closed under direct summands, then we say D is thick.
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Let C be a triangulated category, M ∈ C. We denote by thick(M) the smallest full thick triangulated

subcategory containing M .

Proposition 5.2. thick(ΛΛ) = Kb(proj Λ).

These properties tell us a necessary condition for Db(coh Y ) ∼= Db(modΛ) is that there exists a complex

V ∈ Perf(Y ) for which Hom-vanishing and thick(V) = Perf(Y ). Tilting theory tells us that these properties

are in fact sufficient.

Definition 5.8. We say that V ∈ Perf(Y ) is a tilting complex if HomDb(coh Y )(V,V[i]) = 0 for all i ̸= 0,

and further thick(V) = Perf(Y ). If further V is a vector bundle, then we say that V is a tilting bundle.

Theorem 5.10 (Theorem 7.6 in [HdB05]). Let Y be a projective scheme over a commutative noetherian ring

of finite type over C. Assume V is a tilting bundle. Then

1. RHomY (V,−) induces an equivalence between Db(coh Y ) and Db(modEndY (V)).

2. Y is smooth if and only if gl.dimEndY (V) < ∞.

Usually, we use the following trick to verify the second condition of a tilting complex.

Theorem 5.11 (Neeman’s Generation Trick). Say Y has an ample line bundle L . Pick V ∈ Perf(Y ). If

(L −1)⊗n ∈ thick(V) for all n ≥ 1, then thick(V) = Perf(Y ).

Remark. Theorem 5.10 holds in a more general setting. For example, it’s true for Noetherian abelian category,

see [KK20]. In particular, it should be true for the quasi-projective scheme Y . The second condition in the

tilting object also has to be modified.

Theorem 5.12 (Derived SL2(C) McKay correspondence). Let Γ be a finite subgroup of SL2(C) and let

Y → C2/Γ denote the minimal resolution. Then

Db(modC[x, y]#Γ) ⋍ Db(Y ).

An important three-dimensional analog can be found in [BKR01].

5.3 Relative Serre Functors and Calabi-Yau Algebras

Definition 5.9. Suppose Z → Spec T is a morphism where T is a CM ring with a canonical module CT .

We say that a functor S : Perf(Z) → Perf(Z) is a Serre functor relative to CT if there are functorial

isomorphisms

RHomT (RHomZ(F ,G), CT ) ∼= RHomZ(G,S(F ))

in D(ModT ) for all F ∈ Perf(Z),G ∈ Db(cohZ). If Λ is a module-finite T -algebra, we define a Serre

functor S : Kb(proj Λ) → Kb(proj Λ) relative to CT in a similar way.

Remark. Recall the classical Serre’s duality. Given a locally free sheaf F , we have

Exti(F ,G) ∼= Exti(OX ,FV ⊗ G) ∼= Extn−i(FV ⊗ G, ωX) ∼= Extn−i(G,F ⊗ ωX)

The condition of perfect complex modifies locally free sheaf.

Definition 5.10. Suppose that C is a triangulated category in which the Hom spaces are all k-vector spaces.

We say that C is d−Calabi Yau if there exists a functorial isomorphism

HomC(x, y[d]) ∼= HomC(y, x)
∗

for all x, y ∈ C, where (−)∗ denotes the k-dual.

Remark. Given a d-dimensional Calabi-Yau manifold. The Serre duality gives the above duality in the derived

category of coherent sheaves.
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