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· Rmk :

1) (Kronherma
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Similar results also hold for ADE surfaces Or ALE spaces ,
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12: It can also be generalized to noncommutative case.

C Kapustin - Kuznetsor - Orbu , Baranovsky-Ginzburg - Kuznetsov)
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The Fubaya category of plumbing has been studied

by Abouzaid , Absuzaid & Smith
, Eegu & Lekili

,

Karabas & Lee. .
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In particular ,

when D = J.

= D
Def(L) = Cixy] of we restrict to the full

subcategory that has no convergene issues.

=> F2 : FubSub (M) -> dg Cixy]-mod . (bh(())

Rub : Def(L) is also computed by Hong-Kim-Law.



· 2 : What's Ltr ?

· Answer : LF = LWEr , where Fr is the cotangene fiber of

Sir



· Answer : (f = 1 &Fr ,

where Er is a cotangent fiber over Sir.

· Eg : D = J

= E

In goodlakes ,

L is a fiber of a lag tony fibratice,

and Fr is a sectice of the lag tormy fibration
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· Cor : The Maurer-Cartan def space of (IE · E)
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· Rml : Similar results about framed torsion-free sheaves

also hold over ADE surfaces
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