Mirror Construction for Nahajma aniver Varieties

Ju Tan

Jomt with Jiawer Hu and Siu-Cheong Lan

Recent Advances in Mirror Symmetry and Degenerations

Nov. 18 - 22 IMSA

Focus on

bare on ADHM construction & Mirror Symmetry

& MOTIVATION

Q: Lfr? Dimension vertor? Stability? Metric. --

Prop (Hn-lam-T.) (Shetch)

The Monrer-Cartan def spaces of (Lfr, E)

As a Nahajima quiver var (...)

& Coherent sheaves > Quiver

} (oh) Ruiver

Recall Nahajoma's ADHM construction for $rk \xi^{fr} = 1$, $C_2(\xi^{fr}) = n$.

that's (B, Br)-19v

& contains Ini

· Thm (Nakajima)

There's a 1-1 correspondence between
$$0 < (2^{fr}, \frac{\pi}{2})$$
 $0 < (2^{fr}, \frac{\pi}{2})$ $0 < (2^{fr}, \frac{\pi}{2})$ $0 < (2^{fr}, \frac{\pi}{2})$

$$(B_1, B_2, i, j) \in \text{Rep} \left(\begin{array}{c} B_1 \\ i \end{array} \right) \left($$

subspace of C that's $(B_1, B_2) - MV$ and contains In i

 $\{(2^{t}, \frac{1}{2})\}_{n}$ (Three term) complexes)

· Rmh:

(1) C Kronherma, Kronherma - Nahajima, Nahajima)

Similar results also hold for ADE surfaces or ALE spaces,

PC (L2CE)

Finite

(2) It can also be generalized to noncommutative case.

(Kapustin - Kuznetsov - Orlov, Baranavsky-Ginzburg-Kuznetsov)

Eq:
$$\chi = (N, S)$$
 $\gamma = (S, N)$

Plumbring Construction Symplectic mtd (M, W) D Graph Rremannian mfd Si Vertex Gluring of D^*S^2 $| & D^*S^2$ $| u_{i} \ni p_i$ Edge a upo of pase pts 子: (ス,り) $(-\gamma, \chi)$

The Fukaya category of plumbing has been studied by Abouzaid, Abouzaid & Smith, Etgii & Lekili, Karabas & Lee... · Thm (Hu-Lan-7.): Let D be a diagram, M be the Lianville mfd obtained by the plumbing of S^2 .

Let I be the zero section. Then the associated

Let II be the zero seltion. Then the associated quiver a vis the double of D, and the formal def space AIL vis a preprojective algebra i.e.

$$\frac{1}{k} \sqrt{\frac{2}{x_a} x_a} \sqrt{\frac{2}{x_a} x_a} > \sqrt{\frac{2$$

up to a change of coordinate & sign.

Def(L) = (IXy) if we restrict to the full subcategory that has no convergent issues.

 $=) F^{L}: Fuh^{Sub}(M) \longrightarrow dg ([x,y]-mod.([ch((^{2}))]$

Rmh: Def (L) 1/3 also computed by Hong - Kim - Lan.

· Q: What's Lfr?

Answer: L^{f-}= LUFV, where FV is the cotengent fiber of

Answer: Lt = L U Fr, where Fr is a cotangent fiber over S2,

In good cases, Lin a fiber of a lag torms fibration, and Fr is a section of the lag torms fibration

Intuition

$$I \longrightarrow O_{C^{2}}$$

$$CI) \setminus V$$

$$O_{P}$$

Alrde:

t

Thy (Hu-Lau-T.)

(1) MC Def (Lfr, E) 1)
$$\begin{bmatrix} B_1 & C_1 & C_2 & C_3 \\ C_1 & C_2 & C_3 & C_4 \end{bmatrix}$$

$$\begin{bmatrix} B_1 & B_2 & C_3 & C_4 \\ C_1 & C_2 & C_4 \end{bmatrix}$$

$$\begin{bmatrix} B_1 & B_2 & C_3 & C_4 \\ C_1 & C_2 & C_4 \end{bmatrix}$$

(2) bo $\in M(Def(L^{fr}, E))$ is a stable rep of Q^{fr} iff I = I = I

3) FL(Lf, E.bo) is monad over (2, whose cohomslogy is
a (resp. framed) torsion-free sheaf over (2 (resp. C172).

Thm (Hu-Lau-T.)

Let $\mathbb{L}^{fr} = \mathbb{L} \ \mathcal{V} \ \mathcal{F}_{\mathcal{V}}$, where $\mathcal{F}_{\mathcal{V}}$ is one cotangent fiber over $S_{\mathcal{V}}^{2}$. Then the associated quiver \mathbb{R}^{fr} is the framed double quiver of \mathbb{D} , \mathbb{R} the formal def space of \mathbb{L}^{fr} is a framed preprojective algebra, i.e.

$$ka^{+}/\langle \chi_{\overline{a}} \chi_{\overline{a}} + \chi_{\overline{v}} \chi_{\overline{v}} \rangle_{v}$$

up to a change of coordinate.

· Cor: The Maurer-Cartan det space of (ILtr. E)

is the Nakajima quiver variety m(2tr, rank E)

if we from a stability condition, where E is the trivial V.B. over the normalization of ILtr.

·Rmh: Similar results about framed torsion—free sheaves
also hold over ADE surfaces.

· Thm (Lan - T.)

Let E_1 , E_2 be flat V.B. over L^{fr} with rank $E_1 < rank E_2$, then $HF^{\circ}(CL^{fr}, E_1, b_1), (L^{fr}, E_2, b_2))$ is a sheaf over $M(Q^{fr}, rank E_1) \times M(Q^{fr}, rank E_2)$, whose support is the Hecke correspondence.

Thank You!