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1 Introduction

This note aims at giving a brief survey to McKay Correspondence, with an emphasis on the Γ-Hilbert schemes,

where Γ is a finite group.

2 Finite Subgroups of SL(2,C)

The story starts by considering the classification or the representation of a finite subgroup Γ ⊂ SL(2,C).
Given the standard Hermitian metric on C2. Γ acts naturally on C2. Averaging the inner product by the

group Γ, we arrive at a hermitian inner product which is invariant with respect to Γ. This shows that Γ is

conjugate to a finite subgroup of the special unitary group SU(2). Hence, the classification of finite subgroups

of SL(2,C) is equivalent to the classification of finite subgroups of SU(2).

The idea to classify the finite subgroups of SU(2) is to consider the double cover

π : SU(2) ↠ SO(3).

This double cover is defined via the multiplication structure in the quaternion. Thus any finite subgroup

Γ of SU(2) defines a finite subgroup Ḡ of rotations of R3. Conversely, every Γ̄ ⊂ SO(3) can be lifted to a

finite subgroup of SU(2) such that the kernel is of order 2. From this and the classical classification of finite

subgroups of SO(3) as symmetry groups of regular polyhedra, we obtain the following.

Proposition 2.1. Any finite subgroup of SU(2) is one of the following groups:

1. The cyclic group Z/nZ for n > 1.

2. The binary dihedral group BD2n for n > 1, the preimage of the dihedral group D2n under π.

3. The binary tetrahedral group BT, the preimage of the tetrahedral group T under π.

4. The binary octahedral group BO, the preimage of the octahedral group O under π.

5. The binary dodecahedral group BD, the preimage of the dodecahedral group D under π.

To be more precise, here we choose a basis of C2 and write down the generators of the action explicitly.

Let ϵn := e2πi/n.

1. Γ is a cyclic group of order n. A generator is given by the matrix

g1 =

[
ϵn 0

0 ϵ−1
n

]
.
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2. Γ is a binary dihedral group of order 4n. Its generators are given by the matrices

g1 =

[
ϵ2n 0

0 ϵ−1
2n

]
, g2 =

[
0 i

i 0

]
.

3. Γ is a binary tetrahedral group of order 24. Its generators are given by the matrices

g1 =

[
ϵ4 0

0 ϵ−1
4

]
, g2 =

[
0 i

i 0

]
, g3 =

1

1− i

[
1 i

1 −i

]
.

4. Γ is a binary octahedral group of order 48. Its generators are

g1 =

[
ϵ8 0

0 ϵ−1
8

]
, g2 =

[
0 i

i 0

]
, g3 =

1

1− i

[
1 i

1 −i

]
.

5. Γ is a binary icosahedra group of order 120. Its generators are

g1 =

[
ϵ10 0

0 ϵ−1
10

]
, g2 =

[
0 i

i 0

]
, g3 =

1√
5

[
ϵ5 − ϵ45 ϵ25 − ϵ35
ϵ25 − ϵ35 −ϵ5 + ϵ45

]
.

The McKay correspondence, named after John McKay, states that there is a one-to-one correspondence

between the finite subgroups of SL(2,C) and the extended Dynkin diagrams, which appear in the ADE

classification of the simple Lie algebras. This is done by the McKay graphs. Here we recall the construction.

Definition 2.1. Let Γ be a finite subgroup and ρ be its linear representation. The McKay graph of the pair

(Γ, ρ) is defined to be a graph, where the vertices correspond to irreducible representations ρi of Γ. A vertex

ρi is connected to the vertex ρj by an edge pointing to ρj if ρj is a direct summand of ρ⊗ρi. Then the weight

mij of the arrow is the number of times this constituent appears in ρ⊗ ρi.

The classical McKay correspondence classifies the possible groups Γ via their McKay graphs. More

precisely, we have the following.

Theorem 2.1 (J. McKay). Let Γ be a nontrivial finite subgroup of SU(2) and ρ be its natural 2-dimensional

representation defined by the inclusion. Then, the McKay graph of (Γ, ρ0) is an affine ADE Dynkin diagram.

Here we provide an explicit calculation of the cyclic group.

Example 2.1. Let G = Cn =< g0 > be a cyclic group of order n. Since Cn is an abelian group, every linear

representation ρ : Cn → GL(V ) decomposes into the direct sum of 1-dimensional representations

V =

n−1∑
0

Vk,

where Vk := {v ∈ V : ρ0(g0)(v) = e2πik/nv}. So Cn has n irreducible representations.

If we consider ρ0 : Cn → SU(2) given by the matrix[
ϵn 0

0 ϵ−1
n

]
,

we find that ρ0 = ρ1 ⊕ ρ−1. Thus ρ0 ⊗ ρk = ρk−1 ⊕ ρk+1. Hence, the Mckay graph (Cn, ρ0) is the Dynkin

diagram of affine Ãn−1.
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Figure 1: The McKay Correspondence

3 Geometric McKay correspondence

The slogan of the geometric McKay is that the representation theory of the finite subgroup Γ is ’equivalent’

to the geometry or topology of the minimal/crepant resolution of C2/Γ, [Rei97, Rei02].

3.1 The main statements

Let’s start by classifying the quotient space. Let Γ be a finite subgroup as before. It acts on C2 naturally.

It’s interesting to consider the quotient space C2/Γ. Based on McKay correspondence, see Theorem 2, we

have the following explicit classifications of C2/Γ.

Theorem 3.1. Let Γ be a finite subgroup of SU(2) and C2 := SpecC[x, y]. Then the quotient space C2/Γ

has the following forms:

1. An case: C2/Γ ∼= SpecC[X,Y, Z]/(XY − Zn).

2. Dn case: C2/Γ ∼= SpecC[X,Y, Z]/(X2 + ZY 2 + Zn−1), n ≥ 4.

3. E6 case: C2/Γ ∼= SpecC[X,Y, Z]/(X2 + Y 3 + Z4).

4. E7 case: C2/Γ ∼= SpecC[X,Y, Z]/(X2 + Y 3 + Y Z3).

5. E8 case: C2/Γ ∼= SpecC[X,Y, Z]/(X2 + Y 3 + Z5).

In particular, these spaces only have the singularity at the orgin.
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Proof. For simplicity, we will only prove the quotient space of a cyclic subgroup.

Notice that the generator g1 of Γ := Z/nZ acts on (x, y) via g1 ·(x, y) = (ϵnx, ϵ
−1
n y). Hence, X := xn, Y :=

yn, Z := xy are invariant under the group action.

On the other hand, suppose f := xayb is a monomial invariant under the group action. Then g1 ·
f = ϵa−b

n xayb = xayb. Hence, a − b ≡ 0 (modn). Thus f is a multiple of X,Y, Z. Therefore, we know

C[x, y]Γ ∼= C[X,Y, Z]/(XY − Zn). In particular, C2/Γ ∼= SpecC[X,Y, Z]/(XY − Zn).

The other cases are similar to the A type, but the generators are more difficult to find.

Remark. The orgins are sometimes called the Kleinnian singularity, Du Val singularity or simple singularity.

The geometric McKay correspondence examines how the topology of the minimal resolution of X :=

C2/Γ reflects the representation theory of Γ. A general theory of the algebraic surface tells us that the

minimal resolution of X exists and is unique. However, minimal resolutions do not necessarily exist in higher

dimensions (even in dimension 3). Instead, we seek a crepant resolution. For X := C2/Γ, the crepant

resolution is also minimal.

Definition 3.1. A resolution of scheme f : X̃ → X is called crepant if f∗KX = KX̃ , where KX̃ is the

canonical bundle over X̃.

Since X := C2/Γ is a hypersurface in C3 and the adjunction formula holds even for singular divisor,

we know that the canonical line bundle KX exists over X and X has Gorenstein singularity at the origin.

Furthermore, by adjunction formula, the canonical bundle KX is trivial, i.e. KX
∼= OX , since there are no

nontrivial line bundles over C3.

In the following, we want to compute two explicit examples, which give a sense of how to resolve the

singularity. In fact, C2/Γ can be resolved by successively blowing up the singular points. These examples

are insightful and shed light on the Geometric McKay correspondence. Readers who are not interested in

this can skip to Theorem 3.2.

Let’s start by recalling the definition of the incidence graph (dual graph).

Definition 3.2. Let E be a subvariety which is a tree of P1. The incidence graph of E is constructed by

assigning each irreducible component of E a vertex, assigning an edge between two vertices if the corresponding

irreducible components intersect.

Example 3.1 (A1 case). The first example we consider is C2/(Z/2Z). By theorem 3.1, we know X :=

C2/(Z/2Z) ∼= SpecC[x1, x2, x3]/(x1x2 − x2
3).

First, we consider blowup of A3 at the origin, denoted by Y := BlO(A3). We consider the blowup as the

closure of the graph of φ, where φ : A3 \ {0} → P2 via φ(x1, x2, x3) = [x1, x2, x3]. In other words, φ takes a

point to the line containing the point and the origin. Therefore, it’s not hard to see that

Y := graphφ = {((x1, x2, x3)× [y1, y2, y3]) ∈ A3 × P2 | xiyj = xjyi,∀i, j}.

The resolution X1 is the strict transform of X. In other words,

X1
∼= φ−1(X \ 0) = {((x1, x2, x3)× [y1, y2, y3]) ∈ A3 × P2 | xiyj = xjyi, x1x2 = x2

3, y1y2 = y23 ,∀i, j}.

By looking at the Jacobian matrix of X1, we know X1 is regular. Denote π be the blowup map. Then

the exceptional curve E := π−1(0) ⊂ X1 is a degree 2 curve in P2 with self intersection number −2. More

precisely, X1 is isomorphic to KP1 , the total space of canonical bundle over P1.

In particular, the incidence graph of E is the A1 Dynkin diagram.
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Example 3.2 (A3 case). Resolving X := C2/(Z/4Z) ∼= SpecC[x1, x2, x3]/(x
2
1 + x2

2 − x4
3) is more intereting.

This example can represent the standard procedure for resolving the Klein singularities. In this case, we need

to blowup twice. The second blowup will be computed locally.

Similar to the above example, we first consider the blowup of A3 at the origin.

Y := graphφ = {((x1, x2, x3)× [y1, y2, y3]) ∈ A3 × P2 | xiyj = xjyi,∀i, j}.

Y can be covered by three affine charts. More precisely, let Zi := D(yi) be the open subscheme of Y

with yi doesn’t equal zero. Then Z1 := {((x1, x2, x3) × [1, y2, y3]) ∈ A3 × P2|x2 = x1y2, x3 = x1y3} ∼=
SpecC[x1, y2, y3] ∼= A3. Similarly, we find that Zi

∼= A3 for i = 2, 3.

We try to analyze X1 using these local charts. Notice that X1 ∩ Z1
∼= φ−1(X \ 0) ∩ Z1 = {((x1, x2, x3)×

[1, y2, y3]) ∈ A3 × P2 | x2 = x1y2, x3 = x1y3, x
2
1 + x2

2 − x4
3 = 0} ∼= {((x1, x2, x3)× [1, y2, y3]) ∈ A3 × P2 | x2 =

x1y2, x3 = x1y3, x
2
1 + x2

1y
2
2 − x4

1y
4
3 = 0} ∼= SpecC[x1, y2, y3]/(1 + y22 − x2

1y
4
3).

Similarly, we can compute

X1 ∩ Z2
∼= SpecC[y1, x2, y3]/(y

2
1 + 1− x2

2y
4
3).

The most interesting part is X1∩Z3
∼= {((x1, x2, x3)×[y1, y2, 1]) ∈ A3×P2 | x1 = x3y1, x2 = x3y2, x

2
1+x2

2−
x4
3 = 0} ∼= {((x1, x2, x3)× [y1, y2, 1]) ∈ A3 ×P2 | x1 = x3y1, x2 = x3y2, x

2
3y

2
1 +x2

3y
2
2 −x4

3 = x2
3(y

2
1 + y22 −x2

3) =

0} ∼= SpecC[x3, y1, y2]/(y
2
1 + y22 − x2

3).

By computing the Jacobian matrix, we know the first two charts are smooth, but X1 ∩ Z3 still has a

singularity at the origin. Furthermore, we claim that σ−1
1 (0) consists of two intersecting exceptional

curves! This is because σ−1
1 (0) ∩ Z3

∼= SpecC[y1, y2]/(y21 + y22) contains two irreducible components V1 :=

V (y1 + iy2) and V2 := V (y1 − iy2). Notice that σ−1
1 (0) ∩ Z1 = SpecC[y3]. The transition map of P2 tells

us that this curve is glued with V1 to get an exceptional curve E1
∼= P1. Similarly for V2, so we have two

exceptional curves E1 ∪ E2.

To resolve the remaining singular point, we do the blowing up again in the chart X1 ∩ Z3. This is the

same as A1 case. Hence, we get one more exceptional curve E3.

In the end, we get three exceptional divisors, which are E3 and the strict transformation of E1 and E2,

denoted by Ẽ1, Ẽ2 respectively. Since E1 and E2 intersect at the blowup point, Ẽ1, Ẽ2 no longer intersect. But

they all intersect E3. Therefore, the incidence graph of the exceptional divisor E is the A3 Dynkin

diagram.

The corresponding intersection matrix (Ei ·Ej)ij =

−2 1 0

1 −2 1

0 1 −2

 , which is the negative of the Cartan

matrix of A3 Dynkin diagram.

The phenomenon that the incidence graph of the exceptional divisor corresponds to the ADE type Dynkin

diagram holds in general. We have the following theorem:

Theorem 3.2 (Geometric McKay Correspondence). Let Γ be a finite subgroup in SL2(C). The quotient

space C2/Γ admits a crepant resolution ˜C2/Γ, which is also minimal.

Besides, the exceptional divisor π−1(0) is a tree of P1, whose incidence graph is the Dynkin diagram of

Γ. Here π : ˜C2/Γ → C2/Γ is the crepant resolution. In addition, the intersection matrix of the exceptional

divisor is the negative of the corresponding Cartan matrix.

Furthermore, the representation ring R(Γ) of Γ is isomorphic to the K ring K( ˜C2/Γ).

Proof. The proof can be found in for example [Nak99], [IN96].
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Proposition 3.1. The rank of H2( ˜C2/Γ) equals the number of irreducible components in the exceptional

divisors, which also equals the number of nontrivial irreducible representations of Γ.

Proof. In fact, ˜C2/Γ is homotopic to the exceptional divisors by a general result of Nakajima quiver variety

[Nak94]. Hence, H2( ˜C2/Γ) is generated by the fundamental class of each irreducible component, which is

CP1.

Furthermore, by the Geometric McKay correspondence, we know that there’s 1-1 correspondence between

the irreducible components of the exceptional divisor and the vertices in the corresponding ADE Dynkin

diagram, which also corresponds to the nontrivial irreducible representations of Γ.

Remark. Nakajima [Nak94] also showed that the exceptional divisors form a holomorphic Lagrangian subva-

riety

In summary, the Geometric McKay correspondence tells us that the exceptional curves correspond to the

irreducible representations of Γ, with intersection data reflecting the structure of the group’s McKay graph.

This interplay between geometry and representation theory is both elegant and powerful.

3.2 Resolution of Kleinian Singularities: Γ-Hilbert Schemes

The main idea is that one can construct the crepant resolution by keeping track how the Γ-orbits approach

the origins, i.e. Γ-Hilbert Schemes. In this subsection, we want to introduce the notions of Γ-Hilbert Schemes

of points on C2 and we will see that the fine moduli spaces are quiver varieties.

Let M be a nonsingular quasiprojective complex variety of dimension n, and Γ be a finite subgroup in

the automorphism group of M , with the property that the stabilizer subgroup of any point x ∈ M acts on

TxM as a subgroup of SL(TxM). For example, let M = Cn and Γ be the finite subgroup in SLn(C).
The Γ-Hilbert scheme Γ−Hilb(M) was introduced by Nakamura [?] as a good can didate for a crepant

resolution of M/Γ. It parametrises Γ-clusters or ‘scheme theoretic Γ-orbits’ on M : recall that a cluster

Z ⊂ M is a zero-dimensional subscheme.

Definition 3.3. A Γ-cluster is a Γ-invariant cluster whose global sections are isomorphic to the regular

representation C[Γ] of Γ.

There is a Hilbert–Chow morphism

π : Γ−Hilb(M) → M/Γ,

which, on closed points, sends a Γ-cluster to the orbit supporting it. Note that π is a projective morphism,

is onto and is birational on one component.

From now on, we will focus on M = C2 and Γ be a finite subgroup of SL2(C). To give a precise description

of Γ-Hilbert Schemes, we have better recall the Hilbert scheme of points over C2.

Let’s recall Nakajima’s construction of Hilbert scheme of n points on C2 = Spec(C[z1, z2]).
Given an ideal sheaf I of n points on C2. (We will not distinguish the modules and the associated

coherent sheaves, since C2 is affine.) We have the quotient C[z1, z2]/I ∼= Cn. Notice that C[z1, z2]/I is a

C[z1, z2]-module. Hence, the action of zi induces endomorphism Bi on Cn. Since z1 and z2 commute, we

know [B1, B2] = 0.

Besides, there exists an inclusion of the coefficient ring. More precisely, we have C ↪→ C[z1, z2] ↠

C[z1, z2]/I ∼= Cn. Therefore, we have a morphism i : C → Cn. In addition, this implies zp1z
q
2 · 1 forms a basis

of Cn for all p, q ∈ Z. It corresponds to the fact there’s no proper subspace of Cn that is (B1, B2)-invariant
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and contains Im(i). Furthermore, this construction doesn’t depend on the choices of the basis. (B1, B2, i) is

a quiver representation.

In summary, given an ideal sheaf I of n points, we obtain an isomorphic class of linear maps (B1, B2, i) ∈
Hom(Cn,Cn ⊗ C2)⊕Hom(C,Cn) satisfying [B1, B2] = 0 and

(*) there’s no proper subspace of Cn that is (B1, B2)-invariant and contains Im(i).

Theorem 3.3 ([Nak94]). The quiver variety

M(n, 1) := {(B1, B2, i) ∈ Hom(Cn,Cn ⊗ C2)⊕Hom(C,Cn) | [B1, B2] = 0, satisfy Condition (∗)}/GLn(C)

is the Hilbert scheme of n points on C2.

Remark. Similar constructions can be generalized to Cn, see for example [IN00].

Recall that for Hilbert scheme of points on surfaces, we have the Hilbert-Chow morphisms, which is a

resolution:

π : Hilbn(C2) → Sn(C2).

In the following, we consider the case that n = |Γ|, the cadinality of Γ. The Γ-action on C2 naturally

induces that on Hilbn(C2) and on the symmetric product Sn(C2). Since the Γ-action on C2 \ {0} is free, the

Γ-orbit Γ · p of a point p ∈ C2 \ {0} consists of n distinct points, hence defines a 0-dimensional subscheme

Z ∈ Hilbn(C2). In addition, the quotient of the corresponding ideal sheaf gives a regular representation of

Γ. Conversely, any Γ-fixed point in the open stratum π−1(Sn
(1,...,1)(C

2)) comes from a Γ-orbit, where Sn
(1,...,1)

is the open subset that contains n-unordered distinct points.

Let X̃ be the closure of the set of orbits Γ · C2 \ {0} and it has dimension 2. Then we have

Theorem 3.4. [IN96] X̃ is the Γ-Hilbert scheme. Besides, the restriction of the Hilbert-Chow morphism to

X̃ is the crepant resolution of C2/Γ = (Sn(C2))Γ.

Let’s give an explicit description of Γ − Hilb(C2). For our purpose, we denote Cn (resp. C) by R (resp.

W ), since Cn is the regular representation. And we will write Q := C2, which is the natural representation

of Γ. Take the irreducible decomposition of R and W as Γ-module

W = W0 ⊗R0, R =
⊕

k Vk ⊗Rk,

where Rk is the irreducible representations of Γ with R0 be the trivial representation and the dimension of

Vk stands for the multiplicities.

Recall that in the construction of the McKay graph, we also consider the decomposition

Q⊗Ri = ⊗mijRj .

Therefore, we have the following decompositions of the Γ-invariant part (Hom(R,R⊗Q)⊕Hom(W,R))Γ =

HomΓ(R,R⊗Q)⊕HomΓ(W,R) :

HomΓ(R,R⊗Q) =
⊕
k,l

HomΓ(Vl ⊗Rl, Vk ⊗Rk ⊗Q) =
⊕
k,l

mklHom(Vl, Vk).

HomΓ(W,R) = Hom(W0, R0).

Notice that this is nothing else but the representations of the double quiver associated to the affine ADE

Dynkin diagrams (ignoring the framing Hom(W0, R0)).

Let’s recall what is the double quiver and the preprojective algebra.
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Definition 3.4. Given a graph D. The double quiver Q of D is a quiver with the same vertices and with

the set of oriented edges H := (e, o(e)), where e is an edge of D and o(e) is the orientation of e. Thus, each

edge e connecting vertices vi and vj gives rises to two oriented arrows a : vi → vj and ā : vj → vi.

Definition 3.5. A preprojective algebra of the double quiver Q is the path algebra CQ/I, where I is the

two-sided ideal generated by
∑

t(a)=v XāXa for all vertices v up to sign. Here Xa is the element in the path

algebra CQ associated with the arrow a.

Notice that the relations actually happen at every vertex.

Proposition 3.2. The Γ-Hilbert scheme X̃ is the quiver variety that parametrizes the rank (V0, . . . , Vn)

representations of Q satisfying the preprojective algebra relations, where Q is the double quiver of the McKay

graph associated to Γ.

Remark. 1. By a standard fact of regular representations, we know dimCVk = dimCRk.

2. Furthermore, the tautological bundles of the quiver variety X̃ form a basis of K(X̃).

3. This is one of the key step in the HyperKahler construction of the ALE spaces [Kro89].

4 Derived McKay Correspondence

Theorem 4.1 ([KV98] Derived SL2(C) McKay correspondence). Let Γ be a finite subgroup of SL2(C) and

let π : X̃ := ˜C2/Γ → X := C2/Γ denote the crepant resolution. Then A is Morita equivalent to C[x, y]#Γ

i.e.

mod−A ⋍ mod− C[x, y]#Γ,

where A is the preprojective algebra of the corresponding affine ADE Dynkin diagram. Furthermore,

Db(X̃) ⋍ Db(mod−A) ⋍ Db(mod− C[x, y]#Γ).

Remark. In fact, X admits a tilting bundle, which is the direct sum of the tautological bundles.

An important higher-dimensional analog can be found in [BKR01].

Theorem 4.2 ([BKR01]). Let Γ be a finite subgroup of SLn(C) and X := Cn/Γ. Let X̃ be the Γ-Hilbert

scheme constructed as before together with the Hilbert-Chow morphism π : X̃ → X. Suppose the fiber product

X̃ ×X X̃ = {(x1, x2) ∈ X̃ × X̃ | π(x1) = π(x2)} ⊂ X̃ × X̃

has dimension ≤ n+ 1. Then X̃ is a crepant resolution of X and Db(X̃) ⋍ Db
Γ(X).

Since the technical assumption in the previous theorem naturally holds for n = 2, 3, we have

Corollary 4.1 (Derived SL3(C) McKay correspondence). Let Γ be a finite subgroup of SL3(C) and X :=

C3/Γ and X̃ be the Γ-Hilbert scheme. Then Db(X̃) ⋍ Db
Γ(X).

Remark. Notice that the crepant resolution need not exist in higher dimensions, such as dimension 4.
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