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Abstract

This note is dedicated to giving a brief introduction to the famous SYZ conjecture.

1 Basic Concepts

Before introducing the ground-breaking proposal of Strominger, Yau and Zaslow, let’s briefly recall
some basic concepts. Readers who are familiar with symplectic geometry can feel free to skip this
section.

Definition 1.1. A symplectic manifold is a smooth manifold M , equipped with a nondegenerate
closed 2-form ω.

The existence of such nondegenerate two forms will force the smooth manifold to have even
dimensions. Hence, it makes sense to introduce the following definition.

Definition 1.2. Let (M,ω) be a 2n-dimensional symplectic manifold. A submanifold Y of M is a
Lagrangian submanifold if Y has dimension n and ω|Y ≡ 0.

One important source of symplectic manifolds and Lagrangians comes from the cotangent bun-
dle.

Definition 1.3. Given any smooth manifold X. Let’s denote the cotangent bundle M := T ∗X.
It has a projection map π : M → X. The tautological 1-form α may be defined pointwise by
αp = (dπp)

∗ξ ∈ T ∗
pM, for ξ ∈ Tx, p = (x, ξ).

Example 1.1. One good exercise is show that the cotangent bundle M = T ∗X has a symplectic
form, defined by ω = −dα, which makes the zero section of the cotangent bundle a Lagrangian.

In the setting of symplectic manifold, people would like to consider a special kind of diffeomor-
phisms.

Definition 1.4. Let (M1, ω1) and (M2, ω2) be 2n-dimensional symplectic manifolds, and let φ :
M1 → M2 be a diffeomorphism. Then φ is a symplectomorphism if φ∗ω2 = ω1.

Definition 1.5. A Kalher manifold is a symplectic manifold (M,ω) equipped with an integrable
almost-complex structure J which is compactible with the symplectic form, meaning that the bilinear
form g(v, w) := ω(v, Jw) on the tangent space at each point is symmetric and positive definite.

Example 1.2. A very great example of Kahler manifold is Cn.

Definition 1.6. Let (X,ω, J) be a smooth compact Kahler manifold. Suppose it has a nowhere
vanishing holomorphic top form Ω. A Lagrangian submanifold L is called special if Im(e−iθΩ)|L = 0.
for some phase θ.
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An example of a special Lagrangian will be provided in the next section.
Special Lagrangians are area minimizers. In particular, they are calibrated by Re(e−iθ) and

calibrated submanifolds are minimizers.

Conjecture 1.1. Special Lagrangians are (semi)stable objects of the Fukaya categories.

Remark. In general, the existence of global nowhere vanishing holomorphic volume form is a strong
assumption. It’s in fact one of the definitions of Calabi-Yau manifold.

Here we also recall some constructions of Calabi-Yau manifolds.

1. A way to get a nowhere-vanishing holomorphic top form is to consider the complement of the
anticanonical bundle in a Fano manifold. For example, we can consider P2 \ C, where C is a
cubic curve in P2.

2. Besides, degree n+ 1 hypersurface in Pn also provides a source of Calabi-Yau manifolds, be-
cause by adjunction formula, the canonical bundle is trivial. More generally, one can consider
the hypersurface in a Fano variety.

3. Furthermore, if we allow the holonomy forms a subgroup of SU(n), complex torus of complex
dimension n are also Calabi-Yau manifolds.

4. If we would like get noncompact Calabi-Yau manifolds, we can consider the total space of the
canonical bundle over some toric Fano varieties. For example, the total space of canonical
bundle over P2.

5. Local mirror symmetry. Let f = f(z1, · · · , zn−1) ∈ C[z±1
1 , · · · , z±1

n−1] be a Laurent polynomial
in n− 1 variables. Then the hypersurface

X := {(x, y, z1, · · · , zn−1) ∈ C2 × (C×)n−1 | xy = f(z1, · · · , zn−1)}

is a noncompact Calabi-Yau variety, since it admits the following holomorphic volume form:
Ω := Res[dx∧dy∧dlog z1∧···∧dlog zn−1

xy−f ].

6. Sometimes the Calabi-Yau varieties come from the crepant resolution. Suppose X is normal,
then we know X is regular in codimension 1. Hence, the singular locus of X is codimension
≥ 2 in X.

Let i : Xns → X be the inclusion of the nonsingular part of X. Then the canonical bundle
over the nonsingular part ωXns is defined, and we can put ωX := i∗ωXns , where i∗ denotes
the push-forward of sheaves. Notice that ωX is not necessarily a line bundle. We say X is
Gorenstein if ωX is a line bundle. As the adjuntion formular still holds even when the divisor
is singular, any hypersurface in a non-singular variety is Gorenstein. An important family of
examples is the ADE surfaces.

Theorem 1.1 (Lefschetz hyperplane theorem). Let X be a smooth complex projective variety of
dimension n, and let D be an effective ample divisor on X. Then the restriction map

ri : H
i(X,Z) → H i(D,Z)

is an isomorphism for i ≤ n− 2 and injective for i < n− 1.

Corollary 1.1. The Calabi-Yau hypersurface in Pn has vanishing H1 for n ≥ 3.

Definition 1.7. Given a fibration π : M → B with fiber a symplectic manifold F with symplectic
form σ. π : M → B is called a symplectic fibration if the structure group is contained in the group
of symplectomorphisms Symp(F, σ).
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2 Important Example

This section highly relies on [Aur07]. Let’s consider an open subset X := {(x, y) ∈ C2|xy ̸= ϵ}
for some ϵ ̸= 0 with a projection map f : X → C \ {ϵ} defined by f(x, y) = xy. The fiber of f
over any nonzero complex number is a smooth conic. To visualize the fiber, we can make use of
the polar coordinate of x in the fiber, namely x := r1e

θ1 . Then for any nonzero complex number
a := reθ ∈ C \ {ϵ}, y = r1

r e
θ−θ1 . If we fix θ1, we first get a branch of a hyperbola. Taking θ1 from 0

to 2π, we attain the smooth conic. Topologically, it looks like a cylinder. In fact, this also reveals
the structure of S1-orbit that we will mention later.

Similarly, we know the fiber over 0 is the union of two complex planes (the x and y planes).
Topologically, it looks like two cones intersecting at the cone points. With these preparations, we
achieve the following nice picture.

Remark. In fact, X is the complement of a canonical divisor in CP2. More precisely, let D :=
{(x : y : z) ∈ CP2|(xy − ϵz2)z = 0} (the union of a conic and a line), for the same ϵ as before.
We know X = CP2 \D. The Fubini-study metric on CP2 naturally induces a symplectic structure
ω on X. Then the projection map we consider is the rational map f : CP2 → CP1 defined by
[x, y, z] 7→ [xy, z2]. Besides, X can be equipped with a nowhere vanishing holomorphic volume
form, which is given by

Ω =
dx ∧ dy

xy − ϵ
.

This pair X = CP2 \D is also called a log Calabi Yau surface.

Furthermore, this fibration is equipped with the Hamiltonian S1-action on (X,ω) given by

S1 × C2 → C2, (θ, (x, y)) 7→ (eiθx, e−iθy),

whose moment map for this S1-action is µ(x, y) = 1
2(|x|

2 − |y|2).
We will consider Lagrangian tori which are contained in f−1(γ) for some simple closed curve

γ ⊂ C, and consist of a single S1−orbit inside each fiber. Recall that f : X → C \ {1} carries
a natural horizontal distribution, given at every point by the symplectic orthogonal to the fiber.
More precisely, we first have the vertical direction or the fiber direction given by Kerdf. Using the
symplectic form mentioned in the remark, we can consider its symplectic orthogonal (Ker df)Ω :=
{v ∈ TpX|ω(v, w) = 0,∀w ∈ Ker df}. Parallel transport with this horizontal distribution yields
symplectomorphisms between the smooth fibers. Notice that by definition, the tangent vector of
the flow line lies in the symplectic orthogonal. Hence, it perserves the moment map level. This
suggests the following definition.

Definition 2.1. Given a simple closed curve γ ⊂ C and a real number λ, we define

Tγ,λ = {(x, y) ∈ f−1(γ), µ(x, y) = λ}.
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By construction Tγ,λ is an embedded torus in X, except when 0 ∈ γ and λ = 0. When 0 ∈ γ and
λ = 0, Tγ,0 is an immersed torus with nodal singularity at the origin.

One can check that Tγ,λ is a Lagrangian in X. (Hint: the tangent space is generated by two
elements. One is tangent to the S1-orbit, the other lies in the horizontal distribution.)

Proposition 2.1 (Proposition 5.2 in [Aur07]). The tori Tγ(r),λ = {(x, y), |xy − ϵ| = r, µ(x, y) = λ}
are special Lagrangian with respect to Ω = dx∧dy

xy−ϵ .

Corollary 2.1. The map π : X → R2 via π(x, y) = (log|xy − ϵ|, 12(|x|
2 − |y|2)) defines a special

Lagrangian torus fibration.

Remark. This example is important for many reasons.

1. Special Lagrangian torus fibration in general is hard to find. This example provides a non-toric
case.

2. From this example, it’s clear that even for a smooth surface. The SYZ fibration may have
singular fibers.

There are some other possible ways to construct special Lagrangians.

1. Explicit metric. Let X = C/Z⊕ Z be a complex tori. Ω = dz. ω = i
2dz ∧ dz̄. In this example,

all the lines with rational slopes are special Lagrangians. In this case, the slope is the same as
the phase, while the volume is the length of the line. For irrational slope, it covers the torus
but it’s not regarded as a submanifold of X.

2. One can also construct a special Lagrangian using some real structure. In other words, let i be
an involution on the Calabi-Yau manifold (X,ω,Ω), i.e. i2 = id. If i∗ω = −ω, i∗Ω = Ω̄, then
Fix(i) is a special Lagrangian. This is because if L = Fix(i) has half dimension, we know
i∗(ω|L) = −ω|L = ω|L. Thus ω|L = 0. Similarly, i∗Ω|L = Ω|L = Ω̄|L. Hence, Im(Ω)|L = 0.

3. Lagrangian mean curvature flow: Given a Lagrangian L in a Calabi-Yau manifold (X,ω,Ω).
Let θ : L → S1 be a map such that Ω|L = eiθvolL. Suppose L has Maslov zero, θ admits a
lifting to R. The mean curvature is defined to be H⃗ := ∇θ. Solving the equation dLt

dt = H⃗,
which preserves Maslov zero and being a Lagrangian, provides a Lagrangian mean curvature
flow. It’s conjectured that the limit of Lagrangian mean curvature flow is a special Lagrangian.

4. HyperKahler Rotation of a Calabi-Yau 2-fold: given a HyperKahler 4-fold. There exist three
almost complex structures I, J,K satisfying some compatible conditions. Consider the linear
combination aI + bJ + cK. If the linear combination is also an almost complex structure, we
have a2 + b2 + c2 = 1, which can be identified as CP 1.

3 SYZ Conjecture

With the above example in mind, we can now introduce the SYZ conjecture, which revealed the
intimate relation between a pair of mirror Calabi-Yau manifolds in a geometric manner:

Conjecture 3.1 ([SYZ96]). Suppose that X and X̌ are Calabi-Yau manifolds mirror to each other.
Then
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1. both X and X̌ admit special Lagrangian torus fibrations with sections µ : X → B and µ̌ : X̌ →
B over the same base. There exists a dense open subset Breg ⊂ B such that the fibers µ−1(b)
and µ̌−1(b) for every b ∈ Breg are nonsingular tori, and they are dual tori;

2. for each b ∈ B \ Breg, the fibers µ−1(b) and µ̌−1(b) should be singular special Lagrangian
submanifolds of X and X̌ respectively.

This conjecture provides guidance to find the mirror manifolds, namely, a mirror of any given
Calabi-Yau manifold X is given by fiberwise dualizing a special Lagrangian torus fibration on X.
However, in general, there are a lot of difficulties to proceed with this construction.

Definition 3.1. The situation in which Breg = B so that there is no singular locus is called the
semi-flat limit of the SYZ conjecture.

The important geometric feature of a pair of Lagrangian torus fibrations µ : X → B and
µ̌ : X̌ → B which encodes mirror symmetry is the dual torus fibers of the fibration. Recall that
given a Lagrangian torus T ⊂ X. Let assume it to be an abelian variety, the dual torus is defined as
the Jacobian variety of T . This is again a torus of the same dimension. Furthermore, the Jacobian
variety has the interpretation as the moduli space of the line bundles with vanishing first Chern
class on T .

This duality and the interpretation of the dual torus as a moduli space of sheaves on the original
torus is what allows one to interchange the data of submanifolds and subsheaves. There are two
nice examples of this phenomenon:

1. If p ∈ X is a point which lies inside some fiber T of the special Lagrangian torus fibration with
even dimension, then since T = Jac(Ť ), this point corresponds to a line bundle supported on
Ť . Furthermore, if there exists a Lagrangian section of this fibration, i.e. s : B → X such that
the image of s is a Lagrangian in X and µ ◦ π = id, then this section s should associate a line
bundle over each dual torus. Consequently, a line bundle on the total space of the mirror X̌.
In this way, we attain an approach to relate the symplectic geometric object to the complex
algebraic geometry.

2. Another example is the Lagrangian torus fibre T itself together with a flat unitary connection
▽ on the trivial complex line bundle. Indeed, the gauge equivalence class of the connec-
tion ▽ is determined by its holonomy hol▽ ∈ Hom(π1(T ), U(1)) = Hom(H1(T ), U(1)) =
Hom(Z2g, S1) ∼= Ť ! In other words, there’s a one-to-one correspondence between the gauge
equivalence classes of flat unitary connection and its holonomy. Hence, the pair (T,▽) corre-
sponds to a point on the dual torus Ť , which is the skyscraper sheaf at that point. With this
perspective, the mirror X̌ should be identified with the moduli space of a certain pair (L,▽)
on X, where L ⊂ X is a special Lagrangian submanifold, ▽ is a flat unitary connection on L.

These two examples produce the most extreme kinds of coherent sheaf, locally free sheaves (of
rank 1) and torsion sheaves supported on points. By more careful construction one can build up
more complicated examples of coherent sheaves. Similarly, one would expect that a Lagrangian
multisection (a union of k Lagrangian sections) should be mirror to a rank k vector bundle on the
mirror manifold. If the Lagrangian sections with nontrivial intersection points are unobstructed,
one would also expect that it’s mirror to a nontrivial vector bundle. More details about the semi-flat
case SYZ conjecture can be found in [LYZ00] and [Leu01].

Remark. If the mirror torus fibrations are not in the semi-flat limit, then special care must be
taken when crossing over singular sets of the base B. Roughly speaking, we will have the following
difficulties caused by the singular fiber:
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1. We can only take dual for tori. If we only take dual for smooth torus fibers, then we only
attain a subset of the mirror.

2. It emanates a wall of Maslov index zero holomorphic discs bounded by torus fibers.

3. If we walk around the wall caused by the singular point, we have nontrivial monodromy.

To get a more complete story of mirror symmetry, we have better introduce Kontsevich’s re-
markable Homological mirror symmetry conjecture, which was introduced in 1994 earlier than SYZ
conjecture.

Conjecture 3.2 (HMS conjecture). If two Calabi-Yau manifolds X and X̌ are mirror to each
other, then DFuk(X) is equivalent to Db(X̌) as a triangulated category.

If the HMS conjecture is true, the mirror pairs that come from SYZ are expected to satisfy
this categorical correspondence. In particular, the triangulated structure should be preserved on
the object levels. Therefore, the connected sum of Lagrangians in DFuk(X) should correspond
to a certain complex of coherent sheaves over X̌. For example, the ideal sheaf of a point should
correspond to the connected sum of lagrangian section and the lagrangian fiber up to shifting.

Besides, on the structure level, the autoequivalence of DFuk(X) is also expected to correspond
to the autoequivalence of Db(X̌). Furthermore, we also expect there are some relations on the
operators.

Here are some examples of expectations:

1. The Dehn twist, which is a symplectomorphism along a sphere, should correspond to a certain
twist functor along a spherical object on the B-side. For more details, please see [ST00].

2. The Lagrangian translation, which is a symplectomorphism realized via a lagrangian section,
should correspond to tensoring with a line bundle. Some explanations can be found in [HK21].

References

[Aur07] Denis Auroux. Mirror symmetry and t-duality in the complement of an anticanonical
divisor, 2007.

[HK21] Paul Hacking and Ailsa Keating. Symplectomorphisms of mirrors to log calabi-yau surfaces,
2021.

[Leu01] Naichung Conan Leung. Mirror symmetry without corrections, 2001.

[LYZ00] Naichung Conan Leung, Shing-Tung Yau, and Eric Zaslow. From special lagrangian to
hermitian-yang-mills via fourier-mukai transform, 2000.

[ST00] Paul Seidel and R. P. Thomas. Braid group actions on derived categories of coherent
sheaves, 2000.

[SYZ96] Andrew Strominger, Shing-Tung Yau, and Eric Zaslow. Mirror symmetry is t-duality.
Nuclear Physics B, 479(1-2):243–259, nov 1996.

6


	Basic Concepts
	Important Example
	SYZ Conjecture

