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Abstract: The heart is an important organ that maintains human life activities, and its movement
reflects its health status. Utilizing electromagnetic waves as a sensing tool, radar sensors enable
noncontact measurement of cardiac motion, offering advantages over conventional contact-based
methods in terms of comfort, hygiene, and efficiency. In this study, the high-precision displacement
detection algorithm of radar is applied to measure cardiac motion. Experimental is conducted using
a single out-channel frequency modulated continuous wave (FMCW) radar operating in the ISM
frequency band with a center frequency of 24 GHz and a bandwidth of 150 MHz. Since the detection
signal is influenced by both respiratory and heartbeat movements, it is necessary to eliminate the
respiratory signal from the measurement signal. Firstly, the harmonic composition of the respiratory
signal is analyzed, and a method is proposed to calculate the parameters of the respiratory waveform
by comparing the respiratory waveform coverage area with the area of the circumscribed rectangle.
This allows for determining the number of respiratory harmonics, assisting in determining whether
respiratory harmonics overlap with the frequency range of the heartbeat signal. Subsequently, a more
accurate cardiac motion waveform is extracted. A reference basis is provided for extracting cardiac
health information from radar measurement waveforms by analyzing the corresponding relationship
between certain extreme points of the waveform and characteristic positions of the electrocardiogram
(ECG) signal. This is achieved by eliminating the fundamental frequency component of the heartbeat
waveform to emphasize other spectral components present in the heartbeat signal and comparing
the heartbeat waveform, the heartbeat waveform with the fundamental frequency removed, and the
heartbeat velocity waveform with synchronized ECG signals.

Keywords: cardiac movement; respiratory harmonics; noncontact detection; radar

1. Introduction

The heart maintains normal vital activities by pumping blood to the whole body
through contraction and relaxation. The health conditions of the heart itself and certain
other organs can cause the heart to exhibit different motion states. While doctors commonly
employ auscultation as an initial diagnostic method for assessing heart health, it fails
to provide precise information about cardiac motion. Traditional methods of accurately
measuring cardiac activity signals primarily involve the use of contact electrodes to measure
ECG signals. However, these measurement instruments are complex to operate and require
specialized skills, and they have limitations in terms of hygiene and flexibility. Cardiac
motion produces macroscopic and measurable periodic fluctuations in the chest. Radar
can realize noncontact measurement of cardiac activity states with its noncontact ability
for high-precision displacement measurement. The radar frequencies commonly used
to detect vital signs are mainly concentrated between 2 GHz and 100 GHz [1–8], with
wavelengths ranging from 3 mm to 150 mm. Electromagnetic waves in this frequency
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range have good penetrability, allowing them to easily pass through ordinary media such
as clothing and bedding. The shorter wavelengths provide microwave radar with a highly
sensitive perception capability for detecting subtle movements, which endows microwave
radar with unique advantages in noncontact monitoring of vital signs.

For FMCW radar, the phase of the beat signal from the target varies linearly with
distance. When the target’s position changes by half a wavelength relative to the radar, the
phase will shift by 2π. Phase measurement offers high sensitivity to motion. The methods
for solving phase include small-angle approximation [9], orthogonal demodulation [10],
and arctangent demodulation [11]. The arctangent demodulation method is widely used
due to its highest accuracy in motion reconstruction, although it requires the elimination
of direct current (DC) offset. In addition, since the phase is obtained through the inverse
operations of trigonometric functions, which have periodicity, it is necessary to unwrap the
calculated phase. There are two main methods for phase unwrapping. The first one is the
traditional method, which determines whether the phase difference between two consecu-
tive sampling points is greater than π or less than−π in order to decide whether the current
phase should be incremented or decremented by 2π. This judgment process needs to be
applied throughout the entire phase sampling procedure. The second method is known
as the differentiate and cross multiply (DACM) algorithm [12–14], which calculates the
discrete accumulation expression of the phase by first differentiating and then integrating
it. Compared to the traditional algorithm, this approach does not require phase difference
judgment, resulting in higher execution efficiency. The arctangent demodulation method
requires two orthogonal signals. For FMCW radar, the in-phase/quadrature-phase (I/Q)
dual output channel signals on the hardware can be used to form a complex beat signal,
and then the Fourier transform is done on the complex beat signal and the real and imag-
inary parts of the obtained result are used as two orthogonal signals. Alternatively, the
Fourier transform of the signal from a single out-channel can be used to obtain the real and
imaginary parts for constructing the orthogonal signals. The single out-channel structure is
simpler, aiding in device miniaturization while also offering the advantages of low cost and
low power consumption. In this paper, the accurate calculation method for displacement
under the single out-channel condition as described in [15] was employed.

Under normal breathing conditions, the amplitude of the chest surface vibrations
caused by respiration is much greater than that of the heartbeat. Therefore, the measured
vibration signal mainly reflects the fluctuation characteristics of the respiratory. Most
literature simplifies the heartbeat and respiratory motions as harmonic motions in different
frequency ranges [16–21]. If this assumption is true, the two motions can be separated
in the frequency domain as long as the spectral resolution is sufficient. However, the
respiratory and heartbeat motion signals not only overlap in the time domain but also
the high-frequency harmonics of the respiratory signal may enter the frequency range
of the heartbeat signal so that the traditional low-pass and high-pass filtering methods
produce errors when separating respiratory and heartbeat signals. In [22], the respiratory
waveform was determined through empirical formulas, and then it was removed from the
measured signal to obtain the heartbeat signal and has achieved good results. Most studies
on radar-based heartbeat signal measurement primarily focus on the average heart rate
during the observation period [23–28], resulting in insufficient exploration of cardiac health
information. Thus, it is necessary to conduct more in-depth research on the heartbeat signal
to further uncover valuable insights into cardiac health.

In this study, a single in-phase out-channel FMCW radar operating in the ISM band
with a central frequency of 24 GHz and a bandwidth of 150 MHz was used for the de-
tection of cardiac activity signals. The ISM band is a set of frequency bands designated
by the International Communication Union for use by industrial, scientific, and medical
institutions without requiring a license or fees, making it more practical. The adoption of
a single-channel configuration simplifies the hardware setup, enhancing system stability.
In order to eliminate the harmonic components of respiratory signals, an algorithm has
been proposed that determines the harmonic constituents of these signals by calculating
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the ratio of the area covered by the respiratory waveform to the circumscribed rectangle.
This method is easy to implement and shows good precision in practice. Reference [22]
extracted further cardiac health information by marking feature points on the heartbeat
waveform while performing differential operations on the waveform to locate these feature
points can be effective; this approach’s drawback is its high sensitivity to noise, which
can adversely impact the result stability. In the pursuit of more stable feature points, the
fact that the heartbeat waveform is not a simple harmonic wave of a single frequency is
notable. While the amplitude of the fundamental frequency is the highest, other harmonic
components—with smaller amplitudes—also contain relevant cardiac health information.
This study proposes the removal of fundamental waves from the heartbeat waveform
to highlight the harmonic components that may be masked. By comparing the obtained
waveform with the synchronous ECG signal, the corresponding relationship between cer-
tain feature points in the waveform and characteristic locations in the ECG signal was
analyzed, which provides a valuable approach to extract more information from radar
cardiac motion signals.

2. Measurement Method
2.1. Single Out-Channel FMCW Radar Displacement Measurement Method

The waveform generator of the FMCW radar generates the chirp signal, which is then
amplified by the power amplifier (PA) and emitted through the transmitting antenna (TX).
The receiving antenna (RX) captures the echo signal, which is subsequently filtered and
amplified by the low-noise amplifier (LNA). The mixing of the filtered echo signal and
the transmitted signal yields the in-phase beat signal SB. Similarly, the mixing of the echo
signal with the 90◦ phase-shifted transmitted signal results in the quadrature-phase beat
signal S′B. The expressions for the two types of beat signals are as follows.

SB = A cos
(

4πγRd
c

t +
4π f0Rd

c

)
, (1)

S′B = A sin
(

4πγRd
c

t +
4π f0Rd

c

)
. (2)

where A is the amplitude, f0 is the start frequency, Rd is the distance between the target and
the antenna, c is the propagation velocity of electromagnetic wave, and γ is the frequency
slope, γ = Bw/T, where Bw is the bandwidth, and T is the duration of a chirp. The
traditional FMCW radar with the I/Q dual output channel on the hardware can be used
to form a complex beat signal. However, when the hardware is simplified to include only
one output channel, there is only one beat signal output. The schematic diagrams for the
two output configurations are illustrated in Figure 1.
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Figure 1a shows the traditional dual output channel structured radar system. Figure 1b
illustrates the single out-channel radar system. The single out-channel reduces one signal
path, resulting in a simpler hardware structure. With the aid of specialized signal processing
techniques, comparable accuracy in displacement measurement can still be achieved [15].

For single out-channel, applying the N-point DFT to the beat signal SB and consider
the positive half side of the spectra only, we have

FN(Rd, k) =
1
N ∑N−1

n=0 SB· exp(−j(2π fktn)), (3)

where tn = nT/N is discrete sampling time, n is the number of sampling points, N is the
total number of samples in a chirp. The discrete frequency is fk = k/T, where k is the
discrete frequency number, 1 ≤ k ≤ N, k ∈ Z. For FN(Rd, k), taking its value when N
tends to infinity is a good approximation, as shown in Equation (4).

F(Rd, k) = lim
N→∞

FN(Rd, k), (4)

Substitute (1) into Equation (4), according to [15], the real part and image part of
F(Rd, k) can be obtained as

F Im(Rd, k) =
2BwRc

4πBw
2Rd

2 − k2πc
sin
(

2πBwRd
c

)
· cos

(
4πRd

λc

)
, (5)

FRe(Rd, k) =
kc2

4πBw
2R2 − k2πc

sin
(

2πBwRd
c

)
·sin

(
4πRd

λc

)
, (6)

where λc is the center wavelength of the transmitted wave, λc = ( f 0 + Bw/2)/c. The value
of N should be large enough to ensure that FN(Rd, k) converges to the required accuracy.
The beat signal of stationary objects will be processed into a complex DC offset based on
(3), denoted as A0 + jB0. In reference [15], it was demonstrated that when the displacement
of the target satisfies |∆Rd| ≤ λc/2, Equations (5) and (6) can be written as

FIm(Rd, k) = A0 + Ak·cos
4πRd

λc
, (7)

FRe(Rd, k) = B0 + Bk·sin
4πRd

λc
, (8)

Obviously, the trajectories of FIm(Rd, k) and FRe(Rd, k) on the complex plane are ap-
proximated as ellipses. By employing a trajectory fitting algorithm, the parameters of the
ellipse can be obtained, followed by the elimination of the DC offset. Subsequently, the
phase variation of the moving target can be obtained through the arctangent demodula-
tion and unwrapping algorithm. By leveraging the relationship between phase variation
and displacement,

∆ϕ =
4π∆Rd

λc
, (9)

The target’s displacement ∆Rd can be determined by

∆Rd =
λc∆ϕ

4π
. (10)

2.2. Harmonic Analysis of Respiratory Signals
2.2.1. Empirical Formulas for Breathing Signals

The parameters related to normal breathing and heartbeat [29–31] are shown in Table 1.
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Table 1. Parameters related to respiration and heartbeat.

Item Fundamental Frequency Range
(Hz)

Frequency per Minute
(Hz/min)

Amplitude of Chest Wall
(mm)

Respiration 0.13~0.4 7.8~24 4~12
Heartbeat 0.83~3.3 49.8~198 <0.6

According to Table 1, the fundamental frequencies of the two movements are in
different frequency ranges. The fundamental frequency of the respiratory signal is relatively
low and can be extracted by applying a low-pass filter. However, the higher harmonics
of the respiratory signal may enter the frequency range of the heartbeat signal. In view of
the characteristics of the respiratory waveform, an empirical formula was proposed in [32].
In order to facilitate harmonic analysis, this formula was further modified in [22], and the
revised formula is as follows:

ybre = cos2Nbre(π fbret), (11)

where fbre is the fundamental frequency of the respiratory signal, Nbre is a positive integer.
In [22], the positive direction is defined as the direction toward the radar. However, in
this paper, the direction away from the radar is considered as the positive direction. When
the target moves in the direction away from the radar, the distance relative to the radar
increases, and it is more in line with the habit of understanding to choose this direction as
the positive direction. Under this convention, the chest displacement during exhalation is
positive, corresponding to a positive slope in the vibration waveform. Conversely, during
inhalation, the slope of the vibration waveform is negative. During normal respiration,
there is a slightly longer period of smooth transition from exhalation to inhalation, which
should appear above the vibration waveform. To meet the convention of positive direction,
Equation (11) has been modified as follows:

ybre = Abre

(
1− cos2Nbre(π fbret)

)
, (12)

where Abre is the amplitude. Using Euler’s formula, Equation (12) can be written as

ybre = Abre − Abre

(
e−jπ fbret − ejπ fbret

2

)2Nbre

, (13)

According to the binomial theorem, Equation (13) can be written as

ybre = Abre(1−
CNbre

2Nbre

4Nbre
)− 2Abre

4Nbre
∑Nbre−1

i=0 Ci
2Nbre

cos(2π fbre(Nbre − i)t). (14)

It can be seen that the function ybre is composed of a DC component and Nbre single-
tone functions. When the index i is Nbre − 1, the corresponding function frequency is the
fundamental frequency fbre; The remaining Nbre − 1 single-tone functions represent the har-
monics of the respiratory movement, with the highest harmonic frequency being Nbre fbre.

Figure 2a illustrates the respiratory waveform within one respiratory cycle described
by Equation (12) as Nbre gradually changes from 1 to 6, with an amplitude set to 1 and
a fundamental frequency ( fbre) of 0.3 Hz. It is observed from Figure 2a that the value of
Nbre determines the proportion of time occupied by the smooth transition period within
one respiratory cycle, where a larger Nbre corresponds to a longer smooth transition period.
Figure 2b presents the power spectrum of each respiratory waveform in Figure 2a, demon-
strating that the number of harmonics is Nbre − 1, consistent with theoretical analysis.
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(a) Waveform within a respiratory cycle time; (b) The power spectrum of respiratory waveforms with
different values of Nbre corresponding to (a).

When extracting the heartbeat signal using a high-pass filter, it is essential to consider
whether there are respiratory harmonics exceeding the cutoff frequency of the high-pass
filter. Taking the cutoff frequency of 0.8 Hz as an example, Figure 2 indicates that when
Nbre ≥ 3, the harmonics of the respiratory signal are included in the heartbeat signal,
thereby affecting the restoration of the heartbeat signal.

2.2.2. Determination of the Number of Harmonics in Respiratory Waveforms

To obtain the value of Nbre for the respiratory waveform, examining the area covered
by one respiratory cycle described by Equation (12) yields the following expression:

Sbre =
∫ 1/ fbre

0
ybre(t)dt = (1−

CNbre
2Nbre

4Nbre
)Abre/ fbre, (15)

where Sbre is the area covered by one respiratory cycle. The duration of a respiratory cycle
is 1/ fbre, and the circumscribed rectangle area of the waveform is Srec = Abre/ fbre. Figure 3
shows a schematic diagram of the two types of areas. The ratio between Sbre and Srec is
given by:

r = Sbre/Srec = 1−
CNbre

2Nbre

4Nbre
, (16)
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The amplitude of the waveform and the number of respiratory cycles contained in
the calculation are common factors of Sbre and Srec, which cancel out in the ratio presented
in Equation (16). Therefore, under stable respiration, the ratio r is independent of the
waveform amplitude and the number of respiratory cycles. It is solely dependent on the
value of Nbre. Table 2 provides the values of r corresponding to the first ten values of Nbre.

Table 2. The correspondence between Nbre and the r.

Nbre 1 2 3 4 5 6 7 8 9 10

r 0.5 0.625 0.688 0.727 0.754 0.774 0.791 0.804 0.815 0.824

While individuals can briefly control their respiration, they cannot regulate their
heartbeat. Therefore, the measured respiratory waveform will inevitably be superimposed
with heartbeat signals. Compared to the respiratory signal, the heartbeat signals have
higher frequencies and smaller amplitudes, resulting in regular fluctuations superimposed
on the respiratory waveform. The variations in waveform area caused by the “rise” and
“fall” of the heartbeat cancel each other out. Thus, the area calculated directly from the
measured waveform is basically the same as the area of the actual respiratory waveform.
When determining the area of the waveform’s circumscribed rectangle, the upper of the
rectangle can be set as the average of the vertical coordinates of the fluctuations in the
upper part of the waveform, while the bottom can be defined as the average of the vertical
coordinates of all the valley points in the waveform. The length of the rectangle corresponds
to the duration of the captured waveform.

2.3. Estimation of Heartbeat Signals

There are two common methods for measuring heartbeat signals using radar. The
first method requires the subject to hold their breath during the measurement, eliminating
the interference caused by respiratory motion and obtaining a direct heartbeat waveform.
This method yields the best measurement results but deviates from normal physiological
activity, causing discomfort to the subjects and limiting the duration of measurement due
to the inability to sustain breath-holding. The second method allows the subjects to breathe
naturally during measurement. However, the waveform obtained using this method is
a combination of respiratory and cardiac motion. Since the first method eliminates the
interference from respiratory motion, the measured heartbeat waveform can serve as a
reference for the heartbeat waveform obtained under the second method.

By performing harmonic analysis on the respiratory signal and applying a high-pass
filter to remove the main components of the respiratory signal, the cutoff frequency of the
high-pass filter can be set slightly below the minimum value of the cardiac fundamental



Biosensors 2023, 13, 982 8 of 21

frequency mentioned in Table 1, for example, 0.8 Hz. If there are respiratory harmonics
with frequencies higher than the cutoff frequency, it is necessary to eliminate the respiratory
harmonics that enter the passband of the filter.

Using a notch filter is the conventional method to eliminate narrowband waves. Al-
though a notch filter has a good amplitude-frequency response, it can introduce phase
distortions to other components in the spectrum, resulting in distorted details in the ex-
tracted heartbeat waveform. To achieve the goal of removing respiratory harmonics without
distorting other waveform components, a frequency domain filtering method [33–35] is em-
ployed. Fourier transform converts a time domain signal to the frequency domain, where
the frequency components and their corresponding amplitudes and phases can be obtained.
By setting the amplitude of a certain frequency component to zero, the resulting signal
waveform after Fourier inverse transform will no longer contain that frequency component,
achieving the purpose of frequency domain filtering. To improve computational efficiency,
this approach can be used concurrently with high-pass filtering. The specific process in-
volves setting the spectral intensity below the cutoff frequency of the high-pass filter in
the frequency spectrum of the measured signal to zero, achieving the goal of high-pass
filtering. Then, the spectral intensity at the frequencies of the respiratory harmonics is set
to zero, achieving harmonic elimination. Finally, an inverse Fourier transform is applied
to obtain the time domain waveform of the signal. Compared to using a notch filter, this
filtering method can accurately eliminate respiratory harmonic signals without affecting
other frequency components in the passband. The trade-off is the additional computational
step of inverse Fourier transformation.

3. Simulation

To verify the effectiveness of the proposed algorithm, the estimate of heartbeat wave-
forms under normal respiratory conditions is simulated.

The waveform of the respiratory signal is generated based on Equation (9), with the
following parameter settings: Nbre = 3, Abre = 6 mm, and fbre = 0.3 Hz. The heartbeat
signal is simulated using a single-tone wave with the parameters amplitude Ah = 0.3 mm,
frequency fh = 1.3 Hz and the initial phase is zero. Gaussian white noise with a signal-
to-noise ratio of 40 dB is added to the signal. The duration of the waveform is set to
10 s. The simulated waveform is shown in Figure 4. Since the amplitude intensity of
the respiratory signal is 20 times stronger than that of the heartbeat signal, the overall
waveform in Figure 4 primarily represents the periodic characteristics of the respiratory
signal, with the heartbeat waveform being clearly visible only in the smooth region of
respiration. The cutoff frequency for the high-pass filter is set to 0.8 Hz.
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According to the calculation rules for the circumscribed rectangle area of the respi-
ratory signal, the average of the vertical coordinates of the upper curve (indicated by the
green portion in Figure 5a) yields the top coordinate of the rectangle (recttp) as 5.96 mm.
The average of all the valley points (marked with green dots at the bottom of the waveform
in Figure 5a) determines the bottom coordinate of the rectangle (rectbm), which is 0.03 mm.
The circumscribed rectangle is represented by a red outline. The area of the rectangle
can be calculated as Srec =

(
recttp − rectbm

)
× 10 = 59.3, while the covered area by the

cardiopulmonary waveform is calculated as Sbre = ∑ (y(ti)−rectbm)× ∆t = 40.981. In the
digital signal, the waveform is discrete, so the area is obtained by summation, where y
represents the wave function of cardiopulmonary movement and ∆t represents the discrete
time interval. The ratio between the two areas is r = 0.691, and according to Table 2, this
corresponds to Nbre = 3, which matches the set value.

Biosensors 2023, 13, 982 9 of 22 
 

 
Figure 4. Simulate cardiopulmonary movement signals under normal breathing conditions. 

According to the calculation rules for the circumscribed rectangle area of the respir-
atory signal, the average of the vertical coordinates of the upper curve (indicated by the 
green portion in Figure 5a) yields the top coordinate of the rectangle (𝑟𝑒𝑐𝑡௧) as 5.96 mm. 
The average of all the valley points (marked with green dots at the bottom of the wave-
form in Figure 5a) determines the bottom coordinate of the rectangle (𝑟𝑒𝑐𝑡), which is 
0.03 mm. The circumscribed rectangle is represented by a red outline. The area of the rec-
tangle can be calculated as 𝑆 = (𝑟𝑒𝑐𝑡௧ − 𝑟𝑒𝑐𝑡) ൈ 10 = 59.3, while the covered area 
by the cardiopulmonary waveform is calculated as 𝑆 = ∑(𝑦(𝑡)−𝑟𝑒𝑐𝑡) ൈ ∆𝑡 = 40.981. 
In the digital signal, the waveform is discrete, so the area is obtained by summation, where 
y represents the wave function of cardiopulmonary movement and ∆t represents the dis-
crete time interval. The ratio between the two areas is 𝑟 = 0.691, and according to Table 
2, this corresponds to 𝑁𝑏𝑟𝑒 = 3, which matches the set value. 

 
(a) (b) 

Figure 5. (a) The circumscribed rectangle of the respiratory waveform; (b) Power spectrum of sim-
ulated signals. 

Based on the power spectrum shown in Figure 5b, it can be observed that the mini-
mum frequency where peaks are located, excluding the DC component, is 0.3 Hz, which 
corresponds to the fundamental frequency of respiration. Since 𝑁𝑏𝑟𝑒 = 3, it is evident 
that the respiratory signal contains two harmonic components with frequencies of (𝑁 − 1)𝑓 = 0.6 Hz and 𝑁𝑓 = 0.9 Hz. However, the frequency of the second 
harmonic component, 0.9 Hz, exceeds the cutoff frequency of the high-pass filter. There-
fore, the signal obtained through high-pass filtering is a combination of the heartbeat sig-
nal and the second harmonic component of respiration. 

The result of filtering with a finite impulse response high-pass filter, which has a 
cutoff frequency of 0.8 Hz, a transition band of 0.1 Hz, and a stopband attenuation of 60 
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simulated signals.

Based on the power spectrum shown in Figure 5b, it can be observed that the
minimum frequency where peaks are located, excluding the DC component, is 0.3 Hz,
which corresponds to the fundamental frequency of respiration. Since Nbre = 3, it is
evident that the respiratory signal contains two harmonic components with frequencies
of (Nbre − 1) fbre = 0.6 Hz and Nbre fbre = 0.9 Hz. However, the frequency of the second
harmonic component, 0.9 Hz, exceeds the cutoff frequency of the high-pass filter. Therefore,
the signal obtained through high-pass filtering is a combination of the heartbeat signal and
the second harmonic component of respiration.

The result of filtering with a finite impulse response high-pass filter, which has a cutoff
frequency of 0.8 Hz, a transition band of 0.1 Hz, and a stopband attenuation of 60 dB, is
shown in Figure 6a. Compared with the simulated heartbeat waveform in Figure 6d, it can
be seen that the high-pass filtered signal has significant distortion. Figure 6b illustrates
the result after applying a notch filter to remove the 0.9 Hz respiratory harmonic from the
signal filtered by the high-pass filter. It is evident that there are noticeable differences in
peak values compared to the simulated waveform. Figure 6c illustrates the result using
the frequency domain filtering method, which exhibits better peak stability compared to
Figure 6b. The correlation coefficients between the three methods for obtaining the heartbeat
waveform and the simulated waveform are 0.79, 0.91, and 0.98, respectively. Thus, the
frequency domain filtering method demonstrates more precise filtering effectiveness. The
notch filter used in the computation is a 16th-order Chebyshev Type II infinite impulse
response filter with a −3 dB notch bandwidth of 0.01 Hz and a stopband attenuation
of 80 dB.
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4. Experimental Measurements
4.1. Experimental Setup

We constructed a 24-GHz FMCW radar system for motion detection. The waveform
generator [36–40] of the radar is mainly composed of ADI’s ADF4158 chip (Norwood, MA,
USA) and Infineon’s BGT24MTR chip (Munich, Germany), which are set up via SPI bus.
The FMCW signal produced by the waveform generator is amplified by PA and transmitted
to the object to be measured. The echo is amplified by the LNA and mixed with a sample
of the transmitted signal to generate the beat signal, which is then converted into a digital
signal through an ADC card. The radar adopts patch antennas, and the substrate used is
Rogers 4350B. Figure 7a shows the main components of the radar, and Figure 7b shows the
radar measurement setup.
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Figure 7. The radar structure and measurement setup: (a) The main components of the radar;
(b) Measurement setup.

Simultaneously with radar measurements, the ECG signals of the subjects were ob-
tained using the ECG monitoring kit manufactured by Keyes-Robot (Shenzhen, China). The
kit consists of three electrode patches, which were applied to three different positions on the
chest and abdomen during measurement, as shown in Figure 8b. The faint electrical signals
captured by the electrodes were filtered and amplified by the ECG monitoring chip AD8232
from Analog Devices Inc. (Norwood, MA, USA). The analog signals were then digitized by
the built-in analog-to-digital converter, and the data was uploaded to a PC through a USB
interface. LabVIEW software (Version: 2021) is used to control the synchronous reception
of radar signals and ECG signals, and the signal processing is performed by MATLAB
(Version: 2021a). The experimental setup and measurement environment are illustrated
in Figure 8a.
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The motion signals obtained by radar and the electrical signals measured by the ECG
recorder reflect changes in cardiac activity from two different perspectives. Since both
signals originate from the same source, they should exhibit some level of consistency. The
ECG signal is a well-established measurement technique, and by comparing the radar
signals with the characteristic points of the ECG signal, it becomes possible to explore
additional information related to cardiac health within the radar measurements.

4.2. Cardiac Activity Detection

The ventricle plays a primary role in pumping blood, and its cyclic changes in volume
during contraction and relaxation generate mechanical vibrations that propagate to the
surface of the body [41–44]. Consequently, the heartbeat signals detected by radar mainly
reflect the motion state of the ventricle.

4.2.1. The Heartbeat Waveform under Breath-Holding Condition

The subject sits quietly in a chair, with the radar positioned directly toward the
subject’s chest. The measurements were conducted while the subject held his breath. The
measurement duration was 10 s, with the radar positioned 0.4 m away from the chest.
Simultaneously, ECG signals were also collected.

Breathing is an instinctive response in humans, and during breath-holding, the in-
voluntary subtle breathing movements can cause drifting in the measured waveform. As
shown in Figure 9a, the heartbeat waveform exhibits a slow downward trend over time,
attributed to the slight inhalation movement of the abdomen. The trend line of signal drift
is in the low-frequency domain relative to the heartbeat curve, and high-pass filtering is
an effective method to eliminate low-frequency interference. The waveform filtered by
a high-pass filter with a cutoff frequency of 0.5 Hz is shown in Figure 9b. It can be ob-
served that the drift phenomenon is eliminated, and the details of the heartbeat waveform
are preserved.
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drift; (b) Heartbeat waveform with drift removed through high-pass filtering.

Since the pumping of blood in the heart is mainly done by the ventricles, the prominent
periodicity displayed in the waveform of the heartbeat reflects the periodicity of ventricular
motion. The heart is mainly composed of ventricles and atria, and the motion of both is not
a simple harmonic motion with a single frequency. The motion of the ventricles and atria
combines to form the overall cardiac motion, resulting in small fluctuations in the periodic
waveform. From the perspective of the frequency domain, the significant periodicity in the
heartbeat waveform represents the fundamental frequency component of cardiac motion
with the largest amplitude. The small fluctuations within each cycle represent the high-
frequency components of the motion, which are part of the cardiac motion waveform
and can also provide valuable information about the heart’s health status. However, the
amplitude of the high-frequency components is relatively small and may be overshadowed
by the fundamental frequency. By applying frequency domain filtering to remove the
fundamental frequency of the heartbeat signal, the high-frequency components within
the heartbeat cycle can be highlighted, allowing for a clearer examination of the details in
the waveform.

The characteristic points of a signal are generally the extreme points of the waveform,
representing the state of the signal at which it is about to change. In [22], cardiac activity
was measured using a single-tone continuous wave radar, and the velocity waveform was
obtained by differentiating the heartbeat waveform. A comparison was made between the
velocity waveform and the ECG signal, noting that three extremal points in the velocity
waveform corresponded to specific positions in the ECG waveform. The minimum velocity
value (maximum in this paper) occurred within the QRS complex, while another velocity
peak (minimum in this paper) corresponded to the end of the T wave. It was also observed
that the first minimum preceding the minimum velocity always occurred at the beginning
of the P wave. The experimental results in this paper reproduced the first two characteristic
points, but the third one was an exception. The reason may be that differential calculation
is very sensitive to small fluctuations. Noise and the degree of detail restoration of the
waveform can lead to significant fluctuations in velocity waveforms, resulting in a lack of
stability in the characteristic points of velocity waveforms.

To further explore cardiac health information within the radar measurement waveform,
two complete heartbeat cycles (enclosed by the red box) were extracted from Figure 9b
and magnified for display in Figure 10b. The synchronized ECG signal (Figure 10a),
the waveform with the fundamental frequency removed (Figure 10c), and the velocity
waveform (Figure 10d) are shown on the same time axis. Additionally, characteristic points
of each waveform within a heartbeat cycle are marked.
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wave; (d) Velocity waveform obtained by differentiating the heartbeat waveform. The annotations
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corresponding to points found on the waveform from which the fundamental wave have been
removed are highlighted in green. Blue designates the locators tied to the feature points discovered
on the velocity waveform.

The ECG waveform was annotated with a purple box to indicate the three main
regions: the QRS complex, the T wave, and the P wave. The extremal points of the
heartbeat waveform, along with their corresponding time coordinates, were marked with
red dots and vertical lines, denoted as points A, B, and C. The extremal points of the
waveform with the fundamental frequency removed were highlighted with green dots and
vertical lines labeled as points D, E, F, G, and H. Among these, points E and H were shared
between the two waveforms but exhibited more prominence in the waveform with the
fundamental frequency removed. The characteristic points on the velocity curve, along
with their respective time coordinates, were denoted with blue dots and vertical lines,
representing points I and J.

In total, ten characteristic points were marked in Figure 10. However, some of these
points, such as points F and G, may not appear in every measurement. During the measure-
ment process, both the angle and distance between the radar and the subject can influence
the waveforms, resulting in varying prominence levels of certain characteristic points.

The characteristic points marked in Figure 10 are analyzed below.
The characteristic point A occurs when the chest wall is nearest to the radar within

a vibration cycle. At this moment, the ventricle reaches its maximum diastolic state. We
can observe that point A falls within the QRS complex range of the ECG signal, roughly
around the starting point of the R wave. Another point within the QRS complex is point
I of the velocity waveform, which occurs slightly later than point A, close to the end of
the QRS complex. This suggests that during the early stage of ventricular contraction,
velocity reaches its maximum value. If we approximate the midpoint between points A
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and I as the central point of the R wave, we can calculate the RR interval between adjacent
heartbeat cycles.

Point B is the opposite of point A, occurring when the chest wall is farthest from the
radar, indicating the ventricle’s maximum contraction. This point is close to the end of the
T wave in the ECG signal, slightly earlier than the T wave endpoint (point J) indicated in
the velocity waveform. Within the time range of the T wave, we also have points D and E,
with D approximating the starting moment of the T wave and E located within the central
region of the T wave. Points D and J can be used to calculate the interval of the T wave.

Point C in the radar measurement waveform coincides with the onset of the P wave
in the ECG signal, representing the late stage of ventricular diastole. From the vibration
waveform, we can observe that before point C, the skin on the body surface moves in the
opposite direction of the radar due to the influence of ventricular diastole. At point C, the
direction of vibration starts to change and, after a brief duration of approximately 0.05 s,
returns to its original direction. This change in vibration direction at point C may indicate
a transient effect of atrial contraction that momentarily exceeds the influence of ventricular
diastole on the body surface.

Point H occurs close to the endpoint of the P wave and can be used in conjunction
with point C to estimate the approximate interval of the P wave. The central points of the P
wave and the R wave can also be used to calculate the PR interval.

Points F and G fall within the TP interval of the ECG signal when the ventricle is in a
diastolic state. Correspondingly, the ECG waveform is relatively flat during this period.
Further exploration is required to unveil the significance of these two characteristic points.

By comparing with the ECG signal, it is evident that the radar-measured cardiac
waveform provides information on the intervals of the P wave and T wave in the ECG
signal, as well as the RR interval and PR interval. These intervals are closely related to the
cardiac health. For example, changes in the RR interval, known as heart rate variability, can
assess the balance between the sympathetic and parasympathetic nervous systems. The
PR interval represents atrioventricular conduction time, and elongated intervals indicate
conduction block, while shortened intervals may indicate pre-excitation syndrome.

4.2.2. The Heartbeat Waveform under Normal Breathing State

The subject sits quietly in a chair, with the radar positioned 0.4 m away from the
chest. The experiment was conducted under the normal breathing state of the subject. The
measurement duration was set to 15 s. Figure 11a shows the measured cardiopulmonary
activity waveform, and Figure 11b is the power spectrum of (a).
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From Figure 11a, it can be observed that there are four complete respiratory cycles. Fol-
lowing the calculation rules for the waveform coverage area of the circumscribed rectangle
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mentioned earlier, the waveform coverage area for the four complete respiratory cycles is
calculated as Sbre = 19.46, while the area of the circumscribed rectangle is Srec = 28.05. The
ratio between these two areas is r = 0.694. Referring to Table 2, it can be determined that
Nbre = 3, indicating the presence of two harmonic components in the respiratory signal.

Figure 11b displays the power spectrum of the cardiopulmonary signal. It reveals
that the peak frequency of the spectrum is 0.32 Hz, which corresponds to the fundamental
frequency of respiration. The respective frequencies of the two respiratory harmonic
components are 0.64 Hz and 0.96 Hz. If a high-pass filter with a cutoff frequency of 0.8 Hz
is applied, two significant peaks can be observed in the passband at 0.96 Hz and 1.18 Hz.
Based on the calculations of the respiratory signal harmonics, it is determined that 0.96 Hz
represents the second harmonic frequency of the respiratory signal, while 1.18 Hz, as the
most prominent frequency component among the remaining peaks, should correspond to
the fundamental frequency of the heartbeat signal.

Applying the frequency domain filtering method with a cutoff frequency of 0.8 Hz,
the measured signal was high-pass filtered. Simultaneously, the precise elimination of
respiratory harmonics within the passband was achieved, resulting in the extraction of
the heartbeat signal. Subsequently, the obtained heartbeat signal was processed by first
applying the frequency domain filtering method to remove the fundamental component of
the heartbeat signal. Then, the signal was differentiated to obtain the velocity waveform.
The processed waveform is shown in Figure 12.
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Compared with the heartbeat waveform measured during breath-holding in Figure 9b,
it can be observed that the extracted heartbeat waveform from the cardiopulmonary signal
measured under normal breathing conditions effectively captures the periodicity of the
heartbeat. However, there are some minor details missing in the waveform. For instance,
in Figure 9b, there is a notch near the peak of the rising portion of the waveform, which
is mostly absent in the heartbeat waveform shown in Figure 12a. It should be noted that
in the heartbeat waveform of Figure 12b, after removing the fundamental component,
most of these notches are partially restored. Overall, the extracted heartbeat waveform
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from the cardiopulmonary signal measured under normal breathing conditions exhibits a
significant reduction or even disappearance in the magnitude of minor fluctuations that
represent waveform details. From a frequency domain perspective, these small fluctuations,
compared to the fundamental frequency of the heartbeat, belong to the high-frequency
domain. The respiratory motion leads to the loss or deformation of the high-frequency
components of the extracted heartbeat signal.

One heartbeat cycle was extracted from Figure 12 (enclosed by the red box) and
compared with the synchronized ECG waveform, as shown in Figure 13. It can be seen that
similar characteristic points as those obtained during breath-holding can be identified. The
corresponding times for each characteristic point are as follows: A: 4.23 s; B: 4.61 s; C: 4.94 s;
D: 4.13 s; E: 4.51 s; F: 4.74 s; G: 4.82 s; H: 4.98 s; I: 4.26 s; J: 4.65 s. The P wave interval
can be computed as 0.11 s, the T wave interval as 0.52 s, and the PR interval as 0.13 s,
based on these extreme points. Additionally, in combination with the extreme points of the
next cycle, an RR interval of 0.83 s can be derived. It is worth noting that some of these
extreme points are not prominently pronounced, such as points F and G. The amplitude
of the fluctuations at these characteristic points is weak during breath-holding and even
more unstable under normal breathing conditions. These experiments demonstrate that
meaningful characteristic points can still be clearly identified from the extracted heartbeat
waveform, even under normal breathing conditions.
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Figure 13. The processed waveform of heartbeat under normal breathing condition and comparison
with ECG waveforms. (a) ECG waveform; (b) Heartbeat waveform; (c) Heartbeat waveform after
removing the fundamental wave; (d) Velocity waveform obtained by differentiating the heartbeat
waveform. The annotations aligned with feature points identified on the heartbeat waveform
are denoted in red, while those corresponding to points found on the waveform from which the
fundamental wave have been removed are highlighted in green. Blue designates the locators tied to
the feature points discovered on the velocity waveform.
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4.3. Comparison of Performance with Other Works

Most radar-based cardiac motion studies focus on the periodicity of the heartbeat, such
as heart rate or heart rate variability [26–28,45–47], and lack an analysis of the movement
characteristics within a heartbeat cycle as shown in Table 3. Some studies have utilized the
first-order and second-order derivatives of the heartbeat waveform to extract the velocity
and acceleration waveforms, which are then compared to the synchronously measured ECG
signal to identify matching features [22,48,49]. Ref. [48] uses a 24 GHz continuous wave
and identifies five feature points. Ref. [49], using 60 GHz continuous wave, obtained a more
detailed heartbeat waveform, and eight feature points were identified. However, since noise
may produce significant deviations in the results of differentiation operations, using velocity
and acceleration waveforms to extract feature points has the drawback of poor stability.
In this work, the high-frequency components with small amplitudes are highlighted by
removing the fundamental wave of the heartbeat waveform, and ten feature points were
identified, which can provide more details for extracting heart health information.

Table 3. Comparison with recent works.

Ref. Waveform Single-Channel ISM Band
The Detection

Content of
Cardiac Activity

Number of
Feature Points

Type of
Waveform Used

[26] CW NO NO Periodicity None HW 1

[27] CW NO NO Periodicity None HW
[28] SFCW NO NO Periodicity None HW
[45] FMCW YES NO Periodicity None HW
[46] FMCW NO NO Periodicity None HW
[47] FMCW NO NO Periodicity None HW

[22] CW NO YES Periodicity and
Feature Points 3 HW and SW 2

and AW 3

[48] CW NO YES Periodicity and
Feature Points 5 HW and SW

and AW

[49] CW NO YES Periodicity and
Feature Points 8 HW and SW

and AW

This work FMCW YES YES Periodicity and
Feature Points 10 HW and SW and

HWRFW 4

1 HW = Heartbeat waveform. 2 SW = Speed waveform. 3 AW = Acceleration waveform. 4 HWRFW = Heartbeat
waveform after removing the fundamental wave.

5. Discussion

During practical measurements, the quality of the signal is influenced by various
factors, such as the radar transmission power, the angle between the radar beam and the
human body, and the distance between the radar and the chest. In real-world applications,
Rd is a variable quantity that can significantly impact the measurement results of the
cardiopulmonary signal. Figure 14 illustrates the extracted heartbeat signals under normal
breathing conditions with different values of Rd. The measurement process adopted a
single variable method to minimize the influence of other factors, keeping the external
environment constant, maintaining the same posture for the subjects, and keeping the
radar transmission power and the angle relative to the human body unchanged. It can
be observed that as Rd increases, the heartbeat waveform gradually distorts. When Rd is
equal to 120 cm, the details of the signal waveform experience severe distortion but still
exhibit periodicity of the heartbeat. However, when Rd exceeds 140 cm, the waveform can
no longer reflect the periodicity of the heartbeat.
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Figure 14. Under normal breathing conditions, the extracted heartbeat waveform varies with the
distance between the target and the radar.

The beam divergence causes the received signal power to rapidly decrease with
increasing distance, resulting in a reduction in signal-to-noise ratio. Beam focusing and
enhancing transmission power are effective ways to improve the signal-to-noise ratio of
received signals, which can increase the effective measurement distance.

6. Conclusions

This work applies a high-precision motion detection algorithm to measure cardiac
motion. To address the issue of interference from respiratory signal harmonics in extracting
the heartbeat signal, an algorithm is proposed that utilizes the ratio of the respiratory signal
waveform coverage area to the circumscribed rectangle area to determine the harmonic
components. By removing the respiratory harmonic components within the frequency
range of the heartbeat signal, accurate extraction of the heartbeat waveform is achieved.
Additionally, to overcome the limited information extraction challenge in radar-measured
heartbeat waveforms, frequency domain filtering is employed to remove the fundamen-
tal component of the heartbeat signal. The resulting waveform is then compared with
the heartbeat waveform, heartbeat velocity waveform, and synchronized ECG signal.
The corresponding relationship between certain extreme points of the waveform and the
characteristic positions of the ECG signal is analyzed, obtaining information related to
cardiac health.

The noncontact, fast, and unobtrusive monitoring advantages of radar make it par-
ticularly suitable for daily health monitoring. By exploring the different characteristics of
individuals with cardiac diseases and healthy individuals in radar-based cardiopulmonary
signals, the diagnosis of cardiac diseases can be achieved. This can be applied to home or
nursing home health monitoring, aiming to enable early detection of cardiac diseases.
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