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Non-Contact Atomic Force Microscopy (NC-AFM)

The cantilever’s oscillation is driven by a circuit.

NC-AFM tip never touches the sample.

A CO molecule is attached to the tip.

The response curve shows the amplitude of the cantilever (a driven oscilla-
tor) at frequencies near its natural frequency f0.

A feedback loop changes the driving frequency to
maintain the maximum oscillating amplitude. The
difference ∆f = f − f0 is recorded for imaging.
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AFM Images

CO tip NC-AFM images of PTCDA and water molecules on Calcite(104) at different heights at T = 5 K1

1PTCDA and water on Calcite AFM image source: Jonas Heggemann, Paul Laubrock, Tim Dierker and Philipp Rahe, Universität Osnabrück, 2024.
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AFM Simulation through Probe Particle Model (PPM)

PPM234: Its inputs include the optimized configuration and corresponding electrostatic potential calculated
by Density Functional Theory (DFT); Its output are the simulation AFM (PPAFM) images at different height.

2Hapala, P. et al., Phys. Rev. B, 2014, 90(8), 085421. DOI: 10.1103/physrevb.90.085421.
3Hapala, P. et al., Phys. Rev. Lett., 2014, 113(22), 226101. DOI: 10.1103/physrevlett.113.226101
4Oinonen, N. et al., Comput. Phys. Commun., 2024, 305, 109341. DOI: 10.1016/j.cpc.2024.109341
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Automatic Structure Discovery Through Machine Learning (ML)

ML models 567 trained with simulation datasets, and applied on experimental AFM images to discover 3D structure automatically.

5Oinonen, N. et al., MRS Bulletin, 2022, 47(9), 895-905. DOI: 10.1557/s43577-022-00324-3.
6Kurki, L. et al., ACS Nano, 2024, 18(17), 11130-11138. DOI: 10.1021/acsnano.3c12654.
7Priante, D. et al., ACS Nano, 2024, 18(1), 1234-1245. DOI: 10.1021/acsnano.3c10958
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Motivation and Hypothesis

How can we get better structure predictions on experimental AFM images?

Make simulation AFM images look like real AFM images, and use these fake AFM images in training with
the expectation that the ML model performance would increase.
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Style Translation between Two Domains through CycleGAN

CycleGAN 8 learns two image-to-image generators to translate image style.

CycleGAN learns where to make modifications automatically.

8Zhu, J.-Y. et al., 2020, arXiv:1703.10593.

Jie Huang Midterm Presentation November 4, 2024 8 / 18

https://arxiv.org/abs/1703.10593


Introduction Style Translation ML Performance Evaluation On Experimental Data Summary

Style Translation between Two Domains through CycleGAN

CycleGAN 8 learns two image-to-image generators to translate image style.

CycleGAN learns where to make modifications automatically.

8Zhu, J.-Y. et al., 2020, arXiv:1703.10593.

Jie Huang Midterm Presentation November 4, 2024 8 / 18

https://arxiv.org/abs/1703.10593


Introduction Style Translation ML Performance Evaluation On Experimental Data Summary

Style translation between PPAFM and AFM

(a) CycleGAN includes two mapping functions G: A → B and F : B → A, and associated adversarial discriminators DA and DB , which encourages G to
translate A into outputs indistinguishable from domain B, and vice versa for DA and F . (b) Cycle consistency ensures that converting from one domain
to another and back again returns to the original starting point.

L (G,F ,DA,DB) = LGAN (G,DB,A,B) + LGAN (F ,DA,B,A) + λLcyc(G,F ) (1)
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Style translation between PPAFM and AFM

The forward generator turns PPAFM images into experimental-like AFM images.
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Style translation between PPAFM and AFM

The forward generator turns PPAFM images into experimental-like AFM images. The backward generator turns AFM to PPAFM-like images.
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Style Translation Evaluation

Style translation evaluation from the perspective of a well trained machine expert.
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Style Translation Evaluation

Style translation evaluation from the perspective of a well trained machine expert. The trained image-to-image generator shows the ability to turn
simulation distribution to a distribution that is closer to real distribution.
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Training and evaluating the structure discovery

Train models which shares the same network structure with different datasets. Then the same experimental
AFM images are inputted to these two models.
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Structure predictions from model v0 and v1

The model trained on the dataset of style-translated fake AFM images seems can handle experiment feature better.

No answer structures for the given AFM images. It’s hard to tell which model performs better by directly looking
as these predicted structures.
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Structure properties

Instead of comparing the individual structure, we compare the structural properties which are calculated through
many structures.

(a) One configuration of water clusters and Au (111) surface. (b, c) The radial distribution function (RDF) gαβ (r) =
n(r)

4πr2·∆r·ρ
for O-O and O-H

pairs; and (d, e) the angular distribution functions (ADF) for H-O-H, and O-H-O angles of the relaxed structures used to generate PPAFM.
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Prediction evaluations

Performance evaluation on experimental AFM images by comparing the cosine similarity S(X0,Xi ) =
X0·Xi

∥X0∥∥Xi∥
between the properties Xi calculated from predicted structures and the reference values X0.
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Discussion

We convert 3D AFM images to 2D to train the style translation generator. This process can disrupt the
layer consistency, potentially confusing the ML model when interpreting vertical information.
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Predicting 3D structures from AFM layers is challenging because the presence of all atoms affects the
imaging of each layer. Layers of 2D AFM images cannot be viewed as common 3D images like computed
tomography (CT) images, where each layer is imaged independently.

The structure metrics we use are designed for systems of water molecules on gold surfaces.
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Summary and future directions

We applied CycleGAN to translate styles between simulation PPAFM and real AFM images.
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Summary and future directions

We applied CycleGAN to translate styles between simulation PPAFM and real AFM images.

The trained generator shows the ability to shift the PPAFM distribution towards the real AFM distribution.

We developed metrics to assess 3D structures from AFM images, seeing promising improvements in
most of these metrics. More properties like the number of hydrogen bond distribution will be included.

We plan to use more experimental images in CycleGAN training to improve the style translation model.

We need to examine how the hyper-parameters like cycle consistency loss weight affect the results.
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