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—= 1.1 General background =

Accurate and comprehensive data collection helps effective
decision-making in agriculture

Traditional approach hard to High-throughput
meet such demand phenotyping technologies

[1] https:/imww.forbesindia.com/fbimages/900x600/proportional/jpeg/blog/wp-content/uploads/2023/01/Agriculture-is-a-potential-solution-to-meet-food-and-climategoals.jpg
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—= 1.2 LiImitation of existing methods =
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Can we obtain high-quality organ
structure of entire farmland efficiently
by fusing both approaches?




B Close-range
3D pipeline
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— 2.1 Background

Traditional close-range 3D phenotyping pipeline
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Image collection 3D reconstruction Organ 3D model Traits calculation
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— 2.2 Challenge =

Traditional method cannot obtain complete organ structure

Obtained Expected
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— 2.3 Solution -

Implement an automatic data collection and 3D reconstruction pipeline

(a) Device bossibrgard (e) Deep learning masking (g) Batch scripts
Marker boar

(d)
Marker
detection

o f o | o I s | o S
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No marker
detection
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(b) Auto-rotating () Auto-imaging nd Metashape () plant model
Automatic image Dual rotation
collection reconstruction pipeline
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— 2.3 Results - obtained high-quality 3D model =

Data pool of 3D high-
guality broccoli heads

Real world photo

11
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— 2.3 Results - 3D data processing -

Calculate 3D-based morphological traits

Traits Unit

1D Crown/head height (m) m
Center point (X, y) m
Centroid point (x, y) m
Roundness
Z
2D  Minimum area rectangle (width, length m ~
gle oth) wmy Head 3D
Ellipse axis length (long, short) m |:> -
Ellipse orientation degree _ d a'ta p 00 l
2D convex area cm?
Projected area cm? .
: As model attributes
e convex vertex convex hull region props 3D 3D Convex volume cm
3D convex hull min area rectangle = gllipse axis 3D Concave volume cm3
Visualization Final output traits list
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— 2.3 Results - traits accuracy validation

Compare the shortest and longest length
(hard to do manual measurements for 2D and 3D traits)

longest head length

Manual measured

shortest head length

Minimum bounding rectangle

20.0

17.5 A

15.0

12.5 A

10.0 A

y:
R2=0.99, RMSE=0.343cm

0.974x+0.843

e y=0.962x+0.754
R2= =0.99, RMSE=0.291cm

5 10 15 20
Proposed pipeline

Manual measured

Ellipse regression

20.0 T9=7.022x+0.29 7
2 _ 7z .,
17 5 JR?=0.97, RMSE=0.553cm L
Pkl 4
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7
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i rd
2.5 e y=0.927x+0.386
00k R2=0.98, RMSE=0.448cm
0 5 10 15 20

Proposed pipeline
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- 2.4 Conclusion

B Obtained the high-quality and complete 3D models

B Calculated the 3D-based traits and validated accuracies

B Built a data pool for high-quality broccoli head 3D models

14



B Aerial 3D
pipeline
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—= 3.1 Background =

Traditional aerial phenotyping pipeline

Digital ortho-mosaic |
(DOM) ]

Digital surface model |
(=) |

Collect raw UAV 3D reconstruction

images w4 Metashape

Organ Morphological
segmentation traits calculation
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—= 3.2 Challenges

1. Need to analysis huge amount of image data
(difficult to process in time)

Just for 1 ha

I broccoli_tanashi 5 20220215_P4RTK_15m

roccoli_tanashi_5_20220221_P4RTK_15m
broccoli_tanashi_5_20220314_P4RTK_15m
broccoli_tanashi_5_20220315_P4RTK_15m
yroccoli_tanashi 5 20220316_P4RTK_15m
roccoli_tanashi_5 20220317_P4RTK_15m
roccoli_tanashi_5_20220321_P4RTK_15m
roccoli_tanashi_5_20220323_P4RTK_15m
yroccoli_tanashi_5_20220324_P4RTK_15m
oroccoli_tanashi_5_20220325_P4RTK_15m
roccoli_tanashi_5_20220326_PARTK_15m
roccoli_tanashi_5 20220328 _P4RTK_15m
roccoli_tanashi_5_20220329_P4RTK_15m

broccoli_tanashi_5_20220330_P4RTK_15m

One flight

=

200+

raw images
(2.7GB+)

DSM

=

=

One |mage

5742 x 3648 pixels

One map
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200 x 20 billion

4 trillion pixels
per flight

0.3 trillion
pixels
per flight

Large amount of time-series data

(38 flights in 2022) 19572 x 17664 pixels

(1GB+)
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—= 3.2 Challenges =

2. Hard to achieve the quality for organ-level analysis from aerial reconstruction

: ;l'lh.l- - . H

Seamliie distortion

3D canopy model 2D field map
(PCD) (DOM)
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—= 3.2 Challenges

3. Complex natural environment conditions makes segmentation tasks difficult
(deep learning needs large number of training data)

Huge differences between time, sunlight, soil condition, growing stage, cultivars
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—= 3.3 Solutions for analyzing huge amount of image data—

Temporal data fusion
narrow the processing regions by using prior knowledge of agriculture

Broccoli head position is almost the Narrow the processing area
same as its seedling position around the seedling area

(100 x 100) pixels x 3000 count = 30 billion pixels per flight ~ one raw image
per crop 5742 x 3648 ~ 20 billon pixels

20
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—= 3.3 Solutions for not enough aerial quality

Spatial data fusion
combine raw images (pixel coordinates) with field maps (geo coordinates)

(2341,1492) /
Pixel coordinates raw
_ pixel-coordinates
Better quality Y
Lacks spatial context _
DOM Spatial
fusing
(35.7393N,139.5414E, 96.34m) 7

Geo coordinates DSM geo-coordinates

Lower_ qua“ty EasylDP  Public
HaS Spat|a| context A handy tool for dealing with region of interest (ROI) on the image reconstruct

mainly in agriculture applications

@ Python | 1y 31| BMmT %3 O 26 11 0 Updated last month
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—= 3.3 Solutions for lacking training data =

Deep learning data fusion
low labor cost for training data annotation

pre-trained models

[P ——

Convolution Fully connected
layers layers labels

Transfer l
learning

ImageNet
dataset

: Interactive annotation
» >

Startup Verify & modify———— Apply
1st iter =

I
|
2nditer W - "' E
3rd iter W A\ | L"_ DL model 3581

{ 4th iter | apel once ) i
%%i% | N2 q - Labele{:i ] Random pick i)
(a) Transfer learning (b) Data augmentation (c) Active learning
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—= 3.4 Results —temporal & spatial data fusion -

broccoli 0.75 broccoli 0.79
broccoli 0.80 broccoli 0.76 - broccoli 0.81

B broccoli 0.86 broccoli 0.88
DICCOIDInE broccoli 0.86 broccoli 0.80 |

brocc
é\roccoli 0.58

3 broccoli 0.83 - __broccolii0.8
broceoll uaobro;coll 0.68 broccoli 0.82 o
b i 0.87 oroccoli 0.81
5 roccoli 0. i
broccoli 0.86 broceoli 0.76 broccoli 0.82
broccoli 0.88

broccoli 0.80broccoli 0.81 broccoli 0.91 broccoli 0.74

broccoli 0.82

: broccoli 0.34broccoli 0.82
broccoli 0.90 broccoli 0.77 \

0 broccoli 0.80 broccoli 0.86 i 0.
broccoli O.6roccoli 0.82 o1 0.87 brocc0| 0.85

Ii 0.
v o

Ve i broccoli 0.87 broccoli 0.82  broceoli 0.82
e — broccoli 0.84 - -

broccoli 0.71 E broccoli 0.79 broccoli 0. 7., troceoli 0.81
oroccoli 0.85 broceoli 0.88 broccoli 0.13

broccoli 0.81 3 broccoli 0.87 proceolii073 | b eali 0:88
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broccoli 0.86
E o proccoli 0.73
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Seeding detection by Temporal (time-series) data Head Segmentat
pre-trained Yolo v5 fusion during growing stages results

broccoli 0.620li (hrgecoli
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- 3.4 Results - traits calculation =

For each broccoli head

Minimum area rectangle max/min side-length

broccol

Equivalent diameter center points

Q Eccentricity, circularity

Minor axis length

Area, perimeter Q Convex area

24
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—= 3.4 Results - traits accuracy validation -

Has acceptable correlation with manual measured head size

2020 head diameter (mm) 2021 head diameter (mm)
250 - 300
(a) (c)
200
2251
. pe]
Y. _ 150 e
Manual field 2
£ 150
measured =
100 =
=
May 12, R?=0.7187
, 751 May 15, R2=0.7322
>0 —— May 22, R?=0.7416 A May 19, R2=0.5996
’ ’ May 26, R?=0.6651 A May 20, R?=0.5771
—— May 28, R?=0.6054 —— May 26, R?=0.6405
0¥ : ‘ : : 0+ : : :
0 50 100 150 200 250 0 75 150 225 300

X: Aerial measured
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- 3.5 COonclusion =

B Developed temporal data fusion method with prior knowledge of
agriculture to dramatically save the computation cost

B Developed spatial data fusion to improve the organ-level image
quality

B Developed deep learning data fusion to decrease the workload of
training data annotation for head segmentation

B Improved 2D-based traits of broccoli head and validated by
manual measurement

26



® Cross-scale
data fusion
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—= 4.1 Background =

Part 2. close-range 3D pipeline Part 3: aerial 3D pipeline Part 4. cross-scale data fusion

Head shapes High quality
& positions in head models of
entire farmland entire farmland

28
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- 4.3 Solutions for cross-scale data fusion =

Put the template
back to field model
Lmir‘f/i
: LmaklI

|:> Size
transform

N Y M nd
Ve S @ g |:> 2D-based
28z ¥ % traits
) @?@‘ & { @
! e .
!

Calculate _
difference TQ:

- ; : Lmax’
wae Head 3D |:> = T306ased—]

4 | T <
- Jata pool N AN

Chapter 2 X Ry, g Pickout one with
N Z\Z,' & smallest differences
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- 4.4 Results - cross-scale data fusion =

Aerial segmentation results  Aerial field 3D models Data fusion results

30
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- 4.4 Results - cross-scale data fusion =

31



- 4.5 Conclusion =

B Calibrated the shape errors caused by occlusion

B Selected the calibration model automatically by Auto-ML

B Developed data fusion workflow to place the best match from
close-range data pool back to aerial field model

32
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® Conclusion |




— 5.1 Highlights -

Built a close-range high-quality data pool with 3D-based
morphological traits for 189 broccoli heads

Decreased the aerial image processing workload and improved
the organ-level accuracy by temporal and spatial data fusion

Developed aerial & close-range data fusion to place high-
guality 3D models back to field.

34
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— 5.2 Future work

“%4. (1) Scene Collection | KD580-0719

Explore the deep learning 3D Improve the data fusion approach
reconstruction approach, like NERF ! by procedural modeling for
(faster and better quality) complex plant structures

[1] https://www.matthewtancik.com/ner

35
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- AChievements =
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supervised learning, The 8th International Horticulture Research Conference, Nanjing, Jiangsu, China. (poster)
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