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Abstract

Forest attribute estimation is fundamental in forest inventory and management, but
is often time-consuming and labor intensive using traditional measurement methods. A
consumer-level spherical camera (Ricoh Theta S) which can obtain panoramic photos
from single exposures controlled by a smart phone, shows great potential to make forest
inventories more efficient. In this study, the spherical camera was used in estimating
stand basal area, canopy structural fractions, and individual tree diameters and heights.
Our results showed good correspondence (high 1> and low rMSE) between image
measured values and field measured values in most cases by linear regression. Potential
factors which may affect image estimation also were analyzed. We believe this low-cost
system could make some contributions to forest operations and more efficient forest

management.
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Chapter 1: General Introduction
1.1 Background
Forests are the dominant terrestrial ecosystem on Earth and account for over three
quarters of the gross primary productivity of the biosphere and about 80% of plant
biomass (Pan et al. 2013). They provide several ecosystem services including watershed
protection, soil structure maintenance, and global carbon storage (Chazdon 2008). Due to
the importance of forests, estimating complex forest conditions using easily-measured

tree attributes is critical to forest inventory and management.

1.2 Tree Parameters

1.2.1 Individual tree parameters

Individual tree attributes are of great importance, because they are often the
fundamental measures of area-based attribute estimates such as total volume and biomass
which are difficult or even impossible to measure directly. Individual tree attributes often
include age, stem diameter (cross-sectional areas), total height, merchantable height,
main stem form, and crown parameters (Kershaw et al. 2016). Typically diameter at
breast height (DBH; breast height (BH) = 1.3m) and total height (HT) are the most
common individual tree attributes measured (Avery and Burkhart 2002), and are the
fundamental parameters used in allometric equations to estimate biomass, volume, or
carbon (Lambert et al. 2005, Xing et al. 2005, Zianis et al. 2005).

The definition of tree diameter is a straight line that passes through the tree center

and meets each end of the tree bark (Kershaw et al. 2016). This attribute is important due



to the ability to directly measure and the ability to derive other parameters such as cross-
sectional area (basal area, BA), surface area, and trunk volume (Kershaw et al. 2016).
Though which diameters should be measured vary with different circumstance, the
diameter at breast height (1.3 m in SI units or 4.5 ft in imperial units) is widely used in
North America (Kershaw et al. 2016). Traditionally, this attribute can be easily measured
by contact dendrometers (Fig 1.1.a-d) such as diameter tape, Biltmore stick, calipers, and
sector fork (Jackson 1911, Bower and Blocker 1966, Kershaw et al. 2016). Clark et al.
(2000a) comprehensively reviewed various diameter measurement tools and their
associated accuracies. In this review, he also pointed out that although these tools are
very handy and have been widely used among researchers and forest managers, the
reliability and subjectivity effects should be taken into consideration for large-scale
inventory work.

Tree height has several definitions, including total height, bole height, merchantable
height, stump height, and so on (Kershaw et al. 2016). Total height, which is defined as
the vertical distance from the tip of tree to the ground, is commonly used. Traditionally,
total height is measured from the ground based on similar triangles or trigonometry
(Kershaw et al. 2016). Based on these principles, instruments such as the hypsometer,
clinometer, and altimeter (Fig 1.1.e-1) accompanied with a measuring tape for horizontal
distance were used in field measurement (Pardé 1955, Wesley 1956, Curtis and Bruce
1968, Iles and Fall 1988, Kershaw et al. 2016). But with the development of technology,
several advanced electronic hypsometers (Fig 1.1.j) which use laser or ultrasonic sound
waves to measure distances precisely are available with the disadvantage of a high price

(US$800-US$3000) and bulkiness (Kershaw et al. 2016).
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1.2.2 Stand structure parameters

Stand-level attributes such as basal area per ha, volume per ha, and biomass per ha
are usually estimated by summing individual tree values and applying the appropriate
expansion factors to scale from plot to per unit area (Kershaw et al. 2016). For stand
crown and canopy measurement, attributes such as crown closure, canopy cover, and leaf
area index are often measured at the stand level rather than summarized from individual
tree measurements (Kershaw et al. 2016).

Stand basal area, defined as the sum of individual tree cross-sectional areas, is one
of the most common stand-level parameters estimated in most forest inventories (Iles
2003, Kershaw et al. 2016). Basal area is often expressed at breast height, and is an
important measure of stand density that incorporates tree size as well as number
(Kershaw et al. 2016). It is a fundamental component of volume and biomass calculations
(Iles 2003, Jenkins et al. 2003, Lambert et al. 2005, Slik et al. 2010) and is an important
stand characteristic for forest growth models (Opie 1968, Lootens et al. 2007, Weiskittel
et al. 2011). Stand basal area can be derived by summarizing the DBH of all trees in
fixed-area plots, or can be calculated using horizontal point sampling by counting the
numbers of trees that subtend a projected horizontal angle and multiplying by a constant
without measuring any DBHs (Kershaw et al. 2016). Horizonal point sampling typically
uses tools such as an angle gauge, relascope, or prism (Fig 1.2.a-c) to decide which trees
are counted. The theory of this sampling method will be discussed in Section 1.3.2.

There are several canopy attributes such as gap fraction, canopy cover, canopy
closure, canopy openness, and so on. These attributes are similar but slightly different

concepts that need to be clarified (Gonsamo et al. 2013).
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Gap fraction (GF, or Po), defined as “the area fraction of open sky not obstructed by
canopy elements over the limited area defined by specific view zenith (6) and azimuth
(@) angles” (Gonsamo et al. 2013), The key point of the GF definition is the limited area
fraction defined by specific view angles. Commonly, the GF or Po should include two
subscripts: GF (6, @) or Po (0, ®). When the azimuth angle is not given, GF (8) or Po (0)
represent the gap proportion in a narrow ring area at that zenith angle (Jonckheere et al.
2005, Pekin and MacFarlane 2009).

Canopy cover is the proportion of canopy elements vertically projected onto the
ground (Gonsamo et al. 2013). This measurement is easy to measure from a vertical
direction, and is commonly measured using satellite, airborne, or unmanned aerial vehicle
(UAV) images.

Canopy openness is defined as “the area fraction of the sky hemisphere (180°) that
is unobstructed by canopy elements when viewed from a single point” (Gonsamo et al.
2013). The key point of canopy openness is the full sky hemisphere (180°). Canopy
openness can be simply calculated from the sky pixels versus total pixel numbers in
classified binary images.

Canopy closure, defined as the complement of canopy openness (1 — canopy
openness), ideally it is expressed using the whole hemisphere, however, closure
measurements are often restricted by selected zenith angles because horizon gaps and
canopy elements are hard to measure (Gonsamo et al. 2013). Canopy closure often is the
same definition as plant fraction, which is used in this study, and a restricted zenith angle
of 57.5° is often used. Lemmon (1956, 1957) first developed a method to measure plant

fraction using a spherical densiometer (Fig 1.2.d) which is a curved mirror with a grid,
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and counting the number of grids containing plants divided by the total grid number.
Photographic techniques with high-quality digital images provide a much more accurate
and repeatable measure than traditional grid counting (Kershaw et al. 2016). This image-
based method is sensitive to thresholding which separates the image pixels into sky and
other components.

Leaf area index (LAl) is the total foliage area (one-sided projection area) in a unit
area (Kershaw et al. 2016), the units are m? - m~2 or m? - ha™!. This parameter shows a
strong linear relationship with stem wood and total biomass production (Waring et al.
1981, Oren et al. 1987, Vose and Allen 1988). The direct method to estimate LAI
requires destructive sampling: felling individual trees and weighing the foliage in lab
(Kershaw et al. 2016). This method is not only labor intensive, but also has effects on the
remaining stand. Indirect methods such as allometric regression relationships, litterfall
traps (Fig 1.2.e), and indirect noncontact methods have theoretical, practical, or
methodological challenges (Larsen and Kershaw 1990, Weiss et al. 2004, Jonckheere et
al. 2004). Alternatively, hemispherical photographic methods (Fig 1.2.f) are widely used
in forest LAI estimates (MacFarlane et al. 2007a, Liu et al. 2013, Fournier and Hall
2017). These methods employ simple models of forest canopy radiation transfer, along
with image processing and the relationship between gap fraction and zenith angle to

estimate LAI (Rich 1990, Weiss et al. 2004).

1.3 Sampling Strategies for Parameters

Measuring the attributes of all individual trees in a stand or forest area should be the

most accurate method to evaluate forest conditions, ideally. However, obviously, it is



quite labor intensive and time consuming, also it is not applicable for large scale forest
inventories. The most common practice is using sample plots, which are defined as the
units for recording information and measurements (Kershaw et al. 2016). Basic sampling
strategies can be divided into two main categories: equal probability and variable

probability.

1.3.1 Equal probability

The most common sample plot has been a unit of fixed area for many years, and
these fixed-area sampling units are often small areas of square, rectangular, circular, or
triangular shape (Kershaw et al. 2016). A plot center is set in a forest, and based on this
center, a boundary of fixed-area, shape, and orientation determined. Each tree meeting
some defined height or diameter criteria included within the boundary is selected and
measured.

Alternatively, each tree can be thought to have its own inclusion zone which is the
same size, shape, and orientation as the fixed-area boundary, just centered on each tree. A
sample point (plot center) is set in the forest, and those trees whose inclusion zones
include the plot center are selected and measured (Fig 1.3.a&Db). In this procedure, the
probability of selection is the same for all individual trees because their inclusion zones
are all the same size (Kershaw et al. 2016), and therefore, their probabilities of selection
are equal.

Circular plots, which use a radius as a single dimension to define the boundary,
have been widely used (Kershaw et al. 2016). In this plot type, the inclusion zone of each

individual tree has the same radius as the plot radius (Fig 1.3.a). The main advantages of



circular plots are: 1) The length of boundary is the minimum of all shapes with the same
area. It implies fewer decisions to judge trees near the boundary. 2) Unlike rectangle or
strip plots, circular plots have no predetermined orientation. and 3) They are the simplest
for correcting slopover bias, which caused by the inclusion zone of one tree partly falls
outside the plot center. The main disadvantage is the difficulties associated with carefully
determining distances from trees to plot center without the assistance of modern
ultrasonic or laser distance measuring tools (Kershaw et al. 2016). Unlike circular plots,
square or rectangular plots are much easier to decide in or out due to the straight-line
boundary, also these straight boundaries can be easily marked by compass and tape
(Kershaw et al. 2016). But laying out the plot corners and boundaries carefully and the
orientation effects should be taken into consideration when analyzing bias (Kershaw et al.
2016).

The fixed-area plot also has limitations. Normally, in the east coast of the North
America, there are many more small trees than large ones in natural forests. Due to the
equal probability, there tends to be many small trees selected in this sampling method.
However, compared with large trees, when measuring volume, biomass, or carbon
storage, small trees are less proportionally of lower influence or consequence, but are
measured many more times than large trees (Kershaw et al. 2016). To solve this problem,
different sizes of plots for different sized vegetation can be used. For example, Van Den
Meersschaut and Vandekerkhove (2000) used four concentric circular plots with 4
different areas to measure: seedlings (16 m?), shrubs (64 m?), living trees (255 m?), dead

trees (1018 m?), and lesser vegetation and lying deadwood (16 m X 16 m). While this is

still considered fixed area plot sampling, it is really an intermediate step between equal
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probability sampling and variable probability sampling (Section 1.3.2) and can be quite

cumbersome to implement in the field.

1.3.2 Variable probability

While using concentric plots is one method to solve the problem of oversampling
certain classes of vegetation, using a sampling procedure in which the probability of
selecting a tree depends on some tree character (e.g. DBH or HT) is also possible
(Kershaw et al. 2016). In this situation, larger trees have larger inclusion zones while
smaller trees have smaller zones (Fig 1.3.c), which means, the probability of selecting a
tree is proportional to its size (Kershaw et al. 2016). Variable probability is a very
efficient sampling scheme; however, because there is high variance in counts of trees
between points, sample sizes are often much higher than when using fixed area plots (Iles
2003, Kershaw et al. 2016, Yang et al. 2017). As a result, various subsampling schemes
have been developed to reduce the point and tree measurements (Grosenbaugh 1963a,
Iles 2003, Marshall et al. 2004, Yang et al. 2017). Variable probability selection can be
applied to trees, sample points, and even stands (Kershaw et al. 2016); however, one of
the limitations of variable probability sampling is identification of an appropriate
covariate for selection (Hsu et al. In Review).

Horizontal Point Sampling, is the most used application of variable probability
sampling and was originally developed by Bitterlich (1947). It is also called angle count
sampling because an angle is used to select trees proportional to their basal area
(Bitterlich 1947, 1984). In this method, the observer occupies the point (plot center) and a

horizontal angle (often created by tools shown in Fig 1.2.a-c) is projected towards each



tree at DBH level (Fig 1.4.a). All trees that are as large as or larger than the projected

horizontal angles are counted.

1.3.3 Stand basal area estimates by variable probability

In most forest inventory data analyses, measurements are summarized and divided
by the total plot size to express values on a per unit area basis (Kershaw et al. 2016). The
ratio of each selected tree scaled to per unit area measurement is called the tree factor or
expansion factor (Kershaw et al. 2016). For each tree:

Unit Area

TF, (1.1)

~ Inclusion zone area;
where TF; is the tree factor of sample tree i, unit area is 10000 m?, inclusion zone area; is
the inclusion zone area of sample tree 7 in the same units as Unit Area.

Tree factor can then be used to expand specific tree attributes (Attribute Factor, XF;)
to stand or forest level attributes by simply multiplying the value of that attributes (Xi) by
tree factor (TF)):

XF; = X; TF, (1.2)

The stand attribute value equals the sum of all selected trees:

n n
Xseana = ) XFi= ) X;-TF, (13)
i=1 i=1
e.g. Stand Basal Area
n n
BAgtana = Z BAF; = z BA; - TF, (1.4)
i=1 i=1

Combined with Eq. (1.1):



BA Z BA Unit Area
stand ' Inclusion Zone Area;

Individual tree, basal area is calculated using (Fig 1.4.c):
BA; =m 17 (1.5)
where the 1: is the radius of tree trunk at breast height and equals half of DBH.

The relationship between inclusion zone area and horizontal angle (0) is shown in

Fig 1.4.c:

T'i . 6 Ti
—=sm(—):>Ri =— (1.6)
sin (7)

where R; is the radius of the inclusion zone for a specific tree.

So, combined with Eq. (1.5) and Eq. (1.6), stand basal area equals

110000m® -, 10000 m?
BAstana = Z(T[ T - R2 = Z m-r Z 10000 m? 51n2(—)
i=1 w—Lt— =1
sin? (g)
Since the projected horizontal angle () is constant, BAF; which equals 10000 m? -

.50 . . ) :
sin? (5) is constant. Thus, the stand basal area is estimated by counting the number of

selected trees and multiplying by BAF.. No tree measurements are required to estimate

stand basal area per ha (Kershaw et al. 2016).
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1.4 Remote Sensing Technologies

1.4.1 Above canopy remote sensing

Above canopy remote sensing techniques, e.g. satellite, manned aircraft, and
unmanned aerial vehicles (UAV), are applied in forest inventory to save time and
workloads for large-scale investigations.

Satellite remote sensing is a mature technology for large scale investigation, it can
be applied for estimating biomass, leaf area, land-cover classification, and deforestation
monitoring (Tucker et al. 1985, Running et al. 1986, Skole and Tucker 1993, Lu 2006,
Jin et al. 2014). The most common method for these applications is using different
vegetation indices such as normalized difference vegetation index (NDVI), soil-adjusted
vegetation index (SAVI), enhanced vegetation index (EVI), and so on to represent plant
or environmental conditions (Major et al. 1990, Nagler et al. 2005). However, limited by
the low spatial resolution, cloud contamination, and overpass period, it is difficult for
conventional satellite remote sensing techniques to estimate individual tree information
which match with the detailed data measured during ground investigations (Turner et al.
2012).

Airborne remote sensing has been developed for many years (Reeves 1936, Colwell
1964). Airborne images are no longer limited to sensors in the visible spectrum, but also
can use infrared, laser (LiDAR), ultrasonic (radar), and even hyperspectral (Kasischke et
al. 1997, Asner et al. 2007, Smith et al. 2010). Several attributes such as canopy height
(Paine and Kiser 2012), species detection (Junttila and Kauranne 2012), canopy diversity

(Asner and Martin 2009, Asner et al. 2017), and above ground biomass (Lefsky et al.
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2002, Meyer et al. 2013, Hayashi et al. 2015) can be estimated using this technology.
However, manned aircraft is limited by flight route control in some areas and the sensors
often have a very high investment cost, thus high costs for airborne imaging.

This big challenge is partially resolved by unmanned aerial vehicle (UAV) remote
sensing, which is an emerging tool to provide timely, lower-cost, and high resolution
means of investigation (Anderson and Gaston 2013). Several studies demonstrate the
possibility of using high resolution UAV images to extract individual tree heights and
crown coverages by structure from motion (SfM) techniques (Turner et al. 2012, Dandois
and Ellis 2013, Wallace et al. 2016). Also the vegetation structure and functional
properties can be extracted to explore biodiversity (Getzin et al. 2011, Hoffmann et al.
2016). However, many of these approaches require high-performance-computers for
indoor 3D point cloud reconstruction and data analysis, driving up the costs and time
required to complete inventories. The canopy makes extracting tree trunk attributes hard
when using visible spectrum sensors. Though radio and laser sensor techniques make
penetration of canopies easier (Wallace et al. 2016, Asner et al. 2017), the high prices of
these sensors limit wide spread use. Also, the scale at which a UAV sample can be
efficiently processed is generally too small for a woodlot-scale inventory.

Above canopy remote sensing has saved a large amount of labor and makes large
scale forest investigations possible. However, collecting under canopy forest attributes

data for validation cannot be avoided.
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1.4.2 Below canopy remote sensing

For under canopy data collection, there are also some novel indirect optical remote
sensing tools. Some of the simpler tools were introduced in Section 1.2, some other self-
made and minority instruments such as TRAC and MVI (for PAI/LAI measurement),
DEMON (for beam transmission), spherical densiometer (for forest canopy parameters),
and Moosehorn (for crown closure) are seldomly used in practice (Seidel et al. 2011).
The most popular optical methods includes hemispherical (fisheye) cameras (MacFarlane
et al. 2007b, Jonckheere et al. 2009, Brandao et al. 2016), laser scanners (Lefsky et al.
2002, Seidel et al. 2012, Hayashi et al. 2015), and digital cameras (Lati et al. 2011,
Maynard et al. 2014, Inoue et al. 2015).

Hemispherical photographs have been used to estimate crown and canopy
parameters, such as gap fraction, foliage cover, and leaf area index for many years
(Demarez et al. 2008, Zhao et al. 2012). Though many software and algorithms have been
developed to analyze fisheye images (van Gardingen et al. 1999, Lang and Yueqin 1986,
Montes et al. 2007, Seidel et al. 2011), the high price of traditional hemispherical
cameras make consumer-grade digital cameras more and more popular for different
aspects of forest measuring (Frazer et al. 2001).

Terrestrial (ground-based) laser scanner (TLS) is an optical method which has the
ability to record 3D point cloud information of the forest structure. Several studies have
used this novel tool to estimate biomass and canopy metrics (Hilker et al. 2010,
Holopainen et al. 2011, Wallace et al. 2017). Directly using the point cloud 3D
information to calculate biomass by counting plant voxel volume is another approach

(Seidel et al. 2012). However, the high price of laser scanners (50 to 80 times the price of
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a fisheye camera) (Seidel et al. 2011) accompanied by the long scanning times,
difficulties in analyzing point clouds, and high computer hardware performance
requirements significantly limits wide spread use.

Using consumer-grade digital cameras to extract tree attributes has been developed
over decades including measuring upper stem diameters (Grosenbaugh 1963b), heights
(Clark et al. 2000b), and even generating 3D stem models (Larsen 2006, Mokros et al.
2018). These studies pay more attention to photographing single trees, which is not so
useful for estimating attributes of a large cluster of trees (Perng et al. 2018). Merging 360
degrees photos into panoramic images to get cluster attributes such as basal area is a
method reported by many researchers (Fastie 2010, Dick et al. 2010), but it only contains
horizontal information and sloped terrain makes the center of image not exactly breast
height (Perng et al. 2018).

The new 360° spherical cameras offer an inexpensive option for obtaining inventory
covariates and potentially obtaining direct stand and tree measurements. The compact
size of a spherical camera makes it an easy-to-use tool in the forest and can be moved
through the canopy to obtain structural estimates more easily than traditional fisheye

cameras and other digital cameras.

1.5 Objectives

This project has three main objectives. The first one will use the horizontal part of
spherical images to extract stand basal area. The second part will extract forest canopy

attributes in the vertical projection of spherical images. The last objectives will be to
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extract individual tree attributes from two spherical images taken at different heights. The
specific objectives are as follows:

1. Using spherical images for image-based angle count sampling to estimate stand
basal area and analyze effects of potential vegetation and stand structure factors that
might limit generalization of this techinique.

2. Developing a novel HSV classification threshold to classify transformed or
original spherical images and to estimates plant fractions, stem fractions, foliage
fractions, etc. and compare the results with traditional fisheye classification algorithm
(blue channel classification).

3. Using paired spherical images at two different heights, to extract individual tree
DBH and height; the results will be compared with field measurements obtained in an
urban setting and across an early spacing trial for a real forest comparison.

A framework that enables using spherical images to extract common forest attributes
will be developed in this project. The outcomes include several applications for Microsoft
windows for each objective respectively. This framework will provide the opportunity to
increase the efficiency in the field, reduce measurement errors and ensure data

consistency in long-term investigations.

1.6 Thesis Structure

The structure of this thesis is around five chapters to cover the objectives mentioned
above. This chapter (Chapter 1) is a general introduction chapter. Chapter 2, Estimating
Forest Basal Area from Spherical Images demonstrates how spherical images can be

used to conduct horizontal point sampling for stand basal area attributes (Chapter 2 is
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accepted for publication in Mathematical and Computational Sciences in Forestry and
Natural Resources). Chapter 3, Plant Fraction Calculation from Spherical Images by
HSYV Color Space demonstrates how spherical images can be used to estimate fisheye
camera attributes in an automatic way. Chapter 4, Estimating Individual Tree Diameters
and Heights with Spherical Images demonstrates how spherical images can be used to
extract individual tree attributes. The concluding Chapter 5 summarizes the results of this

project and future developments to extend the project direction.
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Chapter 2: Estimating Forest Basal Area from Spherical Images
2.1 Introduction

Forests are the dominant terrestrial ecosystem on Earth and account for three quarters
of the gross primary productivity of the biosphere and about 80% of plant biomass (Pan
et al., 2013). In addition to ecosystem services like watershed protection and carbon
storage (Chazdon, 2008), the other economic and social products provided by forests are
of great interest to land owners and forest managers (Gillis, 1990; Christensen et al.,
1996). To satisfy the multiple demands from forests, advanced tools used to collect data
efficiently are required for making good forest management decisions (Clutter et al.,
1983; Baskerville, 1986; Bettinger et al., 2017). Therefore, coupling advanced
technology with traditional forest inventories to save costs and time, and to improve
accuracy of estimates, are of great importance (Husch, 1980; Iles, 2003; Kershaw et al.,
2016).

Forest inventories typically collect measurements on individual trees (e.g., species,
diameter at breast height, and total height) and use these measures to estimate stand-level
parameters such as density, volume, and biomass (Kershaw et al., 2016). Stand basal
area, defined as the sum of individual tree cross-sectional areas, is one of the most
common stand-level parameters estimated in most forest inventories (Iles, 2003; Kershaw
et al., 2016). Basal area is often expressed at breast height (1.3 m in SI and 4.5 ft in the
Imperial system). Basal area is an important measure of stand density that incorporates
tree size as well as number (Kershaw et al., 2016). It is a fundamental component of

volume and biomass calculations (Iles, 2003; Jenkins et al., 2003; Lambert et al., 2005;
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Slik et al., 2010; Kershaw et al., 2016) and is an important stand characteristic for forest
growth models (Opie, 1968; Lootens et al., 2007; Weiskittel et al., 2011).

When using fixed-area sampling units, basal area is calculated from individual tree
diameter measurements (Kershaw et al., 2016), which can be a time consuming endeavor
depending upon tree density and sampling unit size. Angle count sampling (Bitterlich,
1947, 1984; Iles, 2003), or horizontal point sampling as it is commonly known
(Grosenbaugh, 1952; Bitterlich, 1984; Iles, 2003; Kershaw et al., 2016), is an alternative
method that measures basal area by counting trees that subtend (i.e., appear as large or
larger than) a projected angle and multiplying by the basal area expansion factor (BAF).
The ability to estimate basal area by counting trees makes angle count sampling a very
efficient sampling approach (Bitterlich, 1984; Iles, 2003; Marshall et al., 2004; Kershaw
etal., 2016; Yang et al., 2017).

DeCourt (1956) was the first to recognized that it was possible to conduct angle
count sampling using photographs. Grosenbaugh (1963) hinted at this application but did
not develop the technique very deeply. Because of the time and costs associated with
film-based imagery, photo-based angle count sampling was not developed any further
until the work by Stewart (2004) who proposed photo-based angle count sampling using
8 directional photos and developed methods to correct for image distortion near the photo
edges. Dick (2012) using panoramic stitching software, merged 24 images into a single
panorama image and eliminated the need for distortion correction. By defining an angle
gauge in terms of pixels, Dick (2012) developed a simple photographic angle count
method implemented in ArcGIS (ESRI, Redlands, CA). Independently, Fastie (2010)

merged 504 images into an ultra-high resolution panorama to estimate basal area. Given
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that angle count sampling was already an extremely efficient inventory system in the
field, these approaches for photo-based sampling were more curiosities than operational
developments.

The main advantage of the photo-based method was that basal area estimates could
potentially be extracted from archive photos (Stewart et al., 2004). However, photo-based
approaches also suffered from potential under-estimation bias due to occluded (hidden)
trees (Dick et al., 2010; Zasada et al., 2013). In addition to the hidden trees, other
potential impacts such as understory vegetation, counting dead trees, image resolution,
and user errors were not systematically explored in these previous studies.

Digital technology continues to advance rapidly, and stitching packages are now
available on many smart phones. In addition, the recent development of consumer-grade
spherical cameras opens the opportunity to obtain panoramic photos from single
exposures controlled by a smart phone. The ability to rapidly obtain panoramic photos
and develop onboard processing creates an opportunity to revisit the photo-based angle
count sampling idea. The goal of this study was to develop an open-source software
package that implements angle count sampling using spherical photos taken from a Ricoh
Theta S, which is a relatively inexpensive consumer-grade camera. The specific
objectives were: (1) to derive the geometry of applying the angle-count sampling idea to
spherical images to obtain basal area estimates, (2) to assess the precision and accuracy
of this approach compared to traditional field measured data, (3) to assess the inter-
observer variability in implementing this approach, and (4) to assess the effects of

understory tree density on the photo-based estimates.
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2.2 Methods and Materials

2.2.1 Study sites

Data for this study come from two different studies. The first study was three early
spacing trials located in western Newfoundland (NL). The NL sites were located in the
Boreal Forest region (Rowe, 1972) and were dominated by balsam fir (4bies balsamea)
with some black spruce (Picea mariana) and other boreal species. The trials were
established in the early 1980’s. At each site, there were three replicates of five thinning
spacing treatments: Control (no spacing), 1.2m, 1.8m, 2.4m, and 3.0m average spacing.

The second study was located on the Noonan Research Forest (NRF) in central New
Brunswick, Canada, managed by the University of New Brunswick. The NRF was
located in the Acadian Forest region (Rowe, 1972), and was composed of a variety of
stand types from relatively pure coniferous stands to mixed hardwood-softwood stands. A
permanent 100m by 100m inventory sample grid was overlaid on the NRF in 1999. The

83 grid intersections within the Femelschlag Research Study were used in this study.

2.2.2 Data collection

2.2.2.1 Field data

Only the most recent measurements of the 45 NL plots (3 trials % 5 treatments/trial x
3 replicates/treatment) were used in this study (Table 2.1). The plot radii were: Control
(no spacing) = 5.2m; 1.2m spacing = 7.2m; 1.8m spacing = 10.4m; 2.4m spacing =
15.0m; and 3.0m spacing = 18.0m). Plot sizes varied by treatment with the goal to have

approximately 100 trees per plot at the initial measurement. On each plot, all trees taller
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than 1.3m were measured for diameter at breast height (DBH, 1.3m above ground,
nearest 0.1cm) and total height (nearest 0.1m). Field basal area (FBA, m?/ha) was

calculated using:

FBA = ExpF x Zn: <n (Dzlf)g"f) 2.1)

i=1
where ExpF is the plot expansion factor (ExpF = 10000/mR?; R is plot radius in
meters).

On the NRF sample points, a 2 M BAF (basal area factor; i.e., each tree tallied
represented 2 m?/ha basal area) angle count sample was conducted centered at the 83 grid
intersections in summer 2018. All trees that subtended the projected angle were counted
and FBA (m%/ha) was calculated by multiplying the number of count trees by the BAF (2
in this case). In addition, those trees with DBHs smaller than 6 cm were tallied as
understory trees by height status (less than or greater than 1.3m tall) on a 4m radius plot
centered on the grid intersections. Species and status (live or dead) also were recorded for

all understory trees.

2.2.2.2 Digital sample points

For each NL sample plot, three digital sample locations were established at half the
plot radius along azimuths of 120°, 240°, and 360° relative to plot center (Fig. 2.1.a). On
the NRF sample points, only one digital sample location was established at the grid
intersection (Fig. 2.1.a).

A Ricoh Theta S (Ricoh Imaging Company, LTD., 2016) spherical camera was used

to capture spherical images. A single spherical image was captured at 1.6m above the
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ground at each digital sampling point (Fig. 2.1.b) and downloaded to a smart phone. .
Though the spherical camera records a 360° spherical image, the spherical image is
projected into a 2D digital image using cylindrical projection. In this projection system,
the vertical coordinate in the 2D image and related vertical angle (latitude) in spherical
coordinates are always consistent no matter how far an object is from horizontal center.

The image resolution was 5376 pixels in width and 2688 pixels in height.

2.2.3 Image processing software

Angle count sampling (Bitterlich, 1947, 1984) is a sampling method that uses a
horizontally projected angle to select trees for inclusion in the sample (Fig. 2.2.a). A
basal area expansion factor (BAF) is derived from the sampling geometry associated with
a tree that is at its limiting distance (Fig. 2.2.b). Angle count sampling is a form of
sampling with variable probability and is an application of selecting sample trees based
on probability proportional to size (Grosenbaugh, 1958; Kershaw et al., 2016). Basal area
per ha is obtained by counting selected trees and multiplying by the BAF (Bitterlich,
1947; Kershaw et al., 2016). The key point to apply this sampling method on a spherical
image is determining which trees in an image should be counted or not. In this study, two

different methods for photo angle count sampling were developed and compared.

2.2.3.1 Edge marking method

In this method, the horizontal angle of each individual tree trunk at breast height
(1.3m) in the image was determined (Fig. 2.2.b). This was accomplished by having the

user mark the edges of each tree on the image (Fig. 2.3.a). The width of each tree trunk
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was used to calculate the maximum BAF threshold (maxBAF) at “border” tree condition

using the following equation:

W 2
BAF = (100- in (— - 360° ) (2.2)
max sin (PW )

where TW was the pixel width of the marked tree; and PW was the total width of the
spherical image (PW = 5376 in this study).

By calculating maxBAF, the number of count trees was simply the number of
marked trees where maxBAF > desired BAF, and photo basal area (PBA, m*/ha) was:

PBA = BAF * count(maxBAF > BAF) (2.3)

2.2.3.2 Target count method

This method was similar to the field angle gauge process. The camera projected a
horizontal angle based on the given BAF toward each tree (Fig. 2.3.b). To better visualize
the cross-sectional angles of leaning trees, an octagon shaped target was used as the
target threshold. A tree equal to or greater than the octagon target in size was marked as
an “in” tree, otherwise that tree was an “out” tree and not counted. The PBA of this

image was equal to the given BAF multiplied by the count of “in” trees.

2.2.3.3 Software implementation

An open source software package, Panorama2BasalArea, was developed in Python
3.6 (Guido, 2018) to implement the angle count sampling workflows described above. It
included the plot photo management, tree trunk edge marking and octagon threshold
counting, individual tree management, and PBA data export (Fig. 2.3). When using the

edge marking method, a reference scale bar was provided. Trees which were narrower
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than the reference scale bar (BAF=1) were ignored to reduce the workload associated
with edge marking (Fig. 2.3.a). For the target marking method, a reference octagon scaled
to a given BAF was provided. Only those trees equal to or larger than the reference
octagon were marked (Fig. 2.3.b). The source code for this software package can be
downloaded from: https://github.com/HowcanoeWang/Panorama2Basal Area. It was also
packaged as an executable app for Windows platforms:

https://github.com/HowcanoeWang/Panorama2Basal Area/releases.

2.2.4 Data analysis

2.2.4.1 Influence of number of digital sample points

Hidden trees blocked by closer trees or understory vegetation create a potential for
underestimating PBA. One possible way to deal with the hidden tree problem was to use
multiple sample points in one plot. While hidden trees result in underestimation, errors in
marking tree edges and judging octagon thresholds could result in over- or under-
estimation relative to field basal area (FBA). To test the influence of multiple digital
sample points and the effects of two tree marking methods on PBA estimates, three
separate analyses were undertaken: 1) PBA estimated from one center digital sample
point on the 83 NRF sample points; 2) PBA estimated on the NL plots using three
individual (off-center) digital sample points; and 3) PBA estimated from the average of
the three digital sample points on each NL plot. For each analysis, a simple linear
regression was fitted to the FBA — PBA data:

FBA = b, + b, - PBA (2.4)
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If PBA was the same as FBA, then bo = 0 and b1 = 1. The resulting parameter estimates
were tested for these values using t-tests and Bonferroni-adjusted alpha levels (Zar,

2009).

2.2.4.2 Influence of choice of BAF

As BAF increases, the distance a tree of a certain diameter can be from plot center
decreases (Fig. 2.2). The expected number of count trees also decreases. Both factors
should result in a lower probability of hidden trees (i.e., fewer hidden trees). On the other
hand, as photo BAF increases so does variation between sample points. The trade-off
becomes one of under-estimation versus increased sampling error. The optimal
compromise is to use a BAF that reduces the number of hidden trees without appreciably
increasing sample variation. To test this idea, BAFs ranging from 2 to 15 were applied to
calculate PBA and compared to FBA using the edge marking method (edge marking was
used because the user only needs to mark trees once and all BAFs can be determined,
target counting requires multiple runs through the images). The difference between FBA

and PBA were compared using bean plots, and variance and bias were visually analyzed.

2.2.4.3 Inter-observer variation

To examine inter-observer variability, 15 images from the three NL sites (one
replicate from each trial) and 5 images from the NRF plots were selected as testing
images. These 20 images were used for the edge marking method. For the target count
method, horizontally mirrored images were used. In total, there were 40 test images given
to 7 individuals. Everyone had different random orders for these images. The volunteers

were trained how to use the software in both modes and then marked each image in the
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order given. Inter-Observer differences between PBA and FBA at BAF=2 for both modes
were tested using linear mixed effects (LME) models. The fixed effects were PBA

(covariate) and marking mode, and random effects were observer and image order.

2.2.4.4 Effects of understory density

Understory vegetation may limit sight distances in the field as well as in photos. In
the field there are a variety of techniques the field observers can use to determine count
trees when visibility is low. On photos, these options are not available. To test whether
understory vegetation influenced PBA estimates, the difference between FBA and PBA
(FBA — PBA) was graphed versus understory density and a locally weighted scatterplot
smoothing (LOWESS) regression was used to assess trends in differences over
understory density. Understory density was separated into two height classes: HT < 1.3m

and HT > 1.3m and evaluated by height class and total understory density.

2.3 Results

2.3.1 Influence of different digital sample locations

Fig. 2.4 shows the relationship between FBA and PBA by tree marking method and
digital sample location type. With the exception of edge marking with three individual
digital sampling points (Table 2.2 (e)), all slope coetficients (b1) were not significantly
different from 1.0, indicating that photo bias does not increase with increasing basal area.
Results were not so consistent when examining the intercept terms. For both marking
methods, when using a single digital sample location at plot center (Table 2.2 (a) and

(d)), the intercept values were significantly different from 0 and almost double the
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intercept values (bo) obtained using multiple digital sampling points. For the multiple
digital sampling points, only the intercept term for edge marking was significantly
different from O (Table 2.2 (e)). Both intercepts for the average of three digital sampling
points were negative, though not significantly different from 0 (Table 2.2 (c) and (f)).

In terms of goodness of fit, the edge marking techniques generally had higher 12
values and lower root mean square error (rMSE) values, indicating a stronger linear
relationship between FBA and PBA (Table 2.2). All regressions indicate an under-
estimation of FBA, except at the very lowest FBA values, when averaging across
multiple digital sampling points. Under-estimation was consistent with the hypothesis of
visibility bias resulting from occluded (hidden or missing) “in” trees. It was expected that

the visibility bias would increase with increasing FBA; however, that was not generally

observed in this study (Table 2.2 and Fig. 2.4).

2.3.2 Effects of BAF choice

It was hypothesized that increasing BAF would result in fewer hidden trees and less
user error in marking edges and that PBA would become closer to FBA; however, that
was not what was observed in this study. Fig. 2.5 shows the effects of increasing BAFs
on PBA estimation. For the NRF plots, the mean differences between FBA and PBA
decreased slightly, but remained positive (underestimation) across all levels of BAF. For
the NL plots, the deviations decreased, but were essentially 0 across all levels of BAF.
The NRF only had one center digital sample location while NL had three sample
locations (Fig. 2.1.a). The additional digital sample points capture a greater range of the

plot variation and reduces the effects of hidden trees. One issue noted on several of the
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NRF plots was the presence of a tree very close to plot center. Large trees can block
significant view angles on plots. Increasing BAF does not compensate for these
situations. One the other hand, multiple digital sample locations minimized these effects
by locating the camera at different positions within the plot.

For both NRF and NL sites, variation in the differences between FBA and PBA
increased with increasing BAF (Fig. 2.5). Smaller plots are inherently more variable, and
this was an expected outcome. It was expected that there would be an optimal BAF that
minimized differences without substantial increases in variation. This was not observed
in this study. It should be noted that this inference was only based on edge marking
method because of the ease of changing BAF (edges only have to be marked once and all
BAFs could be determined). Results for target counting were not undertaken because
counts would have to be made independently for each BAF tested requiring a significant

increase in image processing time.

2.3.3 Inter-observer consistency

Comparisons between FBA and PBA across the seven volunteers are shown in Fig.
2.6. Most users consistently underestimated FBA with both marking methods, with edge
marking resulting in greater underestimation than target counting (Fig. 2.6. Column 1).
While differences between users were observed (Fig. 2.6. Columns 2-7), on average, user
estimates were comparable (i.e., LOWESS lines were very close to the 1:1 line). Target
counting was generally more consistent than edge marking among different users and

generally resulted in similar estimates across users (Fig. 2.6).
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Fig. 2.7 shows the two plots with the least and greatest deviations between users. For
the least plot, though different users did not mark exactly the same points across different
trees, the edge positions, as well as the dark gray targets for “in” trees, were almost the
same across users. The simple forest structure facilitates tree marking and results in lower
variability between users. However, it was a different story for the plot with the greatest
deviations. Neither the “out” trees nor the “in” trees have similar positions. Trees were
very dense and diameters smaller, resulting in many “border” trees — small deviations in
edge marking resulted in changes in “in” and “out” status. This problem was further
compounded by the fact that edges of each tree were difficult to distinguish.

To statistically assess the effects of tree marking methods, different users, and image
order (i.e., familiarity with using software), a linear mixed effects (LME) model was
fitted to the data. The full model was:

FBA = PBA + Marking + (User) + (Order) + e (2.5)
where () indicate random effects. A backwards selection method was used to test
significance of random effects. For the full model, the standard deviations associated with
the random effects were: 2.1879 for User and 0.7292 for Order (residual standard error
was 3.7051). The model was refitted with Order excluded and a log likelihood test
performed. The p-value associated with dropping Order was 0.926, indicating that image
order was not a significant random effect influencing deviations from FBA. Similarly,
User was subsequently dropped, and the p-value was 0.081. So, while more significant
than image order, differences between users were still not significant at a =0.05. The final
reduced model only included the fixed effects PBA (covariate) and Marking (method).

Both factors were significant: PBA (p<0.001) and Marking (p<0.01). The root Mean
44



Square Error was 10.6129 and the F value associated with PBA was 320.87 (p <0.001)

and for Marking Method was 9.913 (p = 0.002).

2.3.4 Understory density effects

Effects of understory density on PBA estimates for the NRF plots are shown in Fig.
2.8. Based on the LOWESS trend lines, understory density did not pose a large visibility
bias in this study. Except for a single plot with very high understory density (> 30000
trees per ha), the trend lines remained around 15 m?/ha, indicating little impact of
understory density on FBA. The value of 15 is very close to the intercept coefficient
estimated above (Table 2.2) and the results here show that the variation in FBA - PBA

(Fig. 2.8) was not due to understory vegetation.

2.4 Discussion

Our results show that spherical images from a consumer-grade 360° camera can
efficiently and effectively estimate basal area using photo-based angle-count sampling.
While underestimation was consistently observed, the trend did not appear to be related
to the amount of basal area per ha present, understory vegetation, nor inter-user
variability. As a result, underestimation could be easily corrected using some form of
double sampling (Dai, 2018, p. 30; Dick, 2012) with ratio correction.

In this study, two photo processing methods were used: the edge marking method
and the octagon target counting method. The resulting PBA estimates were acceptable for
both methods. The advantage of edge marking was that different BAFs can be assessed
without remarking, but this is generally only useful for big BAF sampling (Bell et al.,

1983; Iles, 2003; Marshall et al., 2004) or for research situations where one is interested
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in effects of different BAFs (as in this study). All users in this study felt the target
counting was more familiar (more similar to the process they used in the field) and more
repeatable than edge marking. Difficulties recognizing tree edges, especially in dense
forest conditions, along with twice the number of mouse clicks for each tree could
potentially cause higher user errors. The octagon target count method avoided potential
edge marking errors and only required one click; however, repeated marking for different
BAFs would be required.

It was expected that visibility bias would increase with increasing basal area because
of an increasing number of hidden trees. This was not observed in this study. There are
several potential explanations for this result. First, and most likely, the results obtained
here were the compensatory effects of underestimation caused by hidden trees coupled
with overestimation caused by increased user error as field basal area increased. In this
study, the plots with the highest basal areas were generally composed of very dense small
stems, especially on the NL sites. With many small trees in an image it can be difficult to
distinguish multiple overlapping small trees from one larger individual tree. With the
edge marking method, it can be very difficult to clearly see the tree edges as well due to
the resolution and exposure conditions (Fig. 2.7.b). Secondly, the plots with very high
basal areas also had a significant number of dead trees present. While care was exercised
to determining live/dead and avoid marking dead trees, this could have increased counts
on the higher basal area plots. Both factors may have also contributed to the lack of
improvement in PBA estimates with increasing BAF.

Multiple digital sampling locations within plots greatly decreased effects of hidden

trees and any user errors. In several individual images there were nearby tree trunks
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which occluded large portions of the plot radial view. The potential for hidden trees in
these situations was quite large. The multiple digital sample locations minimize this issue
by providing multiple plot viewpoints as well as capturing more of the local spatial
variability. Hidden trees cannot be observed using any remote sensing technique and is a
tough problem to deal with (Ducey and Kershaw, 2011; Ducey and Astrup, 2013; Zasada
et al., 2013). When carrying out field measured angle count sampling, it is possible for
the observer to lean left and right or even slightly change location to identify hidden
trees. Distances from plot center and diameters of hidden trees also can be measured to
determine if hidden trees are count trees or not. This is not possible with photographic or
other remote sensing methods (Fastie, 2010). Building a model to correct for hidden tree
effects can be very complex and should take into account stand density, distance from
tree to sensor, the thickness of each tree trunk, and so on (Zasada et al., 2013). Such
model-based approaches are inherently more variable and require substantial field data to
calibrate (Ducey and Astrup, 2013). A simpler method is to use double sampling with
ratio correction (Dick, 2012; Dai, 2018) or some form of distance sampling correction
(Kershaw, 2010). We have shown another alternative, which is to simply add additional
digital sampling locations within a plot, which is often the solution employed with
terrestrial LIDAR scanning (Seidel et al., 2012; Wallace et al., 2017). Limiting plot size
(or in this case increasing BAF) is another way to decrease effects of hidden trees (Dick
et al., 2010; Zasada et al., 2013); however, this did not seem to be effective in this study.
While multiple digital sample locations improve PBA estimation, it greatly increases
field acquisition time. Given that angle count sampling is already an efficient method to

implement in the field, multiple images would most likely require more field effort.
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Double sampling with ratio correction is most likely to be the most efficient method for
dealing with hidden trees (Dick, 2012; Dai, 2018).

It is very important to determine an appropriate BAF for angle-count sampling
(Bitterlich, 1984; Iles, 2003; Yang et al., 2017). Choice of BAF greatly influences
variability, which in turn, influences sample size requirements, numbers of trees counted
per plot, and ultimately inventory costs (Iles, 2012; Yang et al., 2017). We found that
BAF could be increased to about 5 without substantially increasing variability. Yang et
al. (2017) obtained similar results for the entire NRF. The increased BAF had the added
effect of slightly reducing visibility bias, thus a trade-off between visibility bias and plot
variation needs to be consider when implementing photo-based angle count sampling.

In this study understory vegetation did not seem to influence visibility bias. Concerns
about effects of understory vegetation has been mentioned by many photo-based forest
inventory studies (Stewart, 2004; Dick et al., 2010; Fastie, 2010; Perng et al., 2018), but
none of these studies verified this effect experimentally. We found that different
understory tree densities had no significant impact on the differences between FBA and
PBA. This was contrary to our expectations. A possible explanation for this phenomenon
is that most of the understory vegetation in the study plots were shorter than 1.3m in
height. Additional advantages in our study include very flat terrain and the ability to view
up the stem and visualize stem size when taller understory vegetation blocked the view.

Variability between different users is a very important consideration when choosing
measurement methods. While a few photo forest mensuration studies have shown that
they can achieve small differences between field measured data and photo measured data

(Clark et al., 2000; Fastie, 2010; Rodriguez-Garcia et al., 2014), none, to our knowledge,
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have systematically tested the repeatability and reproducibility among different users.
Our repeatability test given by seven volunteers showed: 1) Random effects of image
processing order (familiarity of software) and different users did not have significant
impacts on photo estimation; 2) the denser the plot, the more differences between users
due to manual identification and selection by mouse clicking; and 3) using octagon target
counts did not require identifying tree edges and resulted in lower underestimation than
edge marking.

Many studies have focused on individual tree measurements, then summarizing these
measures into stand level attributes. Some studies use scale tags placed on each tree or
measured field distances and slopes (Dick et al. 2010, Lu et al. 2019). These methods
require measuring or tagging individual trees which is time-consuming and costly and/or
require multiple images for each tree of interest (Stewart et al. 2004, Perng et al. 2018).
These techniques have limited benefit for improving inventory efficiency. In addition,
errors resulting from stitching several digital photos together cannot be avoided (Fastie
2010, Dick et al. 2010, Perng et al. 2018, Lu et al. 2019). Structure from Motion (SfM) is
an “automatic” merging technology which enables 3D reconstruction from photo series
without actual measurements (Snavely et al. 2008). Several studies have used this
technique to reconstruct individual tree stems (Miller et al. 2015, Surovy et al. 2016, Mokro$
et al. 2018), or to develop stand level point clouds (Liang et al. 2014, 2015, Forsman et al.
2016, Liu et al. 2018). However, this automatic technology requires obtaining a large
number of photos (Berveglieri et al. 2017a, Liu et al. 2018) and high performance
computers and complex algorithms to conduct analysis (Belton et al. 2013, Liang et al.

2015, Mulverhill et al. 2019). In addition, the points clouds require subsequent
49



measurement to produce the tree and stand attributes. We simply extract the stand-level
basal area directly from the photos.

The method we proposed here has several advantages. First, using a consumer-grade
spherical camera is a very cost-effective (around $400 CDN) and time-effective (less than
1 minute per photo) method. The image is automatically merged in the camera
eliminating the often time-consuming task of acquiring and stitching multiple photos
from different view radii (Dick et al., 2010; Fastie, 2010) or placing reference scale
objects in the field (Dean, 2003; Varjo et al., 2006; Perng et al., 2018). Keeping
permanent digital records for forest plots provides the opportunity for making new
retrospective measurements, this aspect is likely to become more advantageous as novel
technology develops in future (Iles, 1994). Finally, quantification of differences among
users is difficult to assess and correct with most field measurement techniques. The
software developed here keeps a record of individual markings (Fig. 2.7) that could be
used as a comparison reference for correcting photo-based samples.

This study also had some limitations. The camera elevation was not exactly at the
definition of breast height (1.3 m). When selecting tree trunks for marking and estimating
basal area at breast height, we used the equatorial plane of the spherical camera rather
than calculating 1.3m height on tree trunks based on stereoscopic principles (Rodriguez-
Garcia et al., 2014; Sanchez-Gonzalez et al., 2016; Perng et al., 2018). The spherical
image is merged by two hemispherical lenses, the joint region can sometimes be fuzzy or
blurred which makes tree trunk identification more difficult. Variable sunlight conditions
can result in inconsistent exposure levels across the spherical image. Underexposure

makes trunks in the far distance dark and hard to distinguish while overexposure flashes
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out trunk edges. Our terrain was relatively flat. In steeper terrain, methods for identifying
breast height on trees will be required. This is a more complicated problem than is
currently implemented in our software, Finally, all images were marked manually. It is
quite easy to have user errors and can be time consuming in the lab. Automatic image
processing and 3D reconstruction is a rapidly developing area (Hapca et al., 2007). It may
prove feasible to automatize the process described here by applying computer vision and
developing algorithms similar to our manual selection methods (Sanchez-Gonzalez et al.,
2016; Berveglieri et al., 2017). Another possibility is to use Structure from Motion (SfM)
techniques (Snavely et al., 2008) to obtain point clouds from different camera views
(Liang et al., 2014; Forsman et al., 2016; Surovy et al., 2016; Mokros et al., 2018);
however, point cloud development obviates the simplicity of the methods developed here

— other than clicking trees, no measurements were required.

2.5 Conclusion

Spherical photos are suitable for estimating stand basal area based on modified
angle-count sampling methods. Adding multiple digital sample locations can decrease
effects of visibility bias. Careful selection of BAF can somewhat reduce visibility bias
without substantially increasing variation. Variability among different users did not seem
to be a significant problem with implementing photo angle counts. Though limited by
occasionally fuzzy joint regions and extreme sunlight conditions, this novel method could
still be a cost-effective and efficient method to increase field sample sizes and to provide
permanent forest records for future use. Effects of understory vegetation and sloping

terrain needs to be examined beyond the range of conditions encountered in this study.
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Future research should focus on other forest attribute extraction such as height and

diameter and automatic image processing.
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Table 2.1: Average stand-level estimates (standard errors in parentheses) by trial and treatment for the 3 early spacing trials located with western

Newfoundland.

Trial Year Treatment Stand-Level Averages (Standard Errors)
Trees (num/ha) Basal Area (m*/ha) DBH (cm) Total Height (m)
Cormack 2013 Control (no spacing) 9974  (1807) 62.39  (6.26) 8.97 (042) 9.21 (0.92)

1.2m spacing 6239  (740) 4994  (9.49) 10.14 (1.60) 8.86 (1.63)
1.8m spacing 2978  (433) 3441  (10.88) 12.07 (1.64) 8.73 (1.61)
2.4m spacing 1432 (168) 3238  (3.81) 16.98 (0.59) 10.62 (0.54)
3.0m spacing 965 (62) 21.54  (0.92) 16.86 (0.18) 9.62 (0.23)
Pasadena 2013 Control (no spacing) 6112  (2049) 61.04  (9.36) 11.52 (1.27) 9.83 (0.82)
1.2m spacing 3616 (863) 6722  (5.07) 15.59 (1.95) 11.37 (1.38)
1.8m spacing 2611 (309) 53.59 (7.29) 16.16 (0.16) 10.81 (0.43)
2.4m spacing 1793 (545) 46.18 (10.12) 18.26 (0.86) 11.35 (0.29)
3.0m spacing 1111 (61) 36.88  (3.04) 20.55 (0.58) 11.60 (0.33)
Roddickton 2017 Control (no spacing) 12775 (2101) 73.19  (8.06) 859 (0.88) 7.07 (0.62)
1.2m spacing 4987  (1066) 54.62  (4.61) 11.94 (1.47) 8.28 (1.28)
1.8m spacing 2927 (247) 40.58  (2.86) 13.30 (0.50) 7.94 (0.25)
2.4m spacing 2119  (253) 4040 (9.13) 15.50 (0.85) 8.74 (0.67)

3.0m spacing 1253 (87) 3125 (221)  17.83 (0.41) 9.12  (0.35)
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Table 2.2: Simple linear regression results for field basal area versus photo basal area by digital sample point type. The linear model is FBA=b0 + b1*PBA,
if PBA is the same as FBA, then b0=0 and b1=1

Photo marking mode Digital sample points type Parameters Estimate Standard Error p-value 12 rMSE
Target Counting (a) One center estimate bo 19.74 3.85 <0.001 041 9.27
by 0.84 0.11 0.150
(b) Three individual estimates by 4.44 3.08 0.152 0.61 9.66
b: 0.99 0.06 0.868
(c) Mean of three estimates bo -5.22 4.79 0.282 0.75 7.77
by 1.21 0.11 0.063
Edge Marking (d) One center estimate bo 15.69 4.09 <0.001 0.44 9.00
b: 0.83 0.10 0.093
(e) Three individual estimates bg 7.34 291 0.013 0.60 9.72
b 0.88 0.06 0.048
(f) Mean of three estimates bo -4.04 4.32 0.355 0.78 7.30
b1 1.13 0.09 0.158
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(a) (b) Ricoh Theta S
Spherical Camera

NL NRF

2 Extension Rod
§ 1.6m

Tripod
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Fig. 2.1: Digital data collection methods: (a) Digital sample location design for Newfoundland (NL) and Noonan Research Forest (NRF) (Three locations
were established at the midpoint of plot radius along azimuths of 120°, 240°, and 360° in each NL plot, while only one location was set in the center for

each NRF plot); (b) tripod and camera set up for spherical image acquisition.
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Fig. 2.2: Sample geometry. For angle count sampling: (a) overhead view showing “in”, “border” and “out” tree (gray circles represent tree trunks); (b) the
relationship between horizontal angle (), tree diameter (D) and plot (inclusion zone) radius (R). The BAF determines the fixed horizontal angle 6 which

was used as the threshold to determine tree status on the spherical images.
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Fig. 2.3: Two image processing methods: (a) Edge marking method — users click on the edges of each tree. A reference bar (the length is based on BAF=1)
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is used to guide users so that every tree does not have to be marked; the line color indicates tree status based on desired BAF: black = “in”, gray = “out”);
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(b) Target count method - a transparent reference octagon, scaled to the desired BAF is provided to mark “in” trees - “out” trees are those trees smaller than

the octagon target and are not marked.
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digital sample location type (one center versus three individuals versus mean of three individuals) and two

tree marking method (target counting (left panels) versus edge marking (right panels)). The one center

estimates (a and d) were from the Noonan Research Forest (NRF) and the three estimates per plot (b and e)

and mean of three estimates (¢ and f) were from the Newfoundland (NL) spacing trials.



L9

B NL O NRF
=

=
g

p——

o 20-

Q

()

(D]

)

S o : : 41 1
o

A

lav]

o

=20 —

< 0

y—

[av]

/5]

S

M 40 -

[ [ [ [ [ [ [ [ [ [ [

2 3 4 5 6 7 8 9 10 11 12 13 14 I5
Basal Area Factor (m*/ha)

Fig. 2.5: The influence of photo basal area factor (BAF) choice on the basal area difference (field basal area — photo basal area, m*/ha) for Newfoundland

(NL) and Noonan Research Forest (NRF). The black solid line is the mean for each location and the gray dashed line indicates perfect fit



e  Edge Marking

o Target Counting
Userl —— Edge Marking Trend
—— Target Counting Trend
40 1 .,«59/ o 2l User2
201 %8 ,
0 &

60 3 ‘,di ‘/gp"' .®//

01 g ﬁﬂ ﬁ User3
el .
§ 407 “gﬁ User4
<201 *¢
5 60 O/’, 7 N Ve //,,,

01 ° P88 a User5

0| W& | ' |

0 - e 2 yd - Fs - 4
14 o 3 Go"
9% ﬁ g o, User6
e o‘ 4 o ) '
f iﬁ ; | £ e
20 P11 ) ' [

0 f————————F+————tF+rFr—

0 2040 60 0 20 40 60 0 20 40 60 0 20 40 60 0 20 40 60 0 20 40 60 0 20 40 60 80
7

Basal Area (m"/ha)

Fig. 2.6: Comparisons between field basal area and photo basal area by two marking methods (edge
marking versus target counting) among seven different users. The locally weighted scatterplot smoothing

(LOWESS) regression lines show the trends between field measure and photo.

68



Userl : . 8o . @ ® o - oge -
PBA(Edge)=18 [.]_ZBA( Count)=14
User2: . - —_ - ‘o
PBA(Edge)=12 | PBA(Count)=12
User3: o a . A v Ty
PBA(Edge)=14 | PBA(Count)=14
USCI’4: oge Y -— Y ® o
PBA(Edge)=12 | PBA(Count)=12
User5: - s M S ¢ .
PBA(Edge)=14 | PBA(Count)=14 _ *°
Uscrﬁ: - e = ° 4 - -
PBA(Edge)=10 | PBA(Count)=10
o
User7 - - -——e— ¥ - v

Userl |e e © e o o0 o o O 00 & @6 0 O edom - - - .o - “

PBA(Edge)=48 | PBA(Count)=66

User2|aa ¢ aa & o an on P a o ea Ps 0.0+ @ v e

PBA(Edge)=40 | PBA(Count)=44

Uscr3|a e o « o ® & a ao o seesih etee a i a RS o e o o

PBA(Edge)=54 | PBA(Count)=46

! °
Userd|o o o o o o - oo “ o8 @ e @ o oo - Qe8e  @e - o

PBA(Edge)=44 | PBA(Count)=50

UserS:oo. ®o e a .. ad S, c A& .0 e a PO i~ o
PBA(Edge)=58 | PBA(Count)=58 o ® °

User6| o = ° ) - 28 ° 2%, “e ° @0 o oo - @
PBA(Edge)=28 | PBA(Count)=42

]

User7: e o o 2% o o s »:':. we ° @ oo e e -

PBA( Hdge)=4‘2 | PBA(Coun't)=54 . ' . . .
0° 45° 90° 135° 180° 225° 270° 315° 360°
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Chapter 3: Plant Fraction Calculation from Spherical Images by HSV
Color Space

3.1 Introduction

Applications of image analysis in forest inventory can be traced back to the middle
of the 20™ century. For example, Reineke (1940) used photos to establish a permanent
plot record, Shelbourne and Namkoong (1966) developed a method for measuring trunk
parameters based on image geometry. Upper canopy information and light conditions
were first recorded using a hemispherical camera with a fisheye lens called the Robin Hill
camera (Evans and Coombe 1959) which produced a single image by converting a full
hemisphere to a circular plane with a polar projection (Coombe and Evans 1960, Rich et
al. 1999). Forestry and ecological researchers developed methods to maximize the
benefits of hemispherical images and improved and standardized the acquisition,
analysis, and interpretation of images using hemispherical photos (Fournier and Hall
2017 p. 2).

Initially, analyses were based on manual processing of film images, and the
information extracted from hemispherical photos was primarily used to calculate sunlight
penetration and solar radiation through canopy openings (Fournier and Hall 2017 p. 3).
Manual processing methods were slow and often subjective. With the advent of the
digital camera and personal computer, the technology to process hemispherical
photographs developed into a more automated, precise analysis based on the geometric
distributions of plant structural elements (Rich 1990, Chen et al. 1991). Analyzing
canopy gap information to derive canopy structure became a focus of research in forestry

and ecology (van Gardingen et al. 1999, Leblanc et al. 2005, Cescatti 2007). The
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improvement in image resolution, dynamic range of sensors, and richness of image
processing software greatly improved the procedures for hemispherical image acquisition
and analysis compared to film-based photography (Chianucci and Cutini 2012, Fournier
and Hall 2017 p. 117). Several studies have emphasized the effects of this revolution,
especially in terms of image resolution and digitalization (Englund et al. 2000, Inoue et
al. 2004).

Currently, image processing software can be separated into two types: commercial
software and open source (free or low cost) software. Open source software includes:
CAN-EYE (Baret and Weiss 2004), CIMES (Gonsamo et al. 2011), and GLA (Frazer et
al. 1999). Commercial software includes: HemiView (Rich et al. 1999), and
WinSCANOPY (Regent Instruments Inc. 2018). Several studies have compared different
software (Bréda 2003, Jarcuska et al. 2010, Promis et al. 2011, Fournier and Hall 2017
chap. 7). Based on these studies, it is hard to draw conclusions about which is best; it
depends on user preference, type of camera, and costs (free or commercial). Batch
processing options are often very important (Fournier and Hall 2017 chap. 5). While
well-integrated software is convenient to use, the flexibility to adjust to personal
requirements and incorporation of new processing algorithms is often limited. As a result,
several researchers chose to write their own programs to apply their novel ideas in image
processing, including: DHPT (Loffredo et al. 2016), HSP (Lang et al. 2013), and the
ImageJ Hemispherical 2.0 extension (Rasband 1997, Beckschéfer 2015).

As Chianucci and Cutini (2012) and Fournier and Hall (2017) summarized, the

processing of forest hemispherical images has four main steps: 1) Image acquisition and
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quality control; 2) Image enhancement (optional); 3) Sky and canopy pixel classification
(binarization); and 4) Extraction of attributes from classified binary images.

The first step is to obtain suitable images. Hemispherical images are normally taken
in summer when canopies are fully developed. The ideal sunlight conditions are close to
sunrise or sunset or when the sky is uniformly overcast (Leblanc et al. 2005). Uneven sky
radiance and clouds complicate image analysis (Fournier and Hall 2017 p. 119). Zhang et
al. (2005) pointed out that the exposure settings of cameras have great impacts on gaps
and its fractional determination. Default auto-exposures often do not yield accurate and
consistent gap fraction estimates (Chen et al. 1991, MacFarlane et al. 2000, Zhang et al.
2005). The best exposures for simple classification are set manually to ensure the sky is
well diffused and appears almost white and the contrast between sky and plant is
maximized (Chen et al. 1991). Generally, the most suitable manual setting is to
overexpose images by 1 — 3 f-stops of shutter speed relative to the reference exposure
measured in clear sky (Zhang et al. 2005).

The second (optional) step is image enhancement. A common enhancing filter is
sharpening based on edge enhancement provided by almost all software packages. Edge
enhancement is used to increase the contrast between small gaps and dense canopies. It is
most useful for low resolution images containing a large proportion of mixed pixels,
which means the pixel includes several different classes (Fournier and Hall 2017 p. 121).
Gamma correction is another option. Although digital cameras respond linearly to light
(Zhang et al. 2005), most camera software automatically applies a gamma logarithmic
transformation to simulate the non-linear behavior of the human eye (Cescatti 2007).

Commonly the gamma value of a camera ranges between 2.0 to 2.5 and darkens the
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midtones of an image. This often worsens the estimates of gaps within canopies (Cescatti
2007). MacFarlane et al. (2007a, 2007b) pointed out that restoring gamma values to 1.0
helps solve the large errors in those images. For cameras that record RAW image
formats, the gamma function correction is unnecessary and can be easily transferred to
binary images by linear transformation (Lang et al. 2010).

The third step is classification. Because of the importance of thresholding
segmentation and pixel classification, this step has been thoroughly investigated over the
past few decades, as Wagner and Hagemeier (2006) reviewed. Even though common
digital images have three color channels (Red, Green, and Blue, RGB), most studies only
use gray-scale values (0-255) from the blue channel for classification (Leblanc et al.
2005, Zhang et al. 2005, MacFarlane 2011). The blue portion of light is absorbed by plant
pigments and darkens the foliage in hemispherical photos (Leblanc et al. 2005,
Jonckheere et al. 2005). Using a single channel has the additional benefit of avoiding
aberrations caused by lens imperfections (Frazer et al. 2001, Leblanc et al. 2002, Fournier
and Hall 2017 chap. 5). Six binarization algorithms based on blue channel histograms
were reviewed by Glatthorn and Beckschifer (2014); however, all algorithms were
sensitive to overexposure. Exposures need to be strictly controlled when taking images.
Beckschifer et al. (2013) suggested using the camera screen to check histograms in the
field to determine whether exposures were suitable or not.

Even though images are well exposed and taken in deeply overcast conditions,
luminance heterogeneity always exists (Wagner 1998, 2001, Schwalbe et al. 2006,
Fournier and Hall 2017 p. 125). To minimize its effects, instead of using a global

threshold in which a single threshold is applied to an entire image, different regional
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thresholds are applied to parts of images according to the zenith and horizon angles
(Wagner 1998, Leblanc et al. 2005, Fournier and Hall 2017 p. 127). Appling different
thresholds for different canopy densities has been explored as well (MacFarlane 2011).
However, these optimization algorithms narrowed their attention to only blue channel
information, rather than considering full color information and textural differences
between sky and canopy.

With the development of computer vision algorithms, some novel algorithms such as
edge detection (Nobis and Hunziker 2005, Glatthorn and Beckschafer 2014) and
integrated RGB channels with different weights based on brightness obtained by hue
values (Loffredo et al. 2016) or external light sensors (Zhao and He 2016) have displayed
better tolerance to overexposure. Converting RGB color space to HSV (hue, saturation,
and value) color space (Riaz et al. 2008) is another option, For example, Chumuang et al.
(2016) used hue ranges from 110 to 130 (255 maximum) to classify green leaves and
white background while Yang et al. (2015) used an HSV decision tree to classify green
vegetation from soil background. However, both HSV methods were applied to a
common digital camera image. Based on our current literature search, this classification
method has not been applied to hemispherical images.

The fourth step is extracting canopy attributes from classified binary images. This is
a standard procedure for many hemispherical image analysis software packages.
Attributes, such as canopy closure, gap fraction, canopy openness, and so on, are well
defined by Gonsamo et al. (2013). However, for fisheye cameras, two things need
consideration: projection distortion and lens vignetting (Fournier and Hall 2017 chap. 5).

Projection distortion occurs when the fisheye lens does not conform, or strictly conform,
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to perfect polar or equidistant projection due to manufacture defects (Herbert 1987). In
these cases, additional calibration is required (Frazer et al. 2001). Lens vignetting is due
to the structure of the fisheye camera, the wide aperture always results in gradual light
fall-off near the outer image edges. Although this can be improved by applying correction
algorithms, the light conditions are difficult to correct to true values (Wagner 1998, 2001,
Schwalbe et al. 20006).

The new 360-degree spherical cameras offer an inexpensive option for obtaining full
spherical stand information with one exposure. The friendly price and compact size make
it an easy-to-use tool in the forest and may be an acceptable alternative to traditional
fisheye cameras. The purpose of this chapter is to explore whether spherical cameras can
be used to extract canopy information and whether a novel HSV threshold can produce
similar, or even enhanced, classification results compared to traditional blue channel-
based classification algorithms. Specific objectives include: 1) propose a global HSV
classification threshold to classify images into three classes: sky, foliage, and wood; 2)
compare the new HSV threshold with a blue channel-based minimum threshold as
implemented by Image] Hemispherical 2.0 extension (Beckschifer 2015); 3) compare
hemispherical and cylindrical projections of spherical images using the HSV threshold

technique and analyze the consistency between projections.

3.2 Methods and Materials

3.2.1 Study sites

There were two different sites used in this study. The first site was three early

spacing trails located in western Newfoundland (NL). These sites (Cormack, Pasadena,
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and Roddickton, Fig. 3.1) were dominated by balsam fir (Abies balsamea) with minor
components of black spruce (Picea mariana) and other boreal species. The trials were
established in the early 1980’s. At each trial, there were three replicates of five spacing
treatments: Control (no spacing), 1.2m, 1.8m, 2.4m, and 3.0m average spacing. Because
of the early spacing treatments, the NL plots are even-aged, single stratum stands with
relatively uniform stand structure.

The second site was the Femelschlag Research Study located on the Noonan
Research Forest (NRF) in central New Brunswick, Canada (Fig. 3.1). The NRF plots
were composed of a variety of stand types from pure coniferous stands to mixed
hardwood-softwood stands. Because of the variety of stand types, the NRF plots were
much more structurally diverse. A permanent 100m by 100m inventory sample grid was
overlaid on the NRF in 1999. The 83 grid intersections within the Noonan Femelschlag
Research Study were used in this study. Table 3.1 summarizes the species composition

across the two study areas.

3.2.2 Digital data acquisition

A Ricoh Theta S (Ricoh Imaging Company, LTD. 2016) spherical camera was used
to capture spherical images. Four single spherical images were captured at four different
heights (1.6m, 2.6m, 3.6m, 4.6m) at each digital sampling point (Fig. 3.2.a) using a
height pole (Fig. 3.2.b). On the NL sites, three digital sample points per replicate plot
were used. Digital sample points were located at half the plot radius at azimuths of 360°,

120°, and 240°. Plot radii varied by spacing treatment: Control (5.2m);1.2m (7.2m); 1.8m
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(10.4m); 2.4m (15.0m); 3.0m (18.0m). On the NRF plots a single digital sampling point
was located at plot center (Fig. 3.2.a).

Although the spherical camera records a 3D image, the image is stored as a 2D
digital image based on cylindrical equidistant projection using on-board camera software.
The resolution of the projected 2D cylindrical images was 5367 pixels in width and 2688

pixels in height.

3.2.3 Image processing methods

Even though hemispherical cameras take full 360°/180° images, because of the
projection distortion (Blennow 1995), resolution considerations (Leblanc et al. 2005),
light degradation (Wilson 1963, Wagner 1998, Schwalbe et al. 2006), and biological
considerations (lower parts of stems dominate more than canopy foliage) only the higher
zenith angles of the hemispherical images were used. Based on these previous studies,
Plant fraction (PF), in this study, was defined as the fraction of the image occupied by
plant pixels within a 57.5° zenith angle after distortion calibration (PFs7.5) rather than
using the full 90° hemispherical images. (Weiss et al. 2004, Jonckheere et al. 2005).

Two different approaches to calculate PF were developed in this study, the general
workflow is shown in Fig. 3.4. One approach converted cylindrical images to
hemispherical images first, then applied common fisheye processing methods
(hemispherical approach), the other approach directly applied a weight function to
classified cylindrical images (cylindrical approach). The hemispherical approach was
good for comparing the new method with traditional image processing methods, while

the cylindrical approach was more efficient for image processing.
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3.2.3.1 Hemispherical Approach

There were three steps to estimate plant fraction from spherical images in this
approach: 1) conversion from the stored cylindrical image to a hemispherical image; 2)
distortion correction; and 3) threshold classification.

1) Image Transformation

The 3D spherical images were stored as 2D cylindrical images. To transform the
cylindrical image to a hemispherical image, the spherical coordinates were required as an
intermediate transformation. For a given point, C(x;, ¥;), in the x-y pixel coordinate
system of the cylindrical image (Fig. 3.4.a), the related zenith angle (¢;) and azimuth
angle (4;) within the 3D spherical coordinate system (S, Fig. 3.4.b) was calculated using

(Aghayari et al. 2017):

2
A= (X —x;) X e
el

where X was the cylindrical image width in pixels (5367 pixels for the images used in
this study) Y was the cylindrical image height in pixels (2688 pixels for the images used
in this study); x; is the horizontal pixel coordinate; and y; is the vertical pixel coordinate
(Fig. 3.4.d). The zenith angle (¢;) ranged from -7/2 (-90°) to ©/2 (90°) while the azimuth
angle (4;) ranged from 0 (0°) to 27 (360°).

The points in spherical coordinates (S, Fig. 3.4.b) were then projected to

hemispherical coordinates (H, Fig. 3.4.c) using:
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Y
m; = 5 +sin (4;) -1
H(ml-, Tli) = Y (32)

n; = E+ cos (4;) - r;

where 7; is the radius from fisheye center to the projected point:

_ Y 0.5m — g,

3.3
2 0.57 (3-3)

L4

Duplicate pixels in the converted hemisphere image (for example, all pixels in the
first line of the original cylindrical image were converted to one center pixel in
hemispherical image), were averaged as the final pixel value in the hemisphere image.
For pixels in converted hemispherical images with no values (holes), the average value of
the eight-neighbor pixels was used.

2) Distortion correction

As shown in Fig. 3.4.c, the projected hemispherical images had distortion (note how
the edges of the ceiling light fixtures curve). To correct the distortion, an equisolid

distortion correction method (Hughes et al. 2010) was applied:

X T'l'
;' = ——=-tan|2 - arctan 3.4
Y2 V2X 4)
2

the distortion corrected point H'(m;, n;) in hemispherical coordinates (Fig. 3.4.d) was

then equal to:

Y
m; = 5t sin(4;) - 1y

n; = 0 +cos (4;) -7

H'(m,n;) = (3.5)

The procedures for averaging duplicates and filling holes were the same as those in

previous step.
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3) Threshold classification

In this step, the HSV color space threshold is applied to classify the pixels into three
classes (foliage-green; wood-red; and sky-blue; 3 color image) or two classes (plant-
white; sky-black; binary image). Unlike RGB color space that uses the three primary
colors (red, green, blue) to combine into a new color, the HSV color space uses attributes
of hue, saturation, and brightness (value) to represent colors (Hanbury and Serra 2002).

The main benefit of using HSV color space was that it was easier to use simple
linear boundaries (rectangles) to distinguish different classes such as sky pixels in
different weather conditions and foliage pixels (Fig. 3.3). The thresholds applied in this
study were Clear Sky (S1): (0.5<h<0.68, 0.45<s<1, 0.75<v<1), Diffused Sky (S2):
(0.48<h<0.61, 0.15<s<0.45, 0.85<v<1), Cloudy Sky (S3): (0<h<l1, 0<s<0.15, 0.88<v<1),
and Foliage (F): (0.17<h<0.48, 0.15<s<0.45, 0.2<v<1). The remaining space was
assumed to represent woody plant parts.

After pixel classification, hemispherical plant fraction (HPF), was calculated as the
proportion of pixels covered by plants (foliage and wood):

count of plant pixels
HPF — fp p

count of all pixels (3-6)

Similarly, hemispherical wood fraction (HWF) or hemispherical foliage fraction (HFF)

was obtained by counting wood pixels or foliage pixels and dividing by total pixels.

3.2.3.2 Cylindrical Approach

The hemispherical approach was suitable for producing images to be used in
traditional fisheye analysis software, however, it was possible to estimate PF directly

from the cylindrical images without coordinate conversion. The procedure applied the
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HSYV classification algorithm directly to the cylindrical image and determined PF for each
pixel line (CPF, cylindrical plant fraction of line /). Total CPF was then obtained by
summing the CPF; multiplied by a weight that represented a functional transformation
from row length to hemispherical annulus.

The classification procedure was the same as for the hemispherical approach
described above, just applied directly to the cylindrical image. The weight of row / was

calculated based on the relative area of the annulus of the circle at row /.

_AD-AQ-1)
W= T A(859)

(3.7)

where A(/) was the area of the hemispherical circle at row /, and A(l) = - (r/)?. In this

: , . . . Eq. (31)  Eq. (3.3)
equation, r; was the corrected hemispherical radius at row / (l ) 4]

Eq. (3.4) . . . . .
= rl’). 859 is the row number of 57.5° zenith angle in this study (; . % = Zzﬁ .

% = 858.6), s0 lgsg is the circle boundary in hemispherical images and maximum row

in cylindrical images.

The cylindrical plant fraction, CPF, was then calculated:

859
CPF = ) CPF,-w, (3.8)
=1

Similarly, cylindrical wood fraction (CWF) or cylindrical foliage fraction (CFF) can
be obtained using the same process.

The hemispherical approaches and cylindrical approaches are quite different. The
cylindrical approach is quite similar with the most common approaches applied by

several fisheye analysis software: plant fraction is estimated by dividing the image into
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several zenith annuli and azimuthal secfors (Fournier and Hall 2017 p. 133). The PF in
each sector is calculated and given a corresponding weight determined by a calibration
algorithm. The total PF (within 57.5° zenith angle) is obtained by summing all of the
sector PFs multiplied by their associated calibration weight. However, for the
hemispherical approach, the calibration function is applied first, then the classification
algorithm is used to create binary images. Which means, the hemispherical approach
measures PF at the pixel-level, while the common methods and cylindrical approach

applies calibration weight at the sector (or annulus) level.

3.2.4 Data analysis

We did not have access to a standard fisheye camera, so we are unable to compare
360° photos to standard hemispherical photos. Our analyses will instead focus on two
aspects: 1) Comparison of the HSV classification method proposed here with the
commonly used Blue-channel thresholding method; and 2) Comparison of PF estimated

from cylindrical photos (CPF) to estimates from hemispherical photos (HPF).

3.2.4.1 Comparison of classification methods

We used two analyses to examine differences between the HSV classification
method and the Blue-channel threshold method. For estimation of leaf area index,
photography is generally restricted to a few hours in the morning and late afternoon or
when sky conditions are uniform (Leblanc et al. 2005). This greatly limits the application
of this technology in operational forest inventories. The HSV method should provide a
greater range of conditions over which photography can be obtained and correctly

classified.
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The first analysis examined a series of photographs taken at the NL and NRF sites.
The cylindrical photos were re-projected as hemispherical images (hemispherical
approach) and the HSV classification method applied to estimate plant fraction (HPF), as
described above. The re-projected hemispherical images also were used as input into the
Hemispherical 2.0 ImagelJ extension (Rasband 1997, Beckschéfer 2015), and a blue
channel thresholding plant fraction estimate (BPF) obtained. The two PF estimates were
compared using 1:1 scatterplots and locally weighted scatterplot smoothing (LOWESS)
regressions. The photos were then visually classified by overall exposure level and
presence of sunspots. Examples of extreme classification deviations were identified and
performance of the two classification methods visually assessed using paired
classification images.

The first analysis allows for a broad comparison of the classification methods but
does not provide quantitative measures to judge which method performs better. In many
remote sensing classification studies, the classifications resulting from algorithms are
often compared to manual classification (Congalton 1991, Rau et al. 2011, Feng et al.
2015). However, manual classification is time consuming, since each pixel needs to be
visually assessed and its class manually determined and marked on the images.

To reduce the time required to manually classify images, selected portions of photos
were identified to represent contrasting classification challenges: 1) simple sky conditions
(pure white clouds or pure blue sky) versus variable sky (blue sky and white clouds
mixed); 2) ideal light conditions (diffuse light with uniform sky conditions) versus bright
sunlight (overexposure); and 3) heterogeneity of light with some dark (underexposed)

areas. Seven photo segments which were considered representative of different image
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features were selected and clipped from the hemispherical transformed images for
classification. This merged image was then classified using the HSV method and the
blue-channel (BC) method. The image also was manually classified using pixel by pixel
assessment in GIMP (Gimp 2008). In the manual classification, each pixel was classified
as either sky, foliage, or wood. The manual classification results were viewed as the
“true” classification value.

Error matrices (Fig. 3.5.c) were created to summarize the number of pixels correctly
classified between algorithm classified results and manual classified results. The
producer’s accuracy of each class (PA.), average accuracy (AA), overall accuracy (OA),
and Kappa coefficient were derived from the error matrices and used to evaluate
classification accuracy (Congalton 1991).

The PA: attribute was the evaluator for accuracy of class i, it can be calculated by

the following equation:

_ T
PA =" (3.9)

where n;; is the number of pixels of class i in the manual classification classified as class
j by the classification algorithm (thus n;; is the number of correctly classified pixels in
class i — the diagonal of the error matrix), and n;. = Zf:o n;; is the total number of class
pixels in manual classified image (n,. is 15).

The other attributes (AA, OA, Kappa) can be used as the evaluator for whole
images. AA is the average of individual class accuracies and was calculated using:

izo PA;

AA =
k

(3.10)
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where k is the number of classes, OA is the average of individual accuracies weighted by
class sample size; it was defined as follows:

o (PA; xn;) _ T on

0A =

(3.11)

where n.. is the number of all pixels (n.. = 36 in this case).

By definition, the higher OA or AA is, the more pixels are correctly classified,
however, misclassified pixels are not considered. The Kappa coefficient (K) is a measure
of classification accuracy that accounts for all combinations of classifications (Congalton

1991). K was calculated using Bishop et al. (1975):

o = T Zima i — T () 3.12
n? -y (n.-ny) (3-12)

Higher K means higher similarity. While the seven photo segments were merged into a
single image for classification, each segment was analyzed individually for classification
accuracy. For comparing classification methods, a two-level classification (sky vs plant)

was used.

3.2.4.2 Hemispherical versus cylindrical images

The PFs obtained from the field images using the hemispherical approach (HPF) and
the cylindrical approach (CPF) were compared using a simple linear regression:
HPF = by + b, - CPF (3.13)
If the cylindrical approach is the same as the hemispherical approach, then bo=0 and
bi=1. The parameters were evaluated using Bonferroni-adjusted alpha levels (Zar 2009).
Plant fraction (HPF vs. CPF), foliage fraction (HFF vs. CFF) and wood fractions (HWF

vs. CWF) were evaluated.
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3.3 Results

3.3.1 Classification algorithm comparison

There was a total of 957 images between the NL sites and the NRF site. Figure 3.6
shows the relationship between HPF and BPF. As can be seen in Fig. 3.6, the HSV
classification (HPF) consistently produced higher estimates than the blue channel
classification (BPF). In general, the NL values were closer than the NRF values. For both
sites, as PF increased, the differences between HSV and blue-channel generally
decreased (Fig. 3.6).

Sunflecks greatly affected the classification (Fig. 3.7), especially for the blue-
channel method. The blue-channel method overclassified sky in high light conditions,
and in one extreme case, the entire image was classified as sky.

For the seven image segments, the manual visual classification and the three
autoclassification results are shown in Fig. 3.8. In general, the HSV 3 class method failed
to classify most foliage correctly. Foliage seems to be better classified when the
background sky is blue rather than white (compare the left-hand side of Figure 3.8 d-3 to
the right hand-side). Overall, the HSV 2 class method appeared to works good in all but
the lowest, most diffused light conditions (Fig. 3.8 g-4). The blue-channel method did not
perform very well in bright light conditions (Fig. 3.8 c-5, e-5, and f-5) nor when woody
plant parts were brightly lit (Fig. 3.8 b-5); however, in low, diffuse light conditions (Fig.
3.8 g-5) it performed much better than the HSV method.

The classification accuracy statistics confirm these results (Table 3.2). AA, OA, and

K were all larger for HSV-2 than for BC-2 with the exception of image segment (g) — the
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low, diffuse light segment. The HSV-3 was not as accurate as the HSV-2 (Table 3.2), this
was primarily due to the poor classification of foliage across all seven image segments

(Table 3.3)

3.3.2 Cylindrical versus hemispherical image plant fraction estimates

Fig. 3.9 shows the relationship between PF from cylindrical images (CPF) versus PF
from hemispherical images (HPF). Correspondence between all four fractional
components was very high. The resulting regression fits and associated goodness-of-fit
statistics are shown in Table 3.4. The high r? values (0.99) and low root mean square
errors (rMSE) indicate strong linear relationships between the two image types. All bo’s
were nearly equal to 0.0 and all bi’s were nearly equal to 1.0 (because of the large
number of observations and strong linear trends, the standard errors of the parameter
estimates were very small, thus making small differences statistically “significant”, but of

no importance to the assessment of equivalent estimates).

3.4 Discussion

The results here show the potential for using a 360° spherical camera to estimate PF
as is currently done using more costly hemispherical cameras. The spherical images
stored as cylindrical projections can be easily re-projected to hemispherical images using
the coordinate transformations described in this study. These photos can then be
processed using any package that processes hemispherical photos. We demonstrate this
using Hemisphere 2.0 (Beckschéfer 2015) in ImageJ (Rasband 1997).

We did not compare our results with those obtained from a normal hemispherical

camera; However, the results we obtained are comparable to those published by others.
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For our NL plots which were boreal conifer stands, the mean PF is 68.93% + 9.40% and
with minimum 15.22% and maximum 86.61%. For related pure conifer studies,
Smolander and Stenberg obtained mean plant fractions of 67% in one Scots pine (Pinus
sylvestris) stand (2001). For pinus tabulaeformis and Larix principis-rupprechtii stand,
the mean PF was 85.69% and 79.82% respectively (Sang et al. 2008). For a mixed
conifer stand that included red fir (4bies magnifica), white fir (4bies concolor), Jetfrey
pine (Pinus jeffreyi) and Lodgepole pine (Pinus contorta), the average PF was 65% and
ranged from 43% to 78% (Musselman et al. 2012). Stenberg et al. also reported for a
Norway spruce forest, the natural canopy density (similar definition of PF in this study,
equals to 1 - openness) ranged from 10% to 77%, while the fertilized canopy ranged from
25% t0 93% (1999). For our NRF plots which were mixed species forests, the mean PF
value was 70.96% + 9.94% and ranged from 11.60% to 85.61%. Souza et al. (2008)
reported that PFs in mixed forests collected by 525 random points ranged from 83.7% to
95.8% with mean value of 89.2% + 1.5%. Several studies report values that were not very
close to our results because they used the full 90° zenith angle while our study using
57.5° zenith angle which is more effective for canopy estimation (Jonckheere et al. 2005,
Pekin and MacFarlane 2009, Gonsamo et al. 2013). Future work should include a direct
comparison with dedicated hemispherical cameras to clearly assess differences between
spherical and hemispherical approaches.

In addition to the re-projected images being comparable, we show that nearly
identical PF values can be obtained directly from the cylindrical projections provided the
projection weights are applied to the latitudinal PFs (Fig. 3.9). The ability to obtained PFs

from the cylindrical projections reduces the image processing time and preserves the full
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resolution of the 360° images (5367 by 2688 in the cylindrical space and 26882 in the
hemispherical space). In addition, the cylindrical photos can be used to obtain other forest
attributes useful for forest inventory such as basal area (Wang et al. Under review;
Chapter 2, this thesis) and sum of height® (Hsu 2019). These parameters coupled with PF
may be used to select forest inventory plots (Hsu 2019) or to estimate stand-level
parameters such as volume or biomass.

The HSV thresholding method was able to obtain total PF estimates comparable
with the commonly employed blue-channel thresholding method (Figs. 3.7 & 3.8). The
PF values obtained using HSV thresholding were almost always larger than those
obtained using the blue-channel thresholding (Fig. 3.7) especially on over-exposed
images. The results obtained from the manual classified image segments suggest that the
HSV method is more accurate than the blue-channel method except in low, diffused light
conditions (Fig. 3.8, Table 3.3). Though ImagelJ used the minimum threshold algorithm,
which proved the most accurate in well exposed images, the sensitivity of single blue
channel histogram to overexposure is unavoidable (Glatthorn and Beckschéfer 2014),
because this minimum thresholding algorithm is based on the assumption of well diffused
light conditions (one peak at the minimum, zero, gray value) and its histogram shape
character. The overexposed images had blue channel histograms that were distorted to a
distinct peak around the maximum value (Beckschéfer et al. 2013) and did not follow the
ideal shape.

Initially, it was hypothesized that the HSV thresholding would be able to distinguish
foliage from wood; however, these results were very poor (Fig. 3.8 and Table 3.4). One

possible solution is setting different thresholds for different brightness (or canopy
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densities) in different horizon angle regions of individual images (Wagner 1998, Leblanc
et al. 2005, MacFarlane 2011), or dynamically and automatically adjusting thresholds
(Glatthorn and Beckschéfer 2014, Fournier and Hall 2017 p. 125). Almost all auto-
thresholding algorithms are based on the histogram shape of the blue channel, which can
be easily affected by overexposure that frequently occurs in auto-exposed photographs
(Glatthorn and Beckschéfer 2014), the idea of auto-adjusting in these algorithms can be
achieved by fitting general image brightness to suitable HSV thresholds. In addition to
adjusting threshold values, edge detection algorithms, which are based on image texture
(Nobis and Hunziker 2005); the gamma function correction, which shows more accurate
than common histogram algorithm (MacFarlane et al. 2007b); and applying RGB
channels by different weight (Loffredo et al. 2016, Zhao and He 2016) may address this
issue as well.

The HSV thresholding method allows for greater range in exposure than the blue-
channel method, thus extending the time of day for which quality photos can be obtained.
However, even with the extended exposures, best results were obtained in uniform
overcast sky, such as sunrise, sunset, or cloudy weather (Leblanc et al. 2005). We did not
attempt to control the exposure of these images. Not only for higher efficiency and
convenience in data collection, but also those well controlled image exposures are almost
dark or binary, and have low compatibility with other attribute measurements such as
wood and foliage fraction (this chapter), stand basal area (Chapter 2), and individual tree
DBH, HT, and position mapping (Chapter 4). Also several, hemispherical studies use
automatic exposure. As reviewed by Beckschéfer et al. (2013) in 61 publications using

hemispherical images, there were 13 studies that clearly stated using auto-exposure, 20
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studies did not state this but have high possibility of using default auto-exposure. Eleven
studies used 2-3 EVs higher than reference open areas as suggested by Zhang et al.
(2005), eight studies used other exposure settings compared with reference open areas,
and five studies took several different exposures in the field and picked the best to
analyze. Additional work examining exposure control may enhance the results obtained
here.

For future work, several suggestions are recommended: 1) Taking brightness into
consideration, the Z axis should be automatically adjusted by individual exposure to
avoid misclassification in Fig. 3.8.g; 2) Update current Ricoh Theta S (Ricoh Imaging
Company, LTD. 2016) to Ricoh Theta Z1 (Ricoh Imaging Company, LTD. 2019), which
can provide finer resolution (6720 % 3360) and RAW image formats. Higher resolution
can produce fewer mixed pixels and their effects (Blennow 1995, Glatthorn and
Beckschéfer 2014). The RAW image format is not affected by gamma function and can

be converted to images that are easier to classify (Lang et al. 2010).

3.5 Conclusion

In this study, a 360° spherical camera was applied to estimate plant fraction, an
important canopy attribute. The resulting re-projected hemispherical photos could be
used in existing hemispherical image processing software to estimate plant fraction and
the values obtained were similar to those reported by others for similar forest types. A
novel HSV color space thresholding method was developed to classify sky, wood and
foliage pixels and compared with a traditional single blue channel based minimum

thresholding classification algorithm implemented in ImageJ Hemispherical 2.0
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extension. Based on manual classification, the HSV method performed better than the
blue-channel method except in low diffused light conditions. Our results show the new
HSV threshold can achieve better results in over-exposed conditions than Hemispherical
2.0. We also were able to estimate plant fraction directly from the cylindrical images
without reprojection. Our results show that the spherical camera can be a powerful tool
for canopy analysis with a much lower price tag. As this technology matures, finer
resolution and the ability to obtain RAW image formats will improve the quality of

canopy estimation obtainable with this technology.
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Table 3.1: Percent species composition (by basal area) across the two study sites used in this study

Species Name Percent Species Composition'

Common Name Scientific Name Cor Pas Rod NRF
Balsam Fir Abies balsamea 7239 9794 97.51 12.55
Larch/Tamarack Larix laricina - - - 2.79
White Spruce Picea glauca 12.21 1.14 1.86 -
Black Spruce Picea mariana 3.40 - 042 13.16
Red Spruce Picea rubens - - - 21.02
Eastern White Pine Pinus strobus - - - 2.98
Eastern Hemlock Tsuga canadensis - - - 1.47
Manitoba Maple Acer negundo - - - 0.50
Red Maple Acer rubrum - - - 22.71
Sugar Maple Acer saccharum - - - 0.46
Yellow Birch Betula alleghaniensis 0.05 - - 0.87
Paper Birch Betula papyrifera 1.85 0.92 021 16.64
White Ash Fraxinus americana - - - 1.75
Black Ash Fraxinus nigra - - - 0.03
Tupelo Spp. Nyssa sylvatica - - - 0.22
Eastern Cottonwood Populus deltoides - - - 2.02
Largetooth Aspen Populus grandidentata - - - 0.83
Trembling Aspen Populus tremuloides 10.09 - - -
Other Hardwood 1.20 - - 0.12

"Newfoundland Early Spacing Trials: Cor = Cormack; Pas = Pasadena; Rod = Roddickton. NRF = Noonan
Femelschlag Research Area
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Table 3.2: Classification accuracy assessment results. (BC-2 = blue-channel classification with 2 classes (sky — plant), by ImageJ, HSV-2 = HSV
thresholding with two classes, and HSV-3 = HSV thresholding with three classes (sky — wood — foliage))

Image Average Accuracy (AA) Overall Accuracy (OA) Kappa (K)

Segment BC-2 HSV-2 HSV-3 BC-2 HSV-2 HSV-3 BC-2 HSV-2 HSV-3
(a) 0.780  0.926 0.679 0.800 0.930 0.846 0.581 0.858 0.718
(b) 0.619 0936 0.641 0.594 0933 0.891 0.227  0.867 0.792
(c) 0.734  0.843  0.630 0.778  0.866  0.761 0.506  0.713  0.551
(d) 0.906 0945 0.739 0964 0977 0.867 0.868 0917  0.565
(e) 0.627  0.699 0.510 0.689  0.748  0.726 0.284 0.434 0413
) 0.500 0.753  0.528 0.450 0.729  0.710 0.000 0.481 0.474
(2) 0.875 0.590 0.428 0.940 0.867 0.545 0.770  0.265 0.150

Average 0.720  0.813  0.593 0.745 0.864 0.764 0.462  0.648  0.523




Table 3.3: Classification accuracy assessment for HSV 3 classes

Image Producer’s Accuracy
Segment Sky = Wood Foliage
(a) 0.963 0.874 0.226
(b) 0.984 0.881 0.058
(c) 0.979 0.472 0.440
(d) 0.994 0949 0.274
(e) 0.995 0.452 0.083
3} 0.989 0.594 0.002
(g) 0.182 0988 0.115

Average 0.869 0.744 0.171
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Table 3.4: Simple linear regression results for hemispherical approach versus cylindrical approach. The

linear model is PF® = b0 + b1*PF9, if PF9 is the same as PF®, then b0=0 and b1=1

Elements Parameters Estimate Std.Err. r? rMSE

(a) Plant Fraction b0 0.029 0.0010 0.99 0.004
bl 0.977 0.0014

(b) Sky Fraction b0 -0.006 0.0004 0.99 0.004
bl 0.977 0.0014

(c) Foliage Fraction b0 0.002 0.0003 0.99 0.004
bl 1.008 0.0013

(d) Wood Fraction b0 0.009 0.0006 0.99 0.004
bl 0.998 0.0011

Param. = Parameter; Est. = Estimate; Std. Err. = Standard Error;

rMSE = root Mean Square Error.
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Fig. 3.1: The location of sites used in this study. The first site was three early spacing trails located in western Newfoundland (NL), Canada, the second site

was the Femelschlag Research Study located on the Noonan Research Forest (NRF) in central New Brunswick, Canada.
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Fig. 3.2: Digital data collection methods. (a) Digital sample location design for three sites in Newfoundland (NL) and Noonan Research Forest (NRF)
Study. For NL sites, three locations were established at the midpoint of plot radius along azimuths of 360°, 120°, and 240°. For NRF, only one location

center was set. (b) tripod and spherical camera set up for spherical image acquisition at different heights (1.6m, 2.6m, 3.6m, 4.6m).
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Fig. 3.3: The HSV thresholds for different classes. S1 is clear sky, S2 is diffused sky, S3 is cloudy sky,

while F is foliage. (the remaining space is assumed to be woody stems and branches)
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Fig. 3.4: The workflow of two approaches to estimate plant fraction (PF) from spherical photos. The left

blue workflow is the hemispherical approach (HPF) which converts original cylindrical images to

hemispherical images first then apply algorithms commonly used in hemispherical images. The right green

one is the cylindrical approach (CPF) which directly calculate the PF value on original cylindrical images

without image converting.
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(a) Classified image

(b) True image
(visual inspection)

Class: sky = stem = foliage =.
(¢) Error matrix
True (visual inspection)
Class Total

e e
0 11 1 4 16
Classified 0 10 10
0 4 6 10
Total 11 15 10 36

Fig. 3.5: Classification accuracy assessment by error matrix. (a) is the result produced by image

generated by classified and true images.
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classification algorithm, (b) is the result by visual inspection as true value, (c) is a comparison error matrix




Cll

100 = 100
(b)

o

=

S 75 1

8

g

=

g

= 50 A

E

2

g /

g 25 - ‘ Cormack
a, ’ Pasadena
% Femel Roddicton
= —— Trend line L, —— Trend line

0 y 1 T 0 E T T T
25 50 o 100 0 25 50 75 100

Blue-channel Plant Fraction (BCPF)

Fig. 3.6: Classification results comparison between HSV threshold in hemispherical approach (HPF) and ImagelJ blue channel threshold (BPF). (a) is NRF
site and (b) is NL sites
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Fig. 3.7: Several extreme plant fraction values differences caused by overexposure and flashed out.
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1 sky @ wood HEE foliage B plant

Fig. 3.8: Classification results for two algorithms (HSV threshold and Blue-Channel threshold) by 7
representative image segments. (a) (b) white pure sky from COR_R3_S18 1; (c) pure blue sky from
Femel 33 11; (d) gradual change sky from ROD_R2 S18 1; (e) (f) over exposure from Femel 29 16 and

Femel 33 13 respectively; (g) underexposure from Femel 31 13.
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Fig. 3.9: Classification results comparison by two approaches. The spherical images were classified into 3

classes: sky (b), foliage (c), wood (d). The plant class (a) is the sum of foliage and wood.
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Chapter 4: Estimating Individual Tree Heights and DBHs from
Spherical Images

4.1 Introduction

Forests are the dominant terrestrial ecosystems which account for over three quarters
of gross primary productivity and plant biomass on the Earth (Pan et al. 2013). They can
provide many ecosystem services including watershed protection, soil structure
maintenance, and global carbon storage (Chazdon 2008). To better manage these forest
areas, detailed and accurate forest inventories at different levels should be conducted to
obtain required information about forest conditions and resources (Kershaw et al. 2016).

Individual tree stem attributes, such as diameters, heights and spatial locations, are
critical measurements in most forest inventories (Kershaw et al. 2016, Lam et al. 2017,
Mulverhill et al. 2019). Diameter at breast height and total tree height are the
fundamental parameters used in allometric equations to estimate biomass, volume, and
carbon (Smith and Brand 1983, Blake et al. 1991, Lambert et al. 2005, Xing et al. 2005,
Zianis et al. 2005). How to measure these parameters across large scale forests with high
efficiency and low costs is a continuing challenge for all forest inventory specialists.

Compared to field data collection, remote sensing is a more time and labor-saving
method for large-scale landscape inventories. Although total height can be estimated
from 3D point clouds generated from airborne LiDAR (Hilker et al. 2010, Giannetti et al.
2018), and some algorithms have shown success in estimating DBH from canopy data
based on individual tree segmentation (Li et al. 2012, Kaartinen et al. 2012, Strimbu and
Strimbu 2015), individual tree attributes are still difficult to estimate accurately and

precisely due to canopy cover (Strimbu et al. 2019) and low point cloud densities below
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the canopy. Under canopy measurements are still required due to the limitations of the
above canopy methods (Wells 2018, Strimbu et al. 2019).

For under canopy measurements, traditional tools such as diameter tapes and
clinometers are widely used. These basic tools have been modified and digitized to make
field data collection more efficient. Field measurement tools can be lumped into 2 broad
classes: contact and optical (Clark et al. 2000a). Contact tools are often used for diameter
measurements. The Biltmore stick (Jackson 1911), calipers, diameter tape, and sector
fork (Bitterlich 1959, Clark et al. 2000a) are contact tools for measuring diameters. All of
these tools have been refined and improved over time including several digital versions
(Clark et al. 2000a). Most non-contact tools focus on optical methods. Optical calipers,
rangefinder dendrometers, and optical forks for measuring diameters are a few examples
(Clark et al. 2000a), and even some smartphone applications (Anton 2019).

Although several of these instruments have high accuracy and precision, the higher
costs and the continued focus on individual trees limit wide-spread use, and many
instruments have disappeared from the market (Clark et al. 2000a, Shimizu et al. 2014,
Perng et al. 2018). Laser and sonic instruments for measuring tree heights have had
greater success than digital instruments for diameter measurement (Clark et al. 2000a).
The success of these instruments over similar ones for DBH measurement is probably
due to the difficulty and time-consuming nature of height measurement using traditional
tools. More repeatable measurements and reduced field time has contributed to these
instruments being widely adopted in forest inventory operations.

Photogrammetry has had a long history of use in forestry. Reineke (1940) was

among the first to develop the idea of using terrestrial images in forestry. Field measured
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distances were commonly used in early studies (Reineke 1940, Clark et al. 2000b). In
addition to using distance to establish scale, reference targets with known length or size
(poles, tags, or laser facula) was another popular method to establish scale and has been
widely applied in photogrammetry studies (Dean 2003, Varjo et al. 2006, Pengle et al.
2013, Shimizu et al. 2014, Celes et al. 2019). Multiple images with known shifts in
position can also be used to establish scale (Clark et al. 1998).

Many studies focus only on single tree images and individual tree measurements.
However, for inventory efficiency, methods to extract estimates for multiple trees without
the need to shift the camera for each tree of interest are required (Stewart 2004, Perng et
al. 2018). DeCourt (1956) demonstrated how images could be used to estimate basal area
per ha using angle count sampling methods (Bitterlich 1984). However, the cost of print
images and manual processing limited the use of this method, especially since field
implementation of angle count sampling was already a very efficient forest inventory
technique. With the advent of affordable digital cameras, Stewart (2004) revived this idea
and took a series of 8 photographs at 45° intervals to estimate stand basal area. Fastie
(2010) took images at 8.5° intervals (504 images in 12 rows by 42 columns) to stitch
ultra-high resolution panoramas to estimate stand basal area. Dick et al. (2010) used a
single row of 24 horizontal images to map tree locations from stitched panoramas. Lu et
al. (2019) recently expanded this idea to measure tree diameters at different heights.
However, for parameters other than stand basal area based on angle count sampling, all of
these studies required scale tags (Dick et al. 2010, Lu et al. 2019) on each tree or
measured field distances and slopes (Lu et al. 2019). Measuring or tagging individual

trees is time consuming and costly, and, other than providing a permanent record of field

118



conditions, the images have no benefit for improving inventory field efficiency. In
addition, errors resulting from the stitching of several digital image cannot be avoided
(Fastie 2010, Dick et al. 2010, Perng et al. 2018, Lu et al. 2019).

Structure from motion (SfM) technology enables 3D reconstruction from image
series without actual measurements (Snavely et al. 2008). Several studies have shown its
potential to solve the need for field targets and/or measuring dependencies. This
technique has been applied to 3D reconstruction of individual stems (Larsen 2006a,
2006b, Miller et al. 2015, Surovy et al. 2016, Mokros et al. 2018), and to stand level
forest point cloud development (Liang et al. 2014, 2015, Forsman et al. 2016, Liu et al.
2018). The mapping accuracy from SfM is similar to TLS (Liang et al. 2014). However,
the inconveniences of this technology include: 1) requiring walking through sample plots
and obtaining a large number of images (Berveglieri et al. 2017, Liu et al. 2018); 2)
although point clouds can be generated automatically by commercial software, the quality
control (always a factor when stitching images) and point cloud generation and analyzes
requires a high performance computer and complex algorithms (Belton et al. 2013, Liang
et al. 2015, Mulverhill et al. 2019); and 3) measurements still need to be extracted from
the point clouds.

Using wide-angle hemispherical lenses has potential to eliminate errors caused by
stitching images and could potentially simplify calculations. Paired fisheye cameras have
been used to obtain stem diameter, basal area, mapping and volume without dependence
on field measurements (Rodriguez-Garcia et al. 2014, Sanchez-Gonzélez et al. 2016).
Berveglieri et al. (2017) developed an automated algorithm by matching hemispherical

images at different heights to estimate stem diameters. More recently, the development of
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affordable 360° spherical cameras offer new opportunities for obtaining optical tree
measurements (Perng et al. 2018). Spherical cameras, like the Ricoh Theta S (Ricoh
Imaging Company, LTD. 2016), offer an inexpensive option for obtaining spherical
inventory images directly. The compact size of a spherical camera makes it an easy-to-
use tool in the forest and can be moved through the canopy using a height pole to obtain
structural estimates more easily than traditional fisheye cameras and other digital
cameras. For example, Mulverhill et al. (2019) used this new technology to generate 3D
plot point clouds and significantly decreased the number of images required for accurate
point cloud rendering. The results showed high correspondence with field measured data
(Mulverhill et al. 2019). Although the procedures are mostly automatic, the other
inconveniences of using SfM technology mentioned above remain.

Furthermore, it might be questioned as to the need to generate a 3D point cloud and
then do measurements, when those basic measurements can often be done directly on the
images. What is really required is a simplified system for obtaining spherical images in
stereo. The goal of this study was to develop an approach to obtain such spherical image
pairs and apply stereoscopic geometry to estimate diameter, height, and location
(mapping) of individual trees directly without any field measurement dependency. The
specific objectives were: 1) derive the geometry for two vertically displaced spherical
image pairs to estimate desired tree attributes; 2) test the technique in an open urban

setting; and 3) assess accuracy and precision in a real forest situation.
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4.2 Methods and materials

4.2.1 Study sites

Urban Site — The University of New Brunswick campus located in Fredericton,
New Brunswick, Canada (Fig. 4.1) was used for validating the approach in an open
situation where visibility was not an issue. Two plots were selected for this phase of the
study. The criteria for sample point selection included: 1) Open forest conditions with a
moderate number of trees (7-12 trees) with each tree’s tip and base clearly visible; 2)
Trees have different distances to the sampling point; and 3) Variable diameters and
heights of the individual trees.

Forest Site — One replicate from an early spacing trail located on western
Newfoundland Island, near Roddickton, Newfoundland, Canada (Fig. 4.1) was used for
testing the approach in a real forest condition. The spacing trials, with different densities
and resulting tree sizes was an ideal field setting for this test. The site was dominated by
balsam fir (4bies balsamea) with minor components of black spruce (Picea mariana) and
other boreal species. The trials were established in the early 1980’s. Five spacing
treatments were applied: Control (no spacing), 1.2m, 1.8m, 2.4m, and 3.0m average
spacing. Because of the early spacing treatments, the NL plots were even-aged, single

stratum stands with relatively uniform stand structures within spacing treatments.

4.2.2 Data collection

The method developed here uses stereo pairs of spherical images and spherical
geometry to estimate diameter at breast height (DBH, cm) and total height (HT, m).

Images are acquired at 1.6m and 2.6m above ground. The geometric derivations are given
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and the method is validated in an urban forest situation and then tested in a real forest

situation.

4.2.2.1 Digital Image Pairs

A Ricoh Theta S (Ricoh Imaging Company, LTD. 2016) spherical camera was used
to capture spherical images. Two single spherical images were captured at 1.6m and 2.6m
above ground at each digital sampling point at both study sites. The spherical camera was
mounted on a height plot that was stabilized using a tripod (Fig. 4.2.a) and raised to the
desired digital sample heights. On the Urban Site, a single digital sampling point was
located strategically among the trees of interest (Fig. 4.2.b) to ensure visibility and a
variety of camera to tree distances.

On the Forest Site, three digital sample points per replicate plot were used (Fig.
4.2.b). Multiple digital sample points were used to minimize tree occlusion and facilitate
measurement of as many plot trees as possible. Digital sample points were located at half
the plot radii at azimuths of 0°, 120°, and 240°. Plot radii varied by spacing treatment
(Control (5.2m);1.2m (7.2m); 1.8m (10.4m); 2.4m (15.0m); 3.0m (18.0m)) with the aim
of having about 100 trees per plot at the time of treatment establishment (1982). For each
digital sampling point the GPS coordinates were obtained using multiple sampling over a
10 — 15 minutes period using a Garmin Map76CS GPS.

Although the spherical camera recorded 360° spherical images, the images were
stored using cylindrical equidistant projections. The resolution of the projected

cylindrical images was 5367 pixels in width and 2688 pixels in height.
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4.2.2.2 Urban Site Data

The Urban Site was used to test the feasibility and check the algorithm logic. Using
the criteria described above, the sampling points were located and all trees who’s base
and top were clearly visible from the sampling point were identified. For each selected
tree, flagging tape was wrapped around the tree circumference at breast height (1.3m) to
facilitate visibility and a numbered target placed on each tree to facilitate matching field
and image measurements.

The DBH of each tree was measured using calipers and diameter tape. Diameter
tapes are often used in operational forest inventories. The DBH estimates using the
diameter tape was used as the “field value” (FieldDBH). Because cross-sections of tree
trunks are not, generally, perfect circles and often elliptical, at best, and normally
irregular, the diameter projected onto an image may vary substantially depending on
projection azimuth. The projected DBH was measured using calipers and was measured
along the tree axis perpendicular to the projection azimuth (ProjectedDBH).

The algorithms used to estimate DBH and HT were derived using projection
geometry (Section 4.2.3). HT was measured in the field from 2 different perspectives: 1)
the mean height (ProjectedHT) measured at the digital sampling point; and 2) from a
convenient and reasonable location to clearly see the tree tip and base (FieldHT).

To be able to separate logic errors from image measure errors, the required
projection angles from the two digital sample heights to the tree tips and bases were
measured in the field using a TruPulse laser hypsometer (Laser Tech, Denver, CO) and
recorded to the nearest degree (Y°). The four field measured projection angles were

labeled as: FieldU16, FieldBi.s, FieldU26, and FieldB2.s corresponding to the upper
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projections angles (FieldU) and base projection angles (FieldB) and the subscripts
denoting digital sample height. The field projected angles were measured at the digital
sample heights using a ladder. Finally, the horizontal distance (FieldR) from camera to

each tree was measured using a TruPulse laser hypsometer.

4.2.2.3 Forest Site Data

As with the Urban Site Data, DBH (nearest 0.1cm) and HT (nearest 0.1m) of each
individual tree in one replicate from the spacing trial were measured using a diameter
tape and laser hypsometer. However, because the spherical images were acquired for a
different purpose than individual tree measurement, trees were not individually identified
and tagged in the field so that they could be aligned on the spherical image. Therefore,
comparisons between field measurements and spherical measurements were limited to

plot level rather than individual tree level.

4.2.3 Image processing algorithms

The general workflow includes: 1) marking the key points (base and tip) of each
individual tree on the cylindrical image; 2) determining the pixel coordinates of the key
points in the cylindrical images and conversion to latitude and longitude in spherical
coordinates; 3) applying spherical geometry to the spherical coordinates to estimate
distance, slope deviation and tree height parameters; and 4) determining the vertical pixel
coordinate (y) for breast height (1.3m) in the cylindrical images, marking the left and
right tree trunk edges (horizontal angles) at 1.3m, determining the intersection angles to

camera center, and estimating DBH by spherical geometry.
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The goal of this study was to estimate individual tree DBH and HT using two
stereographic spherical images. The images were obtained at 1.6m and 2.6m above
ground at the digital sampling point as described above. In preliminary analyses, other
digital sample heights were examined (3.6m and 4.6m) and, while tree tip visibility
improved, these heights resulted in increased difficulties observing tree bases, so 1.6m
and 2.6m were selected for ease of implementation.

We used a spherical geometric approach to estimate tree distance from camera (R),
slope elevation change (Ah), HT, and DBH (Fig. 4.3 & Fig. 4.4). The digital sample
height, P1 and P2 were located at (0, Z1) and (0, Z2) respectively (Z1 = 1.6m and Z> =
2.6m in this study, Fig. 4.3.a). R was defined as the radial distance (m) of the tree from
the digital sample point (R was always considered positive in our derivations). Ah (m)
was defined as the slope elevation change from ground level at the digital sampling point
to ground level at the base of the tree.

Tree base and tree tip were the key points (Fig. 4.3) needing to be marked in the
cylindrical images which are stored as a simple x-y matrix images using a cylindrical
projection. All key points extracted from the cylindrical images were in pixel coordinates.

To implement spherical geometry, these pixel coordinates (x;, y;) needed to be
transformed into spherical angles (lon,,lat,) using the methods of Aghayari et al. (2017):

27
lon. =(X —x,)x—
;= ( ) 5%

4.1)
lat, = (y, —%)x O;ﬂ-

where X was the cylindrical image width in pixels (5367 pixels for the images used in

this study); Y was the cylindrical image height in pixels (2688 pixels for the images used
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in this study); x; was the horizontal pixel coordinate; and y; was the vertical pixel
coordinate. The zenith angle (latitude, lat;) ranged from -7/2 (-90°) to 7/2 (90°) while the
azimuth angle (longitude, lon;) ranged from 0 (0°) to 27 (360°).

There were four key heights for each tree: To, T1, T2, and T3 (Fig. 4.3.b).
Determination of R and Ah required the angles from the digital sample heights to the tree

base (B1 and P2, derived from /at,):

tan(pB,)=(Z,—Ah)/R

tan(B,) = (Z, —Ah)/R (4.2)
Solving the system of equations in (4.2) for Ah leads to:
A= Z,tan(B,)—Z, tan(B, )
T _t (4.3)
an(p,)—tan(p,)
and R is then obtained using:
Rl=Z,—Ah or Rzzzz—Ah )
tan (B, ) tan (B, ) :

The point To was then defined as, relative to the ground level of the digital sample point
(0,0), as (R, Ah). The points T1 and T2 were then defined as (R, Z1) and (R, Z2)
respectively and the heights are: Hi = Z1 — Ah and H2 = Z> — Ah (if Ah <0, Hi > Zi). Point
T3 was then (R, Z1+R*tan(t1)) or (R, Z>+R*tan(t2)). H3 is then Hi+R*tan(t1) or
H>+R*tan(12) and is the total height (HT) that we desired. Because our spherical
geometric definitions assume that both the camera and the tree are perfectly vertical, any
lean in either will produce errors. To account for some of this error, we expressed HT as
the average of H3 derived using P1 and H3 derived using P2. The effect of camera lean

was further explored below, effect of tree lean was not considered further.
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Tree diameter (DBH) is typical measured at 1.3m (breast height). To estimate DBH
from the images, it was first necessary to locate 1.3m on each image. The angle from

horizontal to 1.3m was estimated for each image (Fig. 4.4.a) using:

, _tan_l(l.S—(Zl—Ah)]
= b e M’

R

45
[ 1322 ah) (4.5)
’ R

Because the cylindrical projection places the horizon at the center of the image, the
vertical pixel coordinate for 1.3m on both cylindrical images was calculated using the

two horizontal angles:

_ X "
y‘_(zj 180
4.6)
Y Y2 (
S R R+ S
Y2 [2) 180°

where yi = the pixel number of the row, Y = the total number of vertical pixels, and yi are
the horizontal angles calculated in (4.5).
DBH was then estimated from the tree projection angle on each image (Fig. 4.4.b).

Tree projection angle () was estimated by marking the left (B:) and right (B;) tree

W, = 360 (—Xr’l)_(xu j

4.7
X2 7 X2 j 4.7

boundaries:

, :360( <

where x1 and xr were the horizontal pixel coordinates of the left and right side of the tree
at 1.3m in cylindrical images (projected B; and B, points in stereo coordinates), X = the

127



pixel width of the image. The distance from the camera to the tree center, as shown in

Fig. 4.4.c, was the slope distance (L) shown by the blue line in Fig. 4.4.b:

R +DBH/2
L=—"—"'%
cos(y,)
| _R+DBH/2 (4-8)
P cos(y,)
DBH (cm) was then estimated using (Fig. 4.4.c):
DBH, =200L, sin (e, )
DBH, = 200L, sin (o, ) (4.9)
Because Li depends on DBHi, eq. (4.9), must be solved for DBH yielding:
200sin (";) R
DBH, =
. (o
[cos(yl )- sm(zﬂ
(4.10)
200sin [“;j R
DBH, =
. [ o,
{cos(y2 )—sin (ZH

As with R and HT, DBH was estimated as the average from the two images:

DBH = (DBH, + DBH, ) / 2. To facilitate extraction of the required image measurements,

a graphical interface was developed in Python3.6 (Fig. 4.5).
4.2.4 Data analysis

4.2.4.1 Urban Data Analyses
The primary purpose of the Urban study was to collect data in an idea situation and

then identify which components of the process were most difficult to extract from the
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images. In the field we collected all distances (FieldR) and view angles (FieldB and
FieldU) as if they were extracted from the images (ImageR, ImageB, and ImageU). These
values were then compared to the values obtained from the images using linear regression
to check whether logic errors exist in geometry when deriving key points marked in pixel
coordinates to projection angles. If the image and field values were the same, then the
intercept for the regression should be 0 and the slope 1. To check whether logic errors
exist in geometry of tree traits calculation, these field view angles (FieldB and FieldU)
were used to calculate the distance (FieldRDerived) and tree heights (FieldHTDerived)
by image geometries and compared with those actually measured in field (FieldR,
ProjectedHT, and FieldHT) by linear regression mentioned above. Then all the image
derived traits (ImageR, ImageDBH, and ImageHT) were compared with field measured
(FieldR, ProjectedDBH, FieldDBH, ProjectedHT, FieldHT) by linear regressions.
Finally, an analysis about what factors contribute to potential errors was conducted, the
distance from tree to camera (R), the horizontal view angle of tree trunk edges (®), the
mean projection angle of tree tip from two digital sample heights (1), and mean vertical
view angle from tree bases to tree tips (t+f) were taken into consideration, the trend of

error changes with increasing of these factors is shown by LOWESS regression.

4.2.4.2 Forest Data Analyses

As noted above, the images from the Roddickton spacing trials were originally taken
for area-based estimation, not individual tree measurement. As a result, there was no
attempt to match individual trees within the images, so the trees were not tagged. This

made it very difficult, if not impossible, to match individual field measurements with
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image measurements for conducting pairwise statistical tests. Instead, we focused on
distributional statistics at the plot level to compare DBH and HT estimates. The two-
sample Kolmogorov-Smirnov test (Hodges 1958) which tests whether two samples were
drawn from the same continuous distribution, was used here. Our null hypothesis was
that the field measured samples and image measured samples were distributed the same.
The alternative hypothesis was that they were not distributed the same. We assume that
equal distributions convey a level of confidence that our technique was measuring DBH

and HT correctly. This assumption ignores potential bias in trees visible in the images.

4.3 Results

4.3.1 Urban forest validation

Fig. 4.6 shows the relationship between image measured angles for individual tree
key points versus field measured angles for the key points at the two digital sample
heights. The key points of tree tip and tree base in images from the two digital sample
heights were fundamental for estimating HT and DBH. The correspondence between all
image measured angles (ImageB and ImageU) and field measured angles (FieldB and
FieldU) was generally very high (Fig. 4.6). There was more deviation in tree tip angles
than in tree base angles (Fig. 4.6). The associated goodness-of-fit statistics are shown in
Table 4.1. All bis were nearly equal to 1. Only b for the 2.6m tip angle was significantly
different (p<<0.05) from 1. The bos were more variable; however, none were significantly
different (p<<0.05) from 0 (though bo for the 2.6m tip angle was close to p = 0.05). The
high 12 values and low rMSE further confirm strong linear relationships between field and

image angle measures, which indicates that the key points for the individual trees were

130



marked correctly on the images and demonstrates that there are not logic errors in angle
calculation using the spherical projections.

Fig. 4.7 shows comparisons between tree measures derived from field measured
angles to those values measured in field (only vertical angles were measured in the field -
horizontal angles were too small to reliably measure using hand tools). The radial
distance, R (Fig. 4.7.a), which was only a function of base angles was very accurately
estimated from the images. Similarly, ProjectedHT, the tree height as viewed from the
digital sample point, was also very accurately estimated using image measurements (Fig.
4.7.b). FieldHT, the actual tree height as measured from an appropriate view angle,
however, was not very accurately estimated, especially in the upper range (Fig. 4.7.c).

Table 4.2 shows the goodness-of-fit statistics for the simple linear regressions of
field measured values versus field derived values. For ProjectedHT, bo was close to 0 and
b1 to 1 with high r* and low rMSE. However, the DerivedHTs were significantly different
(p<0.05) from the FieldHTs (Table 4.2). The r* was lower and the rMSE was much
higher for FieldHT versus DerivedHT. While DerivedHT was significantly different
(p<0.05) than FieldHT, similar results were obtained if we fit FieldHT versus
ProjectedHT with 1?=0.88 and rMSE=1.16, demonstrating the importance of measuring
tree heights at an appropriate location.

Fig. 4.8 shows the relationships between field measured distance (FieldR) and image
estimated distance (ImageR). While the ImageR was slightly underestimated compared to
FieldR, the simple linear regression (Table 4.3) showed no significant differences

(p>0.05) with a high r*> and low rMSE.

131



As with DerivedHT, ImageHT was not significantly different (p > 0.05) from
ProjectedHT (Fig. 4.9); however, ImageHT was significantly different (p < 0.05) from
FieldHT. As FieldHT increased, there was a trend of increasing overestimation (Fig.
4.9b) similar to what was observed for DerivedHT (Fig. 4.7¢). The significance of these
trends was confirmed by the linear regressions (Table 4.3).

For DBH estimation (Fig. 4.10), all bos and bis were not significantly different from
0 and 1, respectively, (p > 0.05) for both ProjectedDBH and FieldDBH. The high 1%s
(0.96) and low rMSEs (around 2.4) confirmed strong linear relationships between image

measured DBHs and field measured DBHs.

4.3.2 Field forest test

The distributional comparisons between field measured attributes and image
estimated attributes for the NL spacing study are shown in Fig. 4.11 and the KS test
results are given in Table 4.4. With the exception of the 1.2m spacing treatment, the
number of measurable trees on the images were lower than the number of trees measured
on the actual field plots (Table 4.4), despite having 3 digital sample points per plot. A
previous study using the NL spacing trials and spherical images to estimate basal area via
modified angle count sampling (Wang et al. In Review, chapter 2, this thesis) showed no
visibility bias for angle count sampling; however, this does not appear to be the case for
numbers of trees on fixed area plots.

For DBH and HT measurements of individual trees, the results obtained in the forest
situation are very different from what were observed in the urban setting. With the

exception of the Control spacing (S00), all image HT distributions were not significantly
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different (p>0.05) from field distributions (Fig. 4.11 and Table 4.4). On the other hand,
only the 3.0m spacing (S30) produced DBH distributions that were not significantly
different from field distributions (Fig. 4.11 and Table 4.4). These results are the opposite
of what was observed in the Urban situation where DBH was estimated consistently more

accurately than HT.

4.3.3 Factors contributing to potential errors

To understand how different attributes contribute to the errors in tree measurement
obtained from the images, we focus assessment on the urban trees because there were
more controls on the field measurements and we could align individual trees between
field and image measures. The effects of distance (R), HT, and DBH on the errors
between field and image measurements (Error = Image — Field) are shown in Fig. 4.12,
Fig. 4.13, and Fig. 4.14, respectively.

The overall trend for errors associated with R was an increasing negative error with
increasing distance (increasing underestimation of ImageR with increasing FieldR);
however, this trend was largely driven by a single tree located far from the digital
sampling point. FieldR errors ranged from about -5.0m to about 1.0m, again with the
largest absolute error associated with the farthest tree from the digital sampling point.
The more general trend was an increasing variability in error with increasing FieldR.
Within the range of most field plot radii (11.28m is widely used in eastern North
America), the results are very good with almost no trends in errors (Fig. 4.12.a). The
trends of increasing negative errors with increasing tree size was primarily due to

extreme trees in the urban setting — extremely far away, extremely tall, or extremely large
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diameter. Excluding these trees results in much less obvious effects of tree size on
distance errors, as would be expected, since distance does not depend on tree size (other
than large trees are easier seen on the images).

For FieldHT, with the exception of one tree, all errors were within about + 2.5m
(Fig. 4.13). Surprisingly there was no consistent, obvious trend with increasing FieldR
(Fig. 4.13.a); however, while there was no obvious bias, there was decreasing variation in
error with increasing FieldR. Similarly, field measured tree size had very little influence
on error (Fig. 4.13.b&c). The lack of bias with increasing FieldHT was offset by an
increasing trend in variance: as FieldHT increased, the range of errors tended to increase
(Fig. 4.13.b). Similar trends were observed for FieldDBH (Fig. 4.13.c). The trends in
errors associated with FieldDBH are the result of high correlation between FieldDBH and
FieldHT rather than a cause and effect relationship between error and FieldDBH.

Errors for DBH are shown in Figure 4.14. DBH errors ranged from about -5.0 cm to
5.0 cm. Variation in error decreased with increasing FieldR; however, there was no
noticeable trends (bias) in error with increasing FieldR (Fig. 4.14.a). Initially, it looks like
there was a very strong increasingly negative trend with increasing tree size (especially
for FieldHT; Fig. 4.14.b); however, both the FieldHT trend (Fig. 4.14.b) and FieldDBH
trend (Fig. 4.14.c) were driven by a single tree that was both the tallest and largest
diameter tree in the data set. If this tree was excluded, there were no trends associated
with FieldHT and a slightly increasing variability with increasing FieldDBH, especially

above 30cm DBH (Fig. 4.14. ¢).
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4.4 Discussion

The goal of this study was to examine the potential of using spherical images to
estimate individual tree diameter and height. This method was applied in an open urban
setting and in a real forest situation. Our results observed a good correspondence with
field measured data in the urban area, while the real forest results were more mixed.

Our urban area validation showed that correspondence between image measured and
field measured DBHs was high for both ProjectedDBH (measured by caliper at image
view angle) and for FieldDBH (measured with diameter tape) (Fig. 4.8). However, for the
real forest test, the results were not as good, distributions of image derived DBHs were
consistently larger than distributions of field measured DBHs (Fig. 4.11). For height
estimation, the urban forest study showed a high correspondence with ProjectedHT
measured in field, however, it did not perform as well with height measured from proper
place where the tree tip can be seen clearly (FieldHT). However, surprisingly, in the
forest situation, the image measured height (ImageHT) was distributed similarly to field
measured height (FieldHT) for all spacings except the control.

There are several possible explanations for the reversed results in the two study
areas. First, the urban trees were substantially larger (bigger DBH and higher height) than
the forest trees. The urban tree height ranged from 10 m to 25 m (Fig. 4.9), and the urban
DBH ranged from 15 cm to 70 cm (Fig. 4.10), while, the forest trees had a DBH range
from 5 cm to 25 cm with large variation within and between the different spacing
treatments (Fig. 4.11.a-¢). Only the 3.0m spacing treatment had low variability within the

treatment, and this was the treatment that was not significantly different for DBH. In
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contrast, the forest trees had HTs lower than about 15m with very narrow variability
within and between the spacing treatments (Fig. 4.11.1-)).

Density probably played an important role as well. In the urban setting, the trees
were well spaced and the boles clearly distinguishable against a background of grass. In
the forested situation, especially at the narrower spacings, the tree trunks often
overlapped in the background making it very difficult to clearly distinguish the tree
edges. The smaller trees were most likely easier be missed when marking trees for
measurement. If the trunk edge was not clearly distinguishable, those trees were not
marked on the images. Given that we had three digital sampling points per forest plot, the
larger trees were probably more visible across multiple images as well, further
contributing to the bias toward larger trees. For example, consider the control plot (S00)
and 1.2m spacing plot (S12) field distribution which showed an abundance of very small
trees (Fig. 4.11.a&b) - these two plots had the worst performance for DBH estimation.
Because we did not attempt to eliminate the repeated measures of trees across images,
this probably contributed significantly to the overestimation problem observed in this
study. Furthermore, the problem with hidden trees, which exists in all panoramic images
(Dick et al. 2010), was an additional source of bias in this study.

The uniformity in the field height distributions (Fig. 4.11) negated any visibility bias
for the image height distributions. In addition, the shorter conifer trees in the forested
situation, with their cone-shaped crowns, made it easier to identify the real tree tip. As
Kershaw et al. (2016 p. 117) pointed out, there is a tendency to overestimate the height of

large, flat-crowned trees using the tangent method. Our results in Fig. 4.13 also show
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how even isolated trees can be overestimated (in this case, greater than 7 m) due to close
proximity to measurement location.

Unlike other under canopy remote sensing techniques, irregularity in tree cross-
sectional shape did not appear to be a problem in this study, at least in the Urban setting
(Fig. 4.10). Stem irregularities can cause errors in image derived DBH estimates (Perng
et al. 2018). Several studies have addressed this issue by either taking images at different
azimuths around the stem, or constructing 3D models (Larsen 2006a) or even generating
3D point clouds to assess stem geometric structure (Ringdahl et al. 2013, Liang et al.
2014, Surovy et al. 2016, Mokros et al. 2018). Though these methods produce small
errors (<12%; (Ringdahl et al. 2013) and low rMSEs: 1.27c¢cm — 2.39cm (Liang et al.
2014, Surovy et al. 2016, Mokros et al. 2018)), however, the computation requirements
limit their wide-scale application in forest inventories. Our results show, if accounting for
the optical fork effects (Grosenbaugh 1963), the error can be decreased to an acceptable
level. In our case, errors were 2.4 + 1.6 cm. Similarly, Celes et al. (2019) reported an
uncertainty of approximately =1 cm and Lu et al. (2019) had errors within £6 cm with the
assistance of field reference targets.

One of the biggest limitations for applying spherical images to whole plot
measurement is tree visibility, not only for small trees far away from plot center with
very narrow view angles, but also for trees occluded by larger trees near plot center.
Instead of using fixed area sampling with spherical images, angle count sampling (as
shown in Chapter 2) is a powerful sampling technique that could eliminate or minimize
this limitation. By controlling the basal area factor, the visibility issue can be controlled

(Wang et al. In Press (chapter 2, this thesis); Dick 2012). As shown by Wang et al. (In
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Press; this thesis Chapter 2), hidden tree effects can be further minimized using three
digital sampling points.

The measurement methods developed here could be integrated into a Big BAF
sampling scheme as well (Bell et al. 1983, Iles 2003, Marshall et al. 2004). The Big BAF
system uses a small BAF to estimate basal area, and larger BAF to select trees to measure
HT and DBH. If designed carefully, less than one tree per plot, on average, needs
measured (Bell et al. 1983, Marshall et al. 2004, Yang et al. 2017), thus eliminating the
potential for bias due to visibility, as observed here.

One of the key next steps is to replicate the measurement protocols used in the urban
setting in a forested situation where field and image measurements could be matched.
This will help eliminate some of the uncertainty we obtained in our forested test. There
are several additional improvements that could greatly improve the efficiency and
accuracy of this technique. Development of an automatic key point matching algorithm
between the two spherical images using pattern matching algorithms would decrease the
image processing workload and eliminate some user error associated with manual
marking. Time-motion studies comparing in field measurement times with image
measurement times would also provide additional insight into gains in measurement

efficiency associated with this technique.

4.5 Conclusion

Though the use of images in forest inventory has a long history with numerous
methods to estimate desired forest attributes, the use of vertical paired spherical images

has not been explored prior to this study. Our results show this novel technology can
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achieve good correspondence with field measures; however, issues of visibility need to
be considered when applying the technique operationally. Appropriate sampling units,

such as angle count sampling, may minimize some of these issues.
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Table 4.1: Simple linear regression results for angle measured from image and field. The linear model is Y=b0+b1*X, if Image (X) is the same as Field

(Y), then b0=0 and b1=1

X Y Param. Estimate Std. Err. p-value r> rMSE

ImageBis FieldBie bo 0.093 0.258 0.722  0.991 0.809
bi 1.028 0.022 0.209

ImageUis  FieldUise bo 1.247 1.064 0.255 0.989 1.557
bi 0.963 0.224 0.116

ImageB2s  FieldBas bo -0.039 0.357 0914  0.991 0.964
bi 0.994 0.022 0.800

ImageUz  FieldUz6 bo 1.941 1.008 0.069  0.989 1.563
bi 0.951 0.022 0.040

Param. = Parameter; Std. Err. = Standard Error; tMSE = root Mean Square Error.



871

Table 4.2: Simple linear regression results for factors measured from field and field angle derived. The linear model is Y=b0+b1X, if field angle derived

(X) is the same as Field measured (Y), then b0=0 and b1=1

X Y Param. Est. Std. Err. p-value r? rMSE
DerivedR FieldR bo -0.180  0.542 0.743 0974 0952
b1 1.058 0.039 0.153
DerivedHT ProjectedHT bo 0.653 0.743 0.390 0949 0971
bi 0.990 0.052 0.851
DerivedHT FieldHT bo 3.954 1.245 0.005 0.761 1.627
b1 0.692  0.087 0.002
ProjectedHT  FieldHT bo 3.032  0.900 0.003 0.880 1.155
b1 0.731 0.060 <0.001
Param. = Parameter; Est.=Estimate; Std. Err. = Standard Error; rMSE = root Mean Square
Error.
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Table 4.3: Simple linear regression results between image estimates and field measures. The linear model is Y=b0+b1*X, if Image measured (X) is the

same as Field measured (Y), then b0=0 and b1=1

X Y Param. Est. Std. Err. p-value r? rMSE

ImageR FieldR bo -0.180 0.542 0.743 0974 0.153
bi 1.058 0.039 0.153

ImageHT ProjectedHT bo 0.653 0.743 0.390 0.949 0.971
bi 0.990 0.052 0.851

ImageHT FieldHT bo 3.954 1.245 0.005 0.762 1.627
bi 0.692 0.087 0.002

ImageDBH  Projected DBH bo -1.246 1.546 0.430 0.966 2.398
bi 1.039 0.044 0.378

ImageDBH FieldDBH bo 0.116 1.578 0.942  0.962 2.448
bi 0.999 0.044 0.963

Param. = Parameter; Est. = Estimate; Std. Err. = Standard Error; rMSE = root Mean Square

Error.



Table 4.4: Summary of KS-Tests for real forest validation. Plot radii varied by spacing treatment (Control
(S00, 5.2m);1.2m (S12, 7.2m); 1.8m (S18, 10.4m); 2.4m (S24, 15.0m); 3.0m (S30, 18.0m))

Plot Field Image Factor KS Value p-value
Tree# Tree#

S00 94 63 DBH 0.4262 <0.001
HT 0.2518 0.013
S12 56 92 DBH 0.3602 <0.001
HT 0.2096 0.079
S18 103 60 DBH 0.2589 <0.001
HT 0.1126 0.6697
S24 137 96 DBH 0.2600 <0.001
HT 0.1393 0.198
S30 122 59 DBH 0.1555 0.257
HT 0.1188 0.577
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Fig. 4.1: Two study sites locations in this study.
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Fig. 4.2: Digital data collection methods. (a) tripod and spherical camera set up for spherical image acquisition at two different heights (1.6m and 2.6m).
(b) Digital sample location design for urban area feasibility validation and real forest application. For Urban Site, only one location center was set. For

Forest Site, three locations were established at the midpoint of plot radius along azimuths of 0°, 120°, and 240°.
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Fig. 4.4: The DBH calculation in spherical geometry. (a) is the calculation for 1.3m height in image. (b) is the hint about DBH boundary marking and

distance to tree center in stereo coordinates (using 1.6m digital sample height for example); (c) is the geometry calculation for DBH.
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Fig. 4.5: The graphical user interface that used to extract the key points coordinates of individual trees for parameter calculation. The images show in this

figure are plot B with steep slope. And the yellow line shows the horizontal line (the equator) of spherical images.
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Chapter 5: General Conclusion

A new 360° spherical camera was used to obtain several tree and forest attributes in
this pilot study. It offers an inexpensive option for not only recording current forest
conditions, but also for obtaining similar stand and tree measurements as commonly
obtained with traditional inventory tools. The compact size of a spherical camera enables
it to be easily used in the forest and lifted through the canopy to get canopy structural
information. It is much more compact and affordable than traditional digital or
hemispherical cameras. This study showed the potential for spherical camera applications
by: 1) extracting stand basal area using angle gauge sampling concepts; 2) estimating
plant fraction using an automated classification based on a new HSV thresholding
algorithm that can classify sky, foliage, and woody components of the image; and 3)
applying spherical geometry to estimate DBH, and height of individual trees based on
stereoscopic spherical photos.

Stand basal area was extracted from spherical images using modified angle-count
sampling methods. An open source software called ‘“Panorama2Basal Area”

(https://github.com/HowcanoeWang/Panorama2BasalArea) was developed in Python3.6

to estimate basal area from spherical photos. Two modes for identifying “in” trees were
developed. The first mode, referred to as edge marking, required edges of each tree on an
image to be carefully marked. From the edge boundaries, the projection angle was
calculated, and the projection angle compared with the desired horizontal angle to
determine whether the tree is counted or not. The second mode, referred to as target

counting, used a reference octagon target to compare tree projection angle to desired
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horizontal angle. Trees larger than the target are counted as “in” trees. The first mode has
the advantage that, once trees are marked, any basal area factor (BAF) can be applied.
Using appropriate basal area factors can reduce the number of hidden trees (Bitterlich
1984, Iles 2003, Yang et al. 2017), eliminates the need to mark very small trees, and can
be incorporated into more sophisticated sampling schemes such as big BAF sampling
(Iles 2012, Yang et al. 2017), On-the-other-hand, target marking is simpler, more similar
to field applications of angle count sampling, and results in higher consistency between
different users, but requires repeated marking for different BAFs. Careful selection of
BAFs can reduce visibility bias without increasing variation substantially. Multiple
digital sampling locations within a sample point can also decrease effects of visibility
bias.

Hemispherical estimates of plant fraction and/or gap fraction have been widely used
in forestry and ecological studies (Cescatti 2007, Lang et al. 2010, Fournier and Hall
2017). Traditionally, hemispherical cameras have been used to estimate canopy structure.
In this study, we show how the upper part of the spherical image can produce similar
images through projection transformation and similar estimates of canopy structure. We
also develop the geometry to produce plant fraction estimates directly from the
cylindrical projections of spherical images (the native format that spherical images are
stored). Our results showed that the two approaches can achieve almost identical
estimates. The cylindrical approach is more efficient since it does not require
reprojection. A major advantage of the spherical camera is its cost compared to
hemispherical cameras with the spherical camera costing less than 5% of most

commercial hemispherical cameras and often producing higher resolution images.
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In addition to simply extracting plant fraction from spherical images, we also
explore new ways for pixel classification. The most basic image processing step is pixel
classification, which separates the sky from the plant portions of the image. Traditional
classification algorithms are often based on blue channel histogram thresholding which
has narrow requirements for photo brightness and exposure quality control. Obtaining
suitable photos for blue channel thresholding limits the time of day and weather
conditions under which photos can be obtained. The ideal photos for blue channel
thresholding are almost black and white and are not suitable for any other analyses. We
developed a novel classification algorithm based on HSV color space. In addition to
simply classifying sky versus plant, this classification scheme can also specify foliage
and wood classes.

Several manually classified representative samples were used as true values, and the
HSV versus blue channel thresholding were compared. Based on the kappa coefficient,
the new HSV algorithm was more tolerant to overexposed images than the traditional
blue channel classification algorithm. However, underexposed images did not result in
good classification results based on current thresholds for overexposed images. The
spherical camera will be more powerful as finer resolution, RAW image formats, and
automatic brightness adjustment become available in newer camera models. The
availability of user software development kits (SDKs) have to the potential to make these
cameras extremely powerful canopy analyzers in the near future.

Finally, we applied spherical geometry to stereo spherical images to obtain estimates
of tree diameters and heights. Using trees from an open urban setting demonstrated that

tip and base angles can be accurately obtained from cylindrical projections of spherical
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images to obtain tree height estimates and that tree horizontal projection angles can be
accurately measured to obtain diameter estimates. While projection angles can be
accurately measured, the resulting tree heights were not comparable to properly measured
tree heights primarily because of the inability to clearly see tree tips in many of the
images. Diameters, on the other hand, were accurately measured both in terms of
projected diameter and diameter based on diameter tape measures.

When applied in a forest setting, heights were more accurately measured than
diameters — the opposite of what was obtained in the urban setting. This was primarily a
function of differences in tree size. The spacing trial used in this study produced a broad
range of tree diameters. As spacing increased, tree diameter increased, and so did the
accuracy of diameter estimation from photos (Fig 4.9). Small trees produce very small
horizontal angles, and small errors in edge pixel identification can result in large errors in
diameter estimation. Another limitation of the field test was that we did not identify
individual trees so that measurements could be aligned. The multiple digital photo points
probably resulted in multiple measurements of the larger trees and more chances of
missing the smaller trees. The wider spacing produced bigger trees that were farther
apart, thus making it easier to identify tree edges. Accuracy of height estimates, on the
other hand, were not affected by the differences in spacing trials. Height is generally
insensitive to spacing (Lanner 1985). The Newfoundland trees were also quite short
(generally less than 20m) making it easier to see tree tips and minimizing errors
associated with identifying tree tips.

This work demonstrated the potential of spherical cameras for obtaining basic forest

inventory estimates and individual tree estimates. While there are some limitations to
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these values, there are many benefits to them that merit additional investigation. First, the
spherical images provide quick estimates of important forest attributes that can be
subsequently used in hierarchical sampling schemes to improve field efficiency (Hsu
2019). Implementation of onboard camera processing may also improve the efficiency of
spherical images for forest inventory applications. Image segmentation or machine
learning classification may produce more automated identification and marking of
individual trees further reducing individual observer variation. The spherical camera
represents a low-cost option to terrestrial laser scanning and may be able to produce more
accurate forest-level estimates in a quicker time frame than what is currently possible

with TLS technology.
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Appendix A: Panorama2BA Software Code

All the following codes in this appendix can be download from: https://github.com/

HowcanoeWang/Panorama2BasalArea/tree/master/app

gui.py

# -*- coding:utf-8 -*-

Panorama2BasalArea Beta 0.1: Calculate forest BA values from spherical
(panorama) images by manual tree selection.

Author: Howcanoe WANG

GUI class structure:

-- Pano2BA()
|-- class MenuBar(pack="top")
|-- self.progressbar(pack="bottom")
[-- self.left_frame(pack="Lleft")
| |-- self.img_table(pack="top")
| |-- self. btn_frame(pack="bottom")
| |-- self.add_img_btn(pack="left")
| |-- self.del_img_btn(pack="right")
|-- self.right_frame(pack="right")
| |-- self.tree_table(pack="right")
|-- class ScrolledCanvas (pack="top")

import os

import sys

import xlwt

import traceback

from tkinter import Tk, Button, Menubutton, Menu, Canvas, Scrollbar, Label, Frame, TclError, IntVar, Radiobutton
from tkinter.simpledialog import askstring, askfloat

from tkinter.filedialog import asksaveasfilename, askopenfilename, askdirectory

from tkinter.messagebox import askokcancel, showwarning, showinfo, showerror, askyesno, askyesnocancel
from tkinter.ttk import Treeview, Progressbar

from PIL import Image, ImageDraw

from PIL.ImageTk import PhotoImage

from PIL.ImageOps import equalize

from db import DataBase

from numpy import ones, arange, sqrt, sin, cos, pi

from ba import plot_ba_calculator, max_baf, in_tree_pixel

class Pano2BA(Tk):

saved = True
title_name = 'Panorama2BA’
img_info = {'img_id': [], 'img_dir': [], ‘img_name': [],
‘width': [], 'height': [], 'baf': [], "in_num': [], 'ba': []}
# edge mode
tree_info = {'tree_id': [], 'left': [], 'right': [], 'width': [], 'state': []}
# click mode
# tree_info = {'click_id': [], 'x':[], 'y':[], 'width':[], 'state':[]}

def _ init_ (self):
Tk.__init_ (self)

self.config(bg="white")
self.protocol("WM_DELETE_WINDOW", self.quit_save_confirm)
self.wm_state('zoomed') # maximize windows

self.w = self.winfo_width()
self.h = self.winfo_height()

self.mode = Intvar() # 0 for edge mode, 1 for bar mode
self.mode.set(®) # default edge mode

# =
# creating components
# =
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self

self.

self

self

self.
self.
self.

self.
self.
self.
self.

self

self.
self.
self.

self.

# ==

.MenuBar = MenuBar(self)

progressbar = Progressbar(self, orient="horizontal', length=100, mode='determinate')

.left_frame = Frame(self)
self.
self.

img_label = Label(self.left_frame, text="Image Management Panel")
img_table = Treeview(self.left_frame, show="headings", columns=('Image Name', ‘BAF', 'In', 'BA"))

.img_table_bar = Scrollbar(self.left_frame)

btn_frame = Frame(self.left_frame)
add_img_btn = Button(self.btn_frame, text="Add img(s)", state='disabled', command=self.add_img)
del_img_btn = Button(self.btn_frame, text="Del img(s)", state='disabled', command=self.del_img)

right_frame = Frame(self)

tree_label = Label(self.right_frame, text="Tree Management Panel")

mode_frame = Frame(self.right_frame)

edge_mode = Radiobutton(self.mode_frame, text="Edge Selection”, command=self.change_selection_mode,
variable=self.mode, value=0)

.ball_mode = Radiobutton(self.mode_frame, text="Ref.Ball Clicking", command=self.change_selection_mode,

variable=self.mode, value=1)
tree_table = Treeview(self.right_frame, show="headings", columns=('No.', 'Width', 'State’))
tree_table_bar = Scrollbar(self.right_frame)
del_tree_btn = Button(self.right_frame, text="Del selection(s)", state='disabled', command=self.del_tree)

ScrolledCanvas = ScrolledCanvas(self)

# Components configs

self.
self.
self.
self.
self.
self.
self.
self.

self.

self

self.
self.
self.
self.
self.

self

self.
self.

self.
self.
self.
self.

.add_img_btn.config(bg="white")
.del_img_btn.config(bg="white")
self.

del_tree_btn.config(bg="white")

img_table.column('Image Name', width=130, anchor='center')
img_table.column('BAF', width=4@, anchor='center")
img_table.column('In', width=40, anchor='center"')
img_table.column('BA', width=40, anchor='center')
img_table.heading('Image Name', text='Image Name')
img_table.heading( 'BAF', text='BAF')
img_table.heading('In', text='In")

img_table.heading('BA', text='BA")

img_table_bar.config(command=self.img_table.yview, bg='white')

.img_table.config(yscrollcommand=self.img_table_bar.set)

tree_table.column('No."', width=40, anchor='center")
tree_table.column('Width', width=50, anchor='center")
tree_table.column('State', width=45, anchor='center")
tree_table.heading('No.", text="'No.")
tree_table.heading('Width', text="Width")

.tree_table.heading('State’, text='State')

tree_table_bar.config(command=self.tree_table.yview, bg='white")
tree_table.config(yscrollcommand=self.tree_table_bar.set)

bind('<Control-n>', self.MenuBar.new_project)
bind('<Control-o>', self.MenuBar.open_project)
bind('<Control-s>', self.MenuBar.save_project)
bind('<Lock-KeyPress>', self.show_capslock_warning)

# connect to the control of Scrolled Canvas

self.
self.
self.
self.
self.

self.
self.
self.

self.
self.

# =

# packing components

# =

self.

self.

self.

bind('<space>', self.ScrolledCanvas.open_create_tree_mode)
bind('<KeyPress-Shift_L>"', self.ScrolledCanvas.press_shift)
bind('<KeyRelease-Shift_L>', self.ScrolledCanvas.release_shift)
bind('<KeyRelease-Control_L>', self.ScrolledCanvas.refresh_zoomed_image)
bind('<KeyPress-r>', self.ScrolledCanvas.press_r)

img_table.bind('<ButtonRelease-1>", self.open_img_project)
img_table.bind('<Button-3>', self.change_baf)
img_table.bind('<Button-2>', self.change_baf_all)

tree_table.bind('<ButtonRelease-1>', self.center_tree)
tree_table.bind('<KeyPress-Delete>', self.del_tree)

MenuBar.pack(side="top', fill='x")
progressbar.pack(side="bottom', fill="x")

left_frame.pack(side='left', fill='y")
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def

def

def

def

def

self.img_label.pack(side="top"', fill="x")
self.btn_frame.pack(side="bottom', fill="x")
self.add_img_btn.pack(side="left', fill="'x"', expand='yes')
self.del_img_btn.pack(side="right', fill='x', expand='yes"')
self.img_table_bar.pack(side="right', fill='y")
self.img_table.pack(side="top', fill='y', expand='yes')

self.right_frame.pack(side="right', fill="y")
self.tree_label.pack(side="top', fill="both")
self.mode_frame.pack(side="top", fill="both")
self.edge_mode.pack(side="1left", fill="both")
self.ball_mode.pack(side="right", fill="both")
self.del_tree_btn.pack(side="bottom', fill="x")
self.tree_table_bar.pack(side="right', fill="y")
self.tree_table.pack(side="top', fill="both', expand='yes')

self.ScrolledCanvas.pack(side="top', fill="both', expand='yes")
self.update_title()

make_unsaved(self):
self.saved = False
self.update_title()

update_title(self):
if self.saved:
title_suffix v

else:

title_suffix = '* (Not saved)
if self.ScrolledCanvas.zoom_ratio != 1:

title_zoom = ' [' + str(self.ScrolledCanvas.zoom_ratio * 100)[:3] + '%]"
else:

title_zoom =

full_title = self.title_name + title_suffix + title_zoom
self.title(full_title)

quit_save_confirm(self):

def _do_quit():
self.quit()
if os.path.exists('~$default.sqlite’):
db.conn.close()
os.remove( '~$default.sqlite")

if not self.saved:

ans = askokcancel('Warning', "Changes not saved, continue quit and drop all changes?")

if ans:
_do_quit()
else:
_do_quit()

update_progress(self, value):

# value 1is between @ and 100
self.progressbar[‘value'] = value
self.progressbar.update()

add_img(self):

mode = askyesnocancel('Add mode selection', 'Add images from folder? (Choose no to just add a single image)')

if mode is not None:
if mode: # add by folder
folder_name = askdirectory(title='Choose an image folder')
if folder_name != '': # select a folder
ask_keyword = True
while ask_keyword:
keyword_string = askstring(title="'Input include keywords',

prompt="support image type:(*.jpg, *.jpeg, *.png)\n"
"leave empty or type '*' to add all images,\n"

"keywords should split by
"e.g. 'cor; rua -19' means
"add images have 'cor' OR
if keyword_string is not None: # input a string
keyword_string = keyword_string.replace('; ', ';')
keyword_string = keyword_string.replace(’ ', ';')
if keyword_string == '’

';' or space
-' before a word to exclude this word\n===============\n"

>

rua' but do not contain '19'")

or keyword_string == "*': # input all images

img_dir_list, img_name_list = self._get_all_image_dirs(folder_name, '*')

else:
keywords = keyword_string.split(';")

img_dir_list, img_name_list = self._get_all_image_dirs(folder_name, keywords)
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satisfy = askyesnocancel('Import confirm', 'Import all the following images? '
'[Yes] to add, [No] to re-input keywords,
‘[Cancel] to stop adding\n'+str(img_name_list))
if satisfy is None: # stop adding
ask_keyword = False
else:
if satisfy: # confirm to add
img_mode_choice = askyesnocancel('Default mode Selection’,
'The default tree marking mode is
'Edge Marking[Yes] or Clicking[No]
‘or ignore[Cancel]?')

if img_mode_choice:
img_mode = ©
else:
img_mode = 1

ask_keyword = False
length = len(img_dir_list)
for i, img_dir in enumerate(img_dir_list):
#----- for Lab use only------
if img_mode_choice is None:
if '_r' in os.path.basename(img_dir)
img_mode = 1
else:
img_mode = @
# - for Lab use only------
db.add_img(img_dir, img_mode)
self.update_progress(int(10@ * i / length))
self.refresh_img_table()
self.open_img_project()
self.make_unsaved()
self.update_progress(100)
else: # cancel adding
ask_keyword = False
else: # add single img
img_dir = askopenfilename(title='Choose an image’,
filetypes=[('JPEG', '.jpeg, .jpg'), ('PNG', '.png')])
if img_dir != "":
img_mode_choice = askyesnocancel( 'Default mode Selection’,
'The default tree marking mode is Edge Marking[Yes]'
' or Clicking[No] or ignore[Cancel]?')
if img_mode_choice is None: # Cancel
# for Lab use only
if '_r' in os.path.basename(img_dir)
img_mode = 1
else:
img_mode = ©
elif img_mode_choice == True:
img_mode = ©
else:
img_mode = 1
db.add_img(img_dir, img_mode)
self.update_progress(50)
self.refresh_img_table()
self.open_img_project()
self.update_progress(100)
self.make_unsaved()

@staticmethod
def _get_all_image_dirs(folder_name, keywords='*"):
img_dir_list = []
img_name_list = []
g = os.walk(folder_name)
for path, dir_list, file_list in g:
for file_name in file_list:
# check whether it is a image file
pick = False
for suffix in ['.jpg', '.jpeg', '.IPG', '.IPEG', '.png']:
if suffix in file_name:
pick = True
if not pick:
continue

if keywords == '*': # add all images
img_dir = os.path.join(path, file_name)
img_dir_list.append(img_dir)
img_name_list.append(file_name)

else:
include = False
exclude = False
for key in keywords:

if '-' in key: # exclude keywords
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ex_key = key[1:]
if ex_key in file_name:
exclude = True
else: # include keyword
if key in file_name:
include = True
if include and not exclude:
img_dir = os.path.join(path, file_name)
img_dir_list.append(img_dir)
img_name_list.append(file_name)

return img_dir_list, img_name_list

def del_img(self):
selections = self.img_table.selection()
length = len(selections)

rm_img_id_list = []

rm_img_name_list = []

for iid in selections:
img_id = int(iid)
img_table_row = self.img_info['img_id'].index(img_id)
img_name = self.img_info['img_name'][img_table_row]
rm_img_id_list.append(img_id)
rm_img_name_list.append(img_name)

self.update_progress(20)
confirm = askyesno('warning’, 'Are you sure to remove the following images?\n' +
str(rm_img_name_list) + '\nall tree data in these image will also get lost')
if confirm:
for i, img_id in enumerate(rm_img_id_list):
db.rm_img(img_id)
steps = int(70 * i / length)
self.update_progress(20 + steps)
self.refresh_img_table()
self.update_progress(95)
self.open_img_project()
self.make_unsaved()
self.update_progress(100)
else: # cancel remove
self.update_progress(100)

def change_baf(self, event=None):
if self.del_img_btn['state'] == 'normal': # have data in img_table

baf = askfloat('Change BAF', 'Input the BAF value (float, e.g. 2.0) changing to:')

if baf is not None:
self.update_progress(10)
db.edit_img_baf(self.ScrolledCanvas.img_id, baf)
self.ScrolledCanvas.baf = baf
self.refresh_tree_table()
self.update_progress(40)
self.local_refresh_img_table(baf)
self.update_progress(70)
self.ScrolledCanvas.open_img(reload=False, recenter=False)
self.update_progress(100)
self.make_unsaved()

def change_baf_all(self, event=None):
if self.del_img_btn['state'] == 'normal': # have data in img_table
if not self.saved:
asksave = askyesnocancel("Warning”, "You changes have not been saved, save it? \n"
"[Cancel] to cancel changing all BAFs, \n"
"[No] to changing all BAFs without saving current changes")
if asksave is None:
return
if asksave: # == True
self.MenuBar.save_project()

baf = askfloat('Change all BAFs', 'Input the BAF value (float, e.g. 2.0) changing all the images to:')
if baf is not None:
confirm2 = askyesno("Warning", "Confirm changing all BAF to value " +
str(baf) + '?\nThis operation can not undo.")
if confirm2:
db.edit_img_baf_all(baf)
self.refresh_img_table()
self.refresh_tree_table()
self.ScrolledCanvas.open_img(reload=False, recenter=False)
self.make_unsaved()

def del_tree(self, event=None):

confirm = askyesno('warning’, 'Are you sure to remove selected records?’)
if confirm:
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selections = self.tree_table.selection()
length = len(selections)
for i, iid in enumerate(selections):
tree_id = int(iid)
if self.mode.get() == @: # edge mode
db.rm_tree(tree_id)
else: # click mode
db.rm_click(tree_id)
steps = int(9@ * i / length)
self.update_progress(steps)
self.refresh_tree_table()
self.local_refresh_img_table(baf=self.ScrolledCanvas.baf)
self.update_progress(95)
self.ScrolledCanvas.open_img(reload=False, recenter=False)
self.update_progress(100)
self.make_unsaved()
else: # cancel remove
self.update_progress(100)

center_tree(self, event=None):
selections = self.tree_table.selection()
if len(selections) == 1: # select one tree
tree_id = int(selections[@])
if self.mode.get() == 0:
tree_row = self.tree_info[ 'tree_id'].index(tree_id)
x1, yl = self.tree_info['left'][tree_row]
x2, y2 = self.tree_info[ 'right'][tree_row]
center_x = (x1 + x2) / 2 * self.ScrolledCanvas.zoom_ratio
center_y = (yl + y2) / 2 * self.ScrolledCanvas.zoom_ratio
else:
tree_row = self.tree_info['click_id'].index(tree_id)
center_x = self.tree_info['x'][tree_row] * self.ScrolledCanvas.zoom_ratio
center_y = self.tree_info['y'][tree_row] * self.ScrolledCanvas.zoom_ratio

self.ScrolledCanvas.change_canvas_position(center_x, center_y)

local_refresh_img_table(self, baf):

# update img_table information

selections = self.img_table.selection()

if len(selections) == 1: # not multiple selection
img_id = int(selections[@])
img_table_row = self.img_info['img_id'].index(img_id)
in_tree_num = self.tree_info['state'].count('in")
ba = plot_ba_calculator(baf, in_tree_num)
self.img_info[ 'baf'][img_table_row] = baf
self.img_info[ 'in_num'][img_table_row] = in_tree_num
self.img_info[ ‘ba’'][img_table_row] = ba

# update img_table

values = [self.img_info['img_name'][img_table_row],
self.img_info[ 'baf'][img_table_row],
self.img_info[ "in_num'][img_table_row],
self.img_info[ 'ba'][img_table_row]]

self.img_table.item(img_id, values=values)

refresh_img_table(self):
# clear table info
self.img_table.delete(*self.img_table.get_children())
# get image info
self.img_info = db.get_img_info()
length = len(self.img_info['img_id'])
if length > @: # have img data
self.del_img_btn.config(state="normal")
for i in range(length):
img_values = [self.img_info['img_name'][i], self.img_info['baf'][i],
self.img_info[ "in_num'][i], self.img_info['ba’'][i]]
self.img_table.insert('', 'end', iid=str(self.img_info['img_id'][i]), values=img_values)
self.img_table.selection_set(str(self.img_info['img_id'][@]))
else: # no img data, empty project
self.del_img_btn.config(state="'disabled")
self.refresh_tree_table()
self.ScrolledCanvas.initialize(clean_canvas=True)

refresh_tree_table(self):
# clear table info
self.tree_table.delete(*app.tree_table.get_children())
# get new tree info
if self.mode.get() == 0:

self.tree_info = db.get_tree_info(self.ScrolledCanvas.img_id)
else:

self.tree_info = db.get_click_info(self.ScrolledCanvas.img_id)
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length = len(self.tree_info['state'])

if length > @: # tree exist
self.del_tree_btn.config(state="normal")
for i in range(length):
# here start counting tree number (display in tree_table) from 1
tree_values = [i+1, self.tree_info[ 'width'][i], self.tree_info[ 'state'][i]]
# but the actual tree index start from @ in software
if self.mode.get() == 0:
self.tree_table.insert("'’,
else:
self.tree_table.insert('', 'end', iid=str(self.tree_info['click_id'][i]), values=tree_values)

end', iid=str(self.tree_info[ 'tree_id'][i]), values=tree_values)

else:
self.del_tree_btn.config(state="'disabled")

def open_img_project(self, event=None, force_fresh=False):

if self.del_img_btn['state'] == 'normal': # ensure it is not an empty Llist
selections = self.img_table.selection()
if len(selections) == 1: # not multiple selection

img_id = int(selections[®@])

img_table_row = self.img_info['img_id'].index(img_id)

# check if click on the older one

new_img_id = self.img_info['img_id'][img_table_row]

if new_img_id != self.ScrolledCanvas.img_id or force_fresh: # click not the same
self.ScrolledCanvas.img_id = self.img_info['img_id'][img_table_row]
self.ScrolledCanvas.img_dir = self.img_info[ 'img_dir'][img_table_row]
self.ScrolledCanvas.baf = self.img_info['baf'][img_table_row]
self.ScrolledCanvas.img_width = self.img_info[ 'width'][img_table_row]
self.ScrolledCanvas.img_height = self.img_info[ 'height'][img_table_row]
if self.img_info[ 'mode’][img_table_row] == @:

self.mode.set(0)
else:
self.mode.set(1)

self.refresh_tree_table()
self.update_progress(30)
self.ScrolledCanvas.zoom_ratio = 1.0
self.ScrolledCanvas.open_img(reload=True)
self.update_progress(100)
self.update_title()

def show_capslock_warning(self, event=None):
if event.keysym != "Caps_Lock":
showwarning('Caution', 'You activate CapsLock, it may effects some operation, please turn it off')

def change_selection_mode(self):
if self.del_img_btn['state'] == 'normal': # ensure it is not an empty Llist

img_table_row = self.img_info['img_id'].index(self.ScrolledCanvas.img_id)

if self.mode.get() == 0:
db.edit_img_mode(self.ScrolledCanvas.img_id, @)
self.img_info[ ‘mode’ ][img_table_row] = @
self.tree_info = db.get_tree_info(self.ScrolledCanvas.img_id)

else:
db.edit_img_mode(self.ScrolledCanvas.img_id, 1)
self.img_info[ ‘mode’ J[img_table_row] = 1
self.tree_info = db.get_click_info(self.ScrolledCanvas.img_id)

# clear canvas and draw images

self.refresh_tree_table()
self.local_refresh_img_table(baf=self.ScrolledCanvas.baf)
self.ScrolledCanvas.initialize()
self.ScrolledCanvas.open_img(reload=False)
self.make_unsaved()

self.update_progress(100)

class MenuBar(Frame):
def __init_ (self, parent=None):
Frame.__init__ (self, parent)
self.pack()
self.menubar = Frame(self)
self.menubar.config(bg="white")
self.menubar.pack(side="top"', fill="x")

self.fbutton = Menubutton(self.menubar, text='File', underline=0)
self.fbutton.pack(side="1left")

self.file = Menu(self.fbutton, tearoff=False)

self.file.add_command(label="New', command=self.new_project, underline=0)
self.file.add_command(label="'0Open', command=self.open_project, underline=1)
self.file.add_command(label="'Save', command=self.save_project, underline=1, state='disabled')
self.fbutton.config(menu=self.file, bg='white")

self.ebutton = Menubutton(self.menubar, text='Export', underline=0, state='disabled')
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def

def

self.ebutton.pack(side="1left")

self.export = Menu(self.ebutton, tearoff=False)

self.export.add_command(label='Default BAF', command=self.default_baf_export, underline=0)
self.export.add_command(label="'BAF sequence', command=self.sequence_baf_export, underline=0)
self.ebutton.config(menu=self.export, bg='white')

new_project(self, event=None):
ans = True
if not app.saved:
ans = askyesnocancel('Warning',
'Changes not saved, save current changes[Y], discard changes[N], or cancel?')

if ans is None: # cancel
return

elif ans: # save changes
self.save_project()

project_dir = asksaveasfilename(title='New project', defaultextension=".sqlite", initialdir='.",
filetypes=[('Pano2ba project', '.sqlite')])

if project_dir != '":

if project_dir[-7:] == '.sqlite':
app.add_img_btn.config(state="normal")
app.del_img_btn.config(state="disabled")
app.title_name = project_dir[:20] + '
app.update_title()
app.update_progress(20)

' + project_dir[-30:]

if os.path.exists(project_dir):
os.remove(project_dir)
app.update_progress(50)

db.create_db(project_dir)

if os.path.exists('~$default.sqlite"):
os.remove('~$default.sqlite")

app.update_progress(70)

app.img_table.delete(*app.img_table.get_children())
app.tree_table.delete(*app.tree_table.get_children())
app.ScrolledCanvas.initialize(clean_canvas=True)

self.file.entryconfigure('Save', state="normal")
self.ebutton.config(state="normal')
app.update_progress(100)

open_project(self, event=None):
ans = True
if not app.saved:
ans = askyesnocancel('Warning',
'Changes not saved, save current changes[Y], discard changes[N], or cancel?')

if ans is None: # cancel
return

elif ans: # save changes
self.save_project()

project_dir = askopenfilename(title='Open project', initialdir=".",
filetypes=[('Pano2ba project', '.sqlite')])
if project_dir != '":
former_db_path = db.db_path
db.change_db(project_dir)
# check if 1is the pano2ba project db
db.curs.execute("SELECT name FROM sqlite_master WHERE type='table';")
table_columns = db.curs.fetchall()
app.update_progress(5)
if table_columns == [('ImageInfo',), ('TreeInfo',)]:
db.update_db()
showinfo('Update', 'Detect older version database, updated successfully')
db.curs.execute("SELECT name FROM sqlite_master WHERE type='table';")
table_columns = db.curs.fetchall()

if table_columns == [('ImageInfo',), ('TreeInfo',), ('ClickInfo',)]:
app.add_img_btn.config(state="normal")
self.file.entryconfigure('Save', state="normal")
self.ebutton.config(state="normal')
app.title_name = project_dir[:20] +
app.update_title()
app.update_progress(10)

' + project_dir[-30:]

if os.path.exists('~$default.sqlite'):
os.remove('~$default.sqlite")
app.update_progress(15)
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# loading img_info
app.refresh_img_table()
app.update_progress(20)

app.open_img_project(force_fresh=True)
app.update_progress(100)
else:
db.change_db(former_db_path)
app.update_progress(100)
showwarning('Open Errors', 'This sqlite file is not pano2BA project database')

def save_project(self, event=None):
if app.title_name != 'Panorama2BA’:

app.update_progress(20)
db.commit()
app.update_progress(70)
app.saved = True
app.update_title()
app.update_progress(100)

@staticmethod
def default_baf_export():
save_path = asksaveasfilename(title='export data', defaultextension=".xls",
filetypes=[('2003 excelfile', '.x1s')])
if save_path != "":
app.update_progress(10)
wb = xlwt.Workbook(encoding="uft-8")
plot_info = wb.add_sheet(sheetname='Plot Info')
tree_info = wb.add_sheet(sheetname='Tree Info')
click_info = wb.add_sheet(sheetname="Click Info')

# plot info

img_data = app.img_info

img_length = len(img_data[ 'img_id'])

img_title = ['Image ID', 'Image Name', 'BAF', 'In Tree Number', 'BA']

for i, name in enumerate(img_title):
plot_info.write(®, i, label=name)

for i in range(img_length)
plot_info.write(i + 1, 0, img_data['img_id'][i])
plot_info.write(i + 1, 1, img_data['img_name'][i])
plot_info.write(i + 1, 2, img_data['baf'][i])
plot_info.write(i + 1, 3, img_data['in_num'][i])
plot_info.write(i + 1, 4, img_data['ba'][i])
app.update_progress(10 + 30 * i / img_length)

# tree_info

tree_data = db.get_tree_info_all()

tree_length = len(tree_data[ 'tree_id'])

tree_title = ['Tree ID', 'Image ID', 'Tree Width Pixel', 'Max BAF']

for i, name in enumerate(tree_title):
tree_info.write(®, i, label=name)

for i in range(tree_length):
tree_info.write(i + 1, @, tree_data['tree_id'][i])
tree_info.write(i + 1, 1, tree_data['img_id'][i])
tree_info.write(i + 1, 2, tree_data['width'][i])
tree_info.write(i + 1, 3, tree_data['max_baf'][i])
app.update_progress(40 + 30 * i / tree_length)

# click_info

click_data = db.get_click_info_all()

click_length = len(click_data['click_id'])

click_title = ['img_id','click_id','x",'y", 'BAF']

for i, name in enumerate(click_title):
click_info.write(®, i, label=name)

for i in range(click_length)

click_info.write(i + 1, @, click_data['click_id'][i])
click_info.write(i + 1, 1, click_data['img_id'][i])
click_info.write(i + 1, 2, click_data['x'][i])
click_info.write(i + 1, 3, click_data['y'][1])
click_info.write(i + 1, 4, click_data['baf'][i])
app.update_progress(70 + 25 * i / click_length)

wb.save(save_path)
app.update_progress(100)
showinfo('Success', 'Successfully export result into ' + save_path)

@staticmethod
def sequence_baf_export():
showinfo('Notice', 'Please aware that this only applicable for images have "edge selection" records.')
save_path = asksaveasfilename(title='export data', defaultextension=".xls",
filetypes=[('2003 excelfile', '.x1s')])

if save_path !=
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baf_list = [2]
ask_loop = True
while ask_loop:
st = askfloat('start', 'please type the start baf value (>= 1)', minvalue=1, maxvalue=50)
ed = askfloat('end’, 'Please type the end baf value (<=50)', minvalue=st, maxvalue=50)
step = askfloat('step', 'Please type the step of interval', minvalue=0.05, maxvalue=ed - st)
try:
baf_list = list(arange(st, ed + step, step))
except TypeError:
return
confirm = askyesnocancel('Confirm', 'Are you sure to export results related to the following BAFs? \n'
+ str(baf_list) + '\n[Yes] to continue, [No] to reinput BAFs,
'[Cancel] to cancel export')
if confirm is None:
return
elif not confirm: # false, re input
pass
else: # true ,start export
ask_loop = False

app.update_progress(10)

# export excels

wb = xlwt.Workbook(encoding="uft-8")

plot_info = wb.add_sheet(sheetname="Plot Info')
tree_info = wb.add_sheet(sheetname="'Tree Info')
click_info = wb.add_sheet(sheetname='Click Info')

# plot 1info

img_data = db.get_img_info_baf_range(baf_list)

img_length = len(img_data['img_id"'])

plot_info.write(@, @, label="Image ID')

plot_info.write(@, 1, label='Image Name')

col =2

for baf in baf_list:
plot_info.write(@, col, label='BA(baf=' + str(baf) + ")')
#plot_info.write(0, col+1, Llabel="In Tree Num')
col += 1 #col += 2

for i in range(img_length)
plot_info.write(i + 1, 0, img_data['img_id'][i])
plot_info.write(i + 1, 1, img_data['img_name'][i])
col =2
for j, value in enumerate(img_data[ 'baf_num_ba'][i]):
plot_info.write(i + 1, col + j, value)
app.update_progress(10 + 30 * i / img_length)

# tree_info

tree_data = db.get_tree_info_all()

tree_length = len(tree_data['tree_id'])

tree_title = ['Tree ID', 'Image ID', 'Tree Width Pixel', 'Max BAF']

for i, name in enumerate(tree_title):
tree_info.write(@, i, label=name)

for i in range(tree_length):
tree_info.write(i + 1, @, tree_data['tree_id'][i])
tree_info.write(i + 1, 1, tree_data['img_id'][i])
tree_info.write(i + 1, 2, tree_data['width'][i])
tree_info.write(i + 1, 3, tree_data['max_baf'][i])
app.update_progress(40 + 30 * i / tree_length)

# click_info

click_data = db.get_click_info_all()

click_length = len(click_data['click_id'])

click_title = ['img_id', 'click_id', 'x', 'y', 'BAF']

for i, name in enumerate(click_title):
click_info.write(@, i, label=name)

for i in range(click_length):
click_info.write(i + 1
click_info.write(i +
click_info.write(i +
click_info.write(i +
click_info.write(i +
app.update_progress(7

, click_data['click_id'][i])
, click_data['img_id'][i])

, click_data['x"][1])

, click_data['y'][i])

, click_data['baf'][i])

+ 25 * i / click_length)
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wb.save(save_path)
app.update_progress(100)
showinfo('Success', ‘Successfully export result into ' + save_path)

class ScrolledCanvas(Frame):
add_tree = False
add_tree_lock = False
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zoom_ratio = 1.0
mouse_in_canvas = False
shift_hold = False
move_point = False
zooming = False
reference_bar = False

# default, pointl is left, point2 is right, r is 1id for reference bar
## edge mode
shape_ids = {'point1': [], 'line': [], 'point2': [], 'text': [], 'canvas_img': None, 'r': None}
moving = {'fixed_p': [0, ©], 'line': 'line_id', 'move_p': 'point_id',
"text': 'text_id', 'tree_row': @, 'which': @}
## click mode
click_ids = {'point':[], 'text':[], 'canvas_img':None, 'r':None}
moving_cmode = {'move_p':'point_id', 'text':'text_id', 'tree_row':0}

# record current img
img_id = -1

img_width = 1000

img_height = 800

save_image = None # preprocess photos = PIL.Image()

save_photo = None # zoomed photo shows in canvas = tk.PhotoImage()

min_width = in_tree_pixel(1, img_width) * zoom_ratio
r_pixel = (in_tree_pixel(baf, img_width) * zoom_ratio) / 2

def __init__ (self, parent=None):
Frame.__init__ (self, parent)

self.canvas = Canvas(self, relief='sunken')
self.vbar = Scrollbar(self)
self.hbar = Scrollbar(self, orient="horizontal")

self.canvas.config(borderwidth=0, bg='white")
self.vbar.config(command=self.canvas.yview, bg='white') # scroll steps
self.hbar.config(command=self.canvas.xview, bg='white')
self.canvas.config(yscrollcommand=self.vbar.set) # canvas steps
self.canvas.config(xscrollcommand=self.hbar.set)
self.canvas.bind('<ButtonPress-1>', self.left_click)
self.canvas.bind('<B1-Motion>", self.hold_move_mouse)
self.canvas.bind('<Motion>"', self.move_mouse)
self.canvas.bind('<ButtonRelease-1>", self.left_loose)
self.canvas.bind('<MouselWheel>"', self.xbar_scroll)
self.canvas.bind('<Control-MouselWheel>", self.zoom)
self.canvas.bind("<Enter>", self.on_enter)
self.canvas.bind("<Leave>", self.on_leave)
self.canvas.bind('<Lock-KeyPress>', Pano2BA.show_capslock_warning)

self.vbar.pack(side="right"', fill="y")
self.hbar.pack(side="bottom', fill="x")
self.canvas.pack(side="top', fill='both', expand='yes")

imarray = ones((10, 10, 3)) * 255

im = Image.fromarray(imarray.astype(‘uint8')).convert("RGBA")

photo_im = PhotoImage(im)

self.shape_ids['canvas_img'] = self.canvas.create_image(@, 0, image=photo_im, anchor='nw")

self.shape_ids['r'] = self.canvas.create_rectangle(®, 0, 5, 5, fill="white',

outline='black', state="hidden")

self.click_ids['r'] = self.canvas_create_octagon(self.img_width / 2, self.img_height / 2,
fill="white', outline='yellow',
stipple="gray12', state="hidden')

# ===
# functions used outside

def initialize(self, clean_canvas=False):
# functions used to clear trees or background image (if clean_canvas =True)
self.add_tree = False
self.add_tree_lock = False
if clean_canvas:
self.zoom_ratio = 1.0
self.mouse_in_canvas = False
self.shift_hold = False
self.move_point = False

self.reference_bar = False

if self.shape_ids['r'] is not None:
self.canvas.itemconfig(self.shape_ids['r'], state='hidden')

if self.click_ids['r'] is not None:
self.canvas.itemconfig(self.click_ids['r"'], state="hidden")
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self.add_tree = False
self.config(cursor="arrow")

self._update_r_pixel()

# clear canvas trees record
self._clear_canvas_all_trees()
if app.mode.get() == 0:
self.shape_ids['pointl'] =
self.shape_ids['point2'] =
self.shape_ids['line'] = [
self.shape_ids['text'] = [
else:
self.click_ids['point"'] = []
self.click_ids['text'] = []

if clean_canvas:
self.img_id = -1
self.img_dir = "'
self.baf = 2
self.img_width = 1000
self.img_height = 800
self.save_image = None
self.save_photo = None

imarray = ones((10, 10, 3)) * 255

im = Image.fromarray(imarray.astype(‘uint8')).convert("RGBA")
self.save_photo = PhotoImage(im)

self._update_img()

open_img(self, reload=True, recenter=True):

# step@: clear canvas

# stepl: load image and image equalization

# step2: draw dealt image

# step3: draw trees and update self.shapes_ids; init moving and other ctrl params
self.initialize(clean_canvas=False)

app.update_progress(45)

# step 0

if reload:
self._preprocess_img()
app.update_progress(60)
self._resize_img()
app.update_progress(70)
self._update_img()

if recenter:
self.change_canvas_position(@, self.save_photo.height() / 2)

# step 1
app.update_progress(80)

# step 3: draw trees
if app.mode.get() == 0:
tree_num = len(app.tree_info['tree_id'])
for tree_row in range(tree_num):
x1, yl = app.tree_info['left'][tree_row]
X2, y2 = app.tree_info['right'][tree_row]
x1 *= self.zoom_ratio
yl *= self.zoom_ratio
X2 *= self.zoom_ratio
y2 *= self.zoom_ratio
if app.tree_info[ 'state'][tree_row] == 'out':
line = self.canvas.create_line(x1, yl, x2, y2, fill='red', width=3)
else:
line = self.canvas.create_line(x1, yl, x2, y2, fill='blue', width=3)
pointl = self.canvas.create_oval(xl - 5, y1 - 5, x1 + 5, y1 + 5, fill="yellow', outline='black")
point2 = self.canvas.create_oval(x2 - 5, y2 - 5, x2 + 5, y2 + 5, fill="yellow', outline='black")
text_x = (x1 + x2) / 2
text_y = (y1 +y2) / 2
text = self.canvas.create_text(text_x, text_y, text=str(tree_row+l),
fill="yellow', font=('Times', '12', 'bold"))

self.shape_ids['pointl'].append(pointl)
self.shape_ids['point2'].append(point2)
self.shape_ids['line'].append(line)
self.shape_ids['text'].append(text)

progress = 20 * (tree_row / tree_num)
app.update_progress(80 + progress)
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else:
# tree_info = {'click_id': [], 'x':[], 'y':[], 'width':[], 'state':[]}
tree_num = len(app.tree_info['click_id'])
for tree_row in range(tree_num):
x = app.tree_info[ 'x'][tree_row] * self.zoom_ratio
y = app.tree_info['y'][tree_row] * self.zoom_ratio

octagon = self.canvas_create_octagon(x, y, fill="white', outline='black')
text = self.canvas.create_text(x, y, text=str(tree_row + 1), fill='black"',
font=('Times', '12"', 'bold'))

# click_ids = {'point':[], 'text':[], 'canvas_img':None, 'r':None}
self.click_ids['point'].append(octagon)
self.click_ids['text'].append(text)

progress = 20 * (tree_row / tree_num)
app.update_progress(80 + progress)

def change_canvas_position(self, center_x=None, center_y=None):
canvas_width = self.canvas.winfo_width()
canvas_height = self.canvas.winfo_height()
img_width = self.save_photo.width()
img_height = self.save_photo.height()

if center_x is not None:
x = (center_x - 0.5 * canvas_width) / img_width
final_x = min(max(@, x), 1)
self.canvas.xview_moveto(final_x)

if center_y is not None:
y = (center_y - 0.5 * canvas_height) / img_height
final_y = min(max(@, y), 1)
self.canvas.yview_moveto(final_y)

def open_create_tree_mode(self, event):
# press 'space' changing to adding tree mode
if app.del_img_btn['state’'] == 'normal': # ensure have img data
if not self.add_tree: # not in add tree mode
self.add_tree = True
if app.mode.get() == 1: # click mode show reference ball
self.reference_ball_display(event)
if self.mouse_in_canvas:
self.config(cursor="tcross")
else:
if not self.add_tree_lock: # not in the second tree
self.add_tree = False
self.config(cursor="arrow")
if app.mode.get() == 1:
self.reference_ball_display(event)

# ======
# functions used inside
# =====

@staticmethod

def top_iteration(n, x, y, r):
angle = [pi / 16 + 2 * pi * (i / n) for i in range(n)]
for a in angle:
yield x + r * cos(a)
yield y + r * sin(a)

def canvas_create_octagon(self, x, y, fill='white', outline='yellow', stipple='', state='normal', mode='oct'):
# H--[--A

# G/ Jo \B
#ooofemenf-aeefe-
# F\ | /cC
# E--[--D

#

#0 (x, y)

r = self.r_pixel

if mode == 'oct':
e =2/ (sqrt(2) +1) *r
xa =xd = x + 0.5 ¥ e
ya=yh=y+r
xb = xc = x +r
yb =yg =y + 0.5 *e
yc =yf =y - 0.5 *
yd =ye=y -r
xe = xh = x - 0.5 * e
xf =xg=x-r
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oct = self.canvas.create_polygon(xa, ya, xb, yb, xc, yc, xd, yd, xe, ye, xf, yf, xg, yg, xh, yh, xa, ya,
fill=fill, outline=outline, state=state, stipple=stipple)
else:
R =r / cos(pi / 16)
top = list(self.top_iteration(16, x, y, R))
oct = self.canvas.create_polygon(*top, fill=fill, outline=outline, state=state, stipple=stipple)
#oct = self.canvas.create_oval(x - r, y - r, x +r, y + r, fill="LightBlue',
# outline="yellow', state=state, stipple="grayil2")

return oct
def canvas_coords_octagon(self, oct_id, x, y, mode="oct"):

r = self.r_pixel

if mode == 'oct':

e =2/ (sqrt(2) + 1) *r
xa = xd = x + 0.5 * e
ya=yh=y+r

xb = xc = x +r

yb =yg =y + 0.5 *e
yc=yf =y - 0.5 *e

yd =ye =y -r

xe = xh = x - 0.5 * e

xf =xg=x-r

self.canvas.coords(oct_id, [xa, ya, xb, yb, xc, yc, xd, yd, xe, ye, xf, yf, xg, yg, xh, yh, xa, ya])
else:

R =r / cos(pi / 16)

top = list(self.top_iteration(16, x, y, R))

self.canvas.coords(oct_id, top)

H#ommmmm e
# mouse events
H#ommmmmm e
def left_click(self, event):

if app.mode.get() == 0: # edge mode
if self.add_tree:
x = self.canvas.canvasx(event.x)
y = self.canvas.canvasy(event.y)
app.make_unsaved()
if not self.add_tree_lock: # click for the first time
number = len(self.shape_ids['pointl'])

line = self.canvas.create_line(x, y, x, y, fill='red', width=3)
pointl = self.canvas.create_oval(x - 5, y - 5, X +5, y + 5,
fill="yellow', outline='black"')
point2 = self.canvas.create_oval(x - 5, y - 5, X +5, y + 5,
fill="yellow', outline='black')
text = self.canvas.create_text(x, y, text=str(number + 1),
fill="yellow', font=('Times', '12', 'bold'))

self.moving['fixed_p'] = [x, y]
self.moving['line'] = line
self.moving[ 'move_p'] = point2
self.moving['text'] = text

self.shape_ids['pointl'].append(pointl)
self.shape_ids['point2'].append(point2)
self.shape_ids['line'].append(line)
self.shape_ids['text"'].append(text)

self.add_tree_lock = True

else: # click for the second time
X0, y0 = self.moving['fixed_p']
self._update_shape_info(x, y)
self.add_tree_lock = False
self.add_tree = False
self.config(cursor="arrow")

if not self.shift_hold: # horizontal Lock
y =ye

self._update_tree_infos(self.img_id, x0, yo0, X, y)
else: # click mode
if self.add_tree:
x = self.canvas.canvasx(event.x)
y = self.canvas.canvasy(event.y)
app.make_unsaved()

number = len(self.click_ids['point'])
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point = self.canvas_create_octagon(x, y, fill="white', outline='black',
state="normal’, stipple="")
text = self.canvas.create_text(x, y, text=str(number + 1), fill='black',
font=('Times', '12"', 'bold'))

self.click_ids['point’].append(point)
self.click_ids['text'].append(text)

self._update_tree_infos_cmode(self.img_id, x, y)

def move_mouse(self, event):
x = self.canvas.canvasx(event.x)
y = self.canvas.canvasy(event.y)
if app.mode.get() == 0: # edge mode
if self.add_tree_lock: # draw lines follow mouse, only works when clicking the second point
self._update_shape_info(x, y)
else: # make a minimum bar follow mouse
if self.reference_bar:
self.canvas.coords(self.shape_ids['r'],
[x, ¥y - 5, x + self.min_width * self.zoom_ratio, y])
else: # click mode
self.canvas_coords_octagon(self.click_ids['r'], x, y)

def hold_move_mouse(self, event):
# only activated when press left and not Loose
x = self.canvas.canvasx(event.x)
y = self.canvas.canvasy(event.y)
if not self.add_tree: # make sure not in adding tree mode
if not self.move_point: # find new points
id_touched = event.widget.find_closest(x, y, halo=5)
if id_touched: # except canvas empty get nothing
if app.mode.get() == @: # edge mode
## not touch the Line and text item
if id_touched[@] in self.shape_ids['pointl'] or id_touched[@] in self.shape_ids['point2']:
[center_x, center_y] = self._get_shape_center(id_touched[0])
if (center_x - x) ** 2 + (center_y - y) ** 2 <= 25: # make sure touch in points
# find which tree record it belongs to
self._pick_moving_ids(id_touched[®@])
self._update_shape_info(x, y)
self.move_point = True
else: # click mode
if id_touched[@] in self.click_ids['point']:
self.canvas.itemconfigure(id_touched[@], outline='yellow', stipple='grayl2')
self._pick_moving_ids(id_touched[0])
self._update_shape_info_cmode(x, y)
self.move_point = True

else: # is moving former points, keep updating is enough
if app.mode.get() == @:
self._update_shape_info(x, y)
else:
self._update_shape_info_cmode(x, y)

def left_loose(self, event):
# update tree info if in edit mode
if self.move_point: # finish moving
X0, y@ = self.moving['fixed_p']
x = self.canvas.canvasx(event.x)
y = self.canvas.canvasy(event.y)
if app.mode.get() == @:
self._update_tree_infos(app.tree_info[ ‘tree_id'][self.moving[ tree_row']],
x0, y0, X, y, mode='edit")
else:
self._update_tree_infos_cmode(app.tree_info[ 'click_id"'][self.moving_cmode[ tree_row']],
X, Yy, mode='edit")
self.canvas.itemconfigure(self.moving_cmode[ ‘move_p'], outline='black', stipple='")
self.move_point = False
app.make_unsaved()

def on_enter(self, event):
self.mouse_in_canvas = True
if self.add_tree:
self.config(cursor="tcross")
if app.mode.get() == @:
if self.reference_bar:
self.canvas.itemconfig(self.shape_ids['r'], state='normal')
else:
if self.reference_bar:
self.canvas.itemconfig(self.click_ids['r'], state="normal')
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def on_leave(self, event):
self.mouse_in_canvas = False
self.config(cursor="arrow")
if app.mode.get() == 0:
if self.reference_bar:
self.canvas.itemconfig(self.shape_ids['r'], state="hidden")
else:
if self.reference_bar:
self.canvas.itemconfig(self.click_ids['r'], state="hidden")

def press_shift(self, event):
if not self.shift_hold:
self.shift_hold = True

def release_shift(self, event):
self.shift_hold = False

def press_r(self, event):
if app.del_img_btn['state’'] == 'normal’:
x = self.canvas.canvasx(event.x)
y = self.canvas.canvasy(event.y)
if app.mode.get() == 0:
if not self.reference_bar:
self.reference_bar = True
self.min_width = in_tree_pixel(1, self.img_width)
self.canvas.coords(self.shape_ids['r'],
[x, ¥y - 5, x + self.min_width * self.zoom_ratio, y])
self.canvas.itemconfig(self.shape_ids['r'], state='normal')
else:
self.reference_bar = False
self.canvas.itemconfig(self.shape_ids['r'], state="hidden")

def reference_ball_display(self, event):

x = self.canvas.canvasx(event.x)

y = self.canvas.canvasy(event.y)

if not self.reference_bar:
self.reference_bar = True
self.canvas_coords_octagon(self.click_ids['r'], x, y)
self.canvas.itemconfig(self.click_ids['r'], state="normal')

else:
self.reference_bar = False
self.canvas.itemconfig(self.click_ids['r'], state='hidden')

def xbar_scroll(self, event):
scroll = -1 if event.delta > © else 1
self.canvas.xview_scroll(scroll, ‘units')

def zoom(self, event):
if app.del_img_btn['state’'] == 'normal': # ensure open a image
if not self.add_tree_lock:
rate = 0.2 if event.delta > 0 else -0.2
zoom_rate = round(self.zoom_ratio + rate, 1)
if zoom_rate + 0.2 > 2.5:
self.zoom_ratio = 2.4
app.update_title()
else:
canvas_width = self.canvas.winfo_width()
canvas_height = self.canvas.winfo_height()
img_width, img_height = self.save_image.size
if img_width * zoom_rate < canvas_width or img_height * zoom_rate < canvas_height:
# can't small any more
app.update_title()
else: # proper zoom operation
app.update_progress(10)
self.zooming = True
self.zoom_ratio = zoom_rate
self._update_r_pixel()
app.update_title()

def refresh_zoomed_image(self, event)
if self.zooming:

self._resize_img()
app.update_progress(50)
self._update_img()
app.update_progress(80)
self._zoom_shapes()
app.update_progress(90)
app.update_title()
app.update_progress(100)
self.change_canvas_position(center_y=self.img_height / 2 * self.zoom_ratio)
self.zooming = False
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def _update_r_pixel(self):
self.r_pixel = (in_tree_pixel(self.baf, self.img_width) * self.zoom_ratio) / 2

def _update_tree_infos(self, tree_img_id, x@, y@, x, y, mode='add'):
# functions to update img_table and tree_table when adding and editing tree points
# x0, yo is the fixed points position
fx = x0 / self.zoom_ratio # fixed x
fy = yo / self.zoom_ratio
mx = x / self.zoom_ratio # moved x
my =y / self.zoom_ratio
if not self.shift_hold:
my = fy
if mode == 'add':
# consider zoom_ratio
tree_id, width, baf_max = db.add_tree(img_id=tree_img_id, Ix=fx, ly=fy, rx=mx, ry=my, return_value=True)
if baf_max >= self.baf:
state = 'in’
else:
state = ‘out’

# add records to tree_table
app.tree_info[ ‘tree_id'].append(tree_id)
app.tree_info['left'].append([fx, fy])
app.tree_info[ 'right'].append([mx, my])
app.tree_info[ 'width'].append(width)
app.tree_info[ 'state’].append(state)

length = len(app.tree_info['tree_id'])

if app.del_tree_btn['state'] == 'disabled': # tree exist
app.del_tree_btn.config(state="normal")

tree_values = [length, width, state]
app.tree_table.insert('', 'end', iid=str(tree_id), values=tree_values)

else: # mode=="'edit'
tree_row = self.moving['tree_row']
if self.moving['which'] == 1: # move the Lleft(pointl)
app.tree_info[ 'left'][tree_row] = [mx, my]
width, baf_max = db.edit_tree(tree_id=tree_img_id, 1lx=mx, ly=my, rx=fx, ry=fy, return_value=True)
else: # move the right(point2)
app.tree_info[ 'right'][tree_row] = [mx, my]
width, baf_max = db.edit_tree(tree_id=tree_img_id, 1lx=fx, ly=fy, rx=mx, ry=my, return_value=True)

if baf_max >= self.baf:
state = "in’

else:
state = 'out'

app.tree_info[ 'width'][tree_row] = width
app.tree_info['state'][tree_row] = state

tree_values = [tree_row + 1, width, state]
app.tree_table.item(str(app.tree_info[ 'tree_id'][tree_row]), values=tree_values)

app.local_refresh_img_table(self.baf)

def _update_tree_infos_cmode(self, tree_img_id, x, y, mode='add'):
mx = x / self.zoom_ratio # moved x
my =y / self.zoom_ratio

if mode == 'add': # add click point mode
click_id, width = db.add_click(img_id=tree_img_id, x=mx, y=my, return_value=True)

# add records to tree_table
app.tree_info['click_id'].append(click_id)
app.tree_info['x'].append(mx)
app.tree_info['y'].append(my)
app.tree_info[ 'width'].append(width)
app.tree_info['state’].append('in")

if app.del_tree_btn['state'] == 'disabled': # tree exist
app.del_tree_btn.config(state="normal")

length = len(app.tree_info['click_id'])
click_values = [length, width, 'in']

app.tree_table.insert('', 'end', iid=str(click_id), values=click_values)
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else: # edit exists point mode
tree_row = self.moving_cmode['tree_row']
db.edit_click(click_id=tree_img_id, x=mx, y=my)
app.tree_info['x'][tree_row] = mx
app.tree_info['y'][tree_row] = my

app.local_refresh_img_table(self.baf)

_update_shape_info(self, x, y):

# when adding and dragging tree points, Line and points follow mouse
X0, yo = self.moving['fixed_p']

line = self.moving['line']

move_p = self.moving[ 'move_p']

text = self.moving['text']

if not self.shift_hold: # horizontal Lock

y =ye
tree_width = db.length_calculator(x@, y@, x, y) / self.zoom_ratio
baf_max = max_baf(self.img_width, tree_width)

text_x = (x0 + x) / 2

text.y = (yo +y) / 2

self.canvas.coords(line, [x0, y0, X, y])
self.canvas.coords(move_p, [Xx - 5, y - 5, X + 5, y + 5])
self.canvas.coords(text, [text_x, text_y])

# change Lline colors
if baf_max >= self.baf:

# in tree

self.canvas.itemconfigure(line, fill='blue')
else:

# out tree

self.canvas.itemconfigure(line, fill='red")

_update_shape_info_cmode(self, x, y):
octagon_id = self.moving_cmode[ 'move_p"]
text_id = self.moving_cmode[ "text']

self.canvas_coords_octagon(octagon_id, x, y)
self.canvas.coords(text_id, [x, y])

_get_shape_center(self, shape_id):

# return the tree edge points (oval) center coordinate as a fixed point
x1, yl, x2, y2 = self.canvas.coords(shape_id)

center_x = (x1 + x2) / 2

center_y = (yl +y2) / 2

return [center_x, center_y]

_pick_moving_ids(self, shape_id):
# functions to update self.moving dictionary
if app.mode.get() == 0:
if shape_id in self.shape_ids['pointl']:
row_num = self.shape_ids['point1'].index(shape_id)
line_id = self.shape_ids['line’][row_num]
fixed_id = self.shape_ids[ 'point2'][row_num]
text = self.shape_ids['text'][row_num]
self.moving['line'] = line_id
self.moving[ ‘move_p'] = shape_id
self.moving['fixed_p'] = self._get_shape_center(fixed_id)
self.moving['tree_row'] = row_num
self.moving['text'] = text
self.moving[ 'which'] = 1
if shape_id in self.shape_ids['point2']:
row_num = self.shape_ids['point2'].index(shape_id)
line_id = self.shape_ids['line’][row_num]
fixed_id = self.shape_ids[ ‘pointl'][row_num]
text = self.shape_ids['text'][row_num]
self.moving['line'] = line_id
self.moving[ 'move_p'] = shape_id
self.moving['fixed_p'] = self._get_shape_center(fixed_id)
self.moving['tree_row'] = row_num
self.moving['text'] = text
self.moving[ ‘which'] = 2
else:
# moving_cmode = {'move_p':'point_id', 'text':'text_id', 'tree_row':0}
row_num = self.click_ids[ 'point'].index(shape_id)
text_id = self.click_ids['text'][row_num]
self.moving_cmode[ 'move_p'] = shape_id
self.moving_cmode[ 'text'] = text_id
self.moving_cmode[ 'tree_row'] = row_num
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def _zoom_shapes(self):
# functions changing points positions after zooming
if app.mode.get() == 0:
length = len(app.tree_info['tree_id'])
if length > @: # not empty tree
for i in range(length):
1x, ly = app.tree_info['left'][1i]
rx, ry = app.tree_info[ 'right'][1i]
1x *= self.zoom_ratio
ly *= self.zoom_ratio
rx *= self.zoom_ratio
ry *= self.zoom_ratio
center_x = (1x + rx) / 2
center y = (ly + ry) / 2
pl_id = self.shape_ids['point1'][i]
p2_id = self.shape_ids['point2"'][i]
1_id = self.shape_ids['line'][i]
t_id = self.shape_ids['text'][i]
self.canvas.coords(l_id, [1x, ly, rx, ry])
self.canvas.coords(pl_id, [1x - 5, ly - 5, 1x + 5, ly + 5])
self.canvas.coords(p2_id, [rx - 5, ry - 5, rx + 5, ry + 5])
self.canvas.coords(t_id, [center_x, center_y])
else:
length = len(app.tree_info['click_id'])
if length > 0o:
for i in range(length)
X = app.tree_info['x"'][1i] * self.zoom_ratio
y = app.tree_info['y'][i] * self.zoom_ratio
octagon_id = self.click_ids['point'][i]
t_id = self.click_ids['text'][i]

self.canvas_coords_octagon(octagon_id, x, y)
self.canvas.coords(t_id, [x, y])

def _clear_canvas_all_trees(self):

# edge mode

for i in range(len(self.shape_ids['pointl'])):
self.canvas.delete(self.shape_ids['point1'][i])
self.canvas.delete(self.shape_ids['point2'][i])
self.canvas.delete(self.shape_ids['line'][1i])
self.canvas.delete(self.shape_ids['text'][i])

# click mode

for i in range(len(self.click_ids['point'])):
self.canvas.delete(self.click_ids[ 'point'][i])
self.canvas.delete(self.click_ids['text'][i])

def _update_img(self):
self.canvas.itemconfig(self.shape_ids['canvas_img'], image=self.save_photo)
width = self.save_photo.width()
height = self.save_photo.height()
self.canvas.config(scrollregion=(0, @, width, height))

def _preprocess_img(self):
image = Image.open(self.img_dir)
image = equalize(image)
# draw center reference Line
draw = ImageDraw.Draw(image)
draw.line([0, image.size[1] / 2, image.size[@], image.size[1l] / 2], fill=(255, 255, ©@))

self.save_image = image
del image, draw

def _resize_img(self):
if self.zoom_ratio == 1.0@:
self.save_photo = PhotoImage(self.save_image)
else:
width, height = self.save_image.size
if self.zoom_ratio < 1.0:
img_zoom = self.save_image.resize((int(width * self.zoom_ratio),
int(height * self.zoom_ratio)), Image.ANTIALIAS)
else:
img_zoom = self.save_image.resize((int(width * self.zoom_ratio),
int(height * self.zoom_ratio)), Image.BICUBIC)
try:
self.save_photo = PhotoImage(img_zoom)
del img_zoom
except (MemoryError, TclError)
showwarning('Warning', 'Not enough memory to support zoom in this size, please try another one')
self.zoom_ratio = 1.0
self.save_photo = PhotoImage(self.save_image)
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class TkErrorCatcher:
# In some cases tkinter will only print the traceback.
# Enables the program to catch tkinter errors normally
# To use
# import tkinter
# tkinter.CallWrapper = TkErrorCatcher

def __init_ (self, func, subst, widget):
self.func = func
self.subst = subst
self.widget = widget

def _ call_(self, *args):
try:
if self.subst:
args = self.subst(*args)
return self.func(*args)
# except SystemExit as msg:
# raise SystemExit(msg)
except Exception as err:
raise err

if __name__ == '__main__':

import tkinter

tkinter.CallWrapper = TkErrorCatcher

app = Pano2BA()

db = DataBase('~$default.sqlite')

try:
app.mainloop()

except Exception as e:
exc_type, exc_value, exc_traceback = sys.exc_info()
lines = traceback.format_exception(exc_type, exc_value, exc_traceback)
error_info = ''.join(line for line in lines)
print(error_info)
showerror('Error', error_info)

ba.py
from math import sin, asin, sqrt, pi

def in_tree_pixel(baf, img_width):
# baf is the Basal Area factor
# tree_width is the app measured tree pixel width

theta = 2 * asin(sqrt(baf) / 100) # radians
min_tree_width = theta / (2*pi) * img_width # also use rad(360) = 2 pi

return min_tree_width

def max_baf(img_width, tree_width):

return (100 * sin((pi * tree_width) / img_width)) ** 2

def plot_ba_calculator(baf, in_tree_num):

return baf * in_tree_num

db.py

import os

import sqlite3

from math import sqgrt

from PIL import Image

from ba import plot_ba_calculator, max_baf, in_tree_pixel

class DataBase:
db_path = 'test.sqlite’
def __init_ (self, db_path='test.sqlite'):
if not os.path.exists(db_path):
self.create_db(db_path)

else: # open a table
self.conn = sqlite3.connect(db_path)
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self.curs = self.conn.cursor()

def create_db(self, db_path)
self.conn = sqlite3.connect(db_path)
self.curs = self.conn.cursor()
self.curs.execute('""'
CREATE TABLE ImageInfo (
img_id INT NOT NULL PRIMARY KEY,
img_dir CHAR(256) NOT NULL,
img_name CHAR(64) NOT NULL,
width INT NOT NULL,
height INT NOT NULL,
default_baf REAL NOT NULL DEFAULT 2,
mode INT NOT NULL DEFAULT ©)''")
self.curs.execute('""'
CREATE TABLE TreeInfo (
tree_id INT NOT NULL PRIMARY KEY,
img_id INT NOT NULL,
1x REAL NOT NULL,
ly REAL NOT NULL,
rx REAL NOT NULL,
ry REAL NOT NULL,
max_baf REAL NOT NULL,
FOREIGN KEY (img_id) REFERENCES ImageInfo(img_id))''')
self.curs.execute('""'
CREATE TABLE ClickInfo (
click_id INT NOT NULL PRIMARY KEY,
img_id INT NOT NULL,
X REAL NOT NULL,
y REAL NOT NULL,
baf REAL NOT NULL,
FOREIGN KEY (img_id) REFERENCES ImageInfo(img_id))''")
self.conn.commit()
self.db_path = db_path

def change_db(self, db_path):
self.conn.close()
self.conn = sqlite3.connect(db_path)
self.curs = self.conn.cursor()
self.db_path = db_path

de

-+

update_db(self):
# add a ref.ball mode here, fit to previous database
self.curs.execute('""
CREATE TABLE IF NOT EXISTS ClickInfo (
click_id INT NOT NULL PRIMARY KEY,
img_id INT NOT NULL,
X REAL NOT NULL,
y REAL NOT NULL,
baf REAL NOT NULL,
FOREIGN KEY (img_id) REFERENCES ImageInfo(img_id))''")
try:
self.curs.execute(
ALTER TABLE ImageInfo ADD COLUMN mode INT NOT NULL DEFAULT @''')
except:
pass

self.commit()

def add_img(self, img_path, mode=0):
im = Image.open(img_path)
width, height = im.size
img_name_ext = os.path.basename(img_path)
img_name = os.path.splitext(img_name_ext)[0]

self.curs.execute('select MAX(img_id) from ImageInfo')
max_id = self.curs.fetchone()[0]
if max_id is None:
img_id = o
else:
img_id = max_id + 1

self.curs.execute('insert into ImageInfo values (?,?,?,?,?,?,?)",
(img_id, img_path, img_name, width, height, 2, mode))

def rm_img(self, img_id):
self.curs.execute('delete from ImageInfo where img_id = ?', [img_id])
self.curs.execute('delete from TreeInfo where img_id = ?', [img_id])

def edit_img_mode(self, img_id, mode=0):
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self.curs.execute('update ImageInfo set mode = ? where img_id = ?', [mode, img_id])

edit_img_baf(self, img_id, baf):
self.curs.execute('update ImageInfo set default_baf = ? where img_id = ?', [baf, img_id])

edit_img_baf_all(self, baf):
self.curs.execute('update ImageInfo set default_baf = ?', [baf])

get_img_info(self):
self.curs.execute('select img_id, img_dir, img_name, width, height, default_baf, mode from ImageInfo')
img_info = {'img_id': [], 'img_dir': [], 'img_name': [],
‘'width': [], "height': [], 'baf': [], 'mode':[], 'in_num': [], 'ba': []}

for r in self.curs.fetchall():

img_info[ 'img_id'].append(r[e])

img_info[ "img_dir'].append(r[1])

img_info[ 'img_name'].append(r[2])

img_info[ 'width'].append(r[3])

img_info[ "height'].append(r[4])

img_info[ 'baf'].append(r[5])

img_info[ 'mode’].append(r[6])

for i, img_id in enumerate(img_info[ 'img_id']):

baf = img_info[ 'baf'][i]

mode = img_info[ 'mode"][i]

if mode ==
self.curs.execute('select tree_id from TreeInfo where img_id = ? and max_baf >= ?', [img_id, baf])
in_num = len(self.curs.fetchall())

else:
self.curs.execute(('select click_id from ClickInfo where img_id = ? and baf = ?'), [img_id, baf])
in_num = len(self.curs.fetchall())

ba = plot_ba_calculator(baf, in_num)
img_info[ "in_num'].append(in_num)
img_info[ 'ba'].append(ba)

return img_info

get_img_info_baf_range(self, baf_list):
img_info_all = {'img_id':[], 'img_name':[], ‘baf_num_ba':[]}
self.curs.execute('select img_id from ImageInfo')

img_info_all['img_id'] = [r[@] for r in self.curs.fetchall()]

for img_id in img_info_all['img_id']:

self.curs.execute('select img_name from ImageInfo where img_id = ?', [img_id])

img_info_all[ 'img_name'].append(self.curs.fetchone()[0])

baf_num_ba = []

for baf in baf_list:
self.curs.execute('select tree_id from TreeInfo where img_id =? and max_baf >= ?', [img_id, baf])
in_num = len(self.curs.fetchall())
ba = plot_ba_calculator(baf, in_num)
baf_num_ba.append(ba)
#baf_num_ba.append(in_num)

img_info_all[ 'baf_num_ba'].append(baf_num_ba)
return img_info_all

add_tree(self, img_id, 1x, ly, rx, ry, return_value=False):
self.curs.execute('select MAX(tree_id) from TreeInfo')
max_id = self.curs.fetchone()[0]
if max_id is None:

tree_id = 0
else:

tree_id = max_id + 1

self.curs.execute('select width from ImageInfo where img_id = ?', [img_id])
img_width = self.curs.fetchone()[0]
baf_max = self.max_baf_calculator(lx, ly, rx, ry, img_width)

self.curs.execute('insert into TreeInfo values (?,?,?,?,?,?,?)",
(tree_id, img_id, 1x, ly, rx, ry, baf_max))
width = self.length_calculator(lx, ly, rx, ry)
if return_value:
return tree_id, width, baf_max # same order as get_tree_info

add_click(self, img_id, x, y, return_value=False):
self.curs.execute('select MAX(click_id) from ClickInfo')
max_id = self.curs.fetchone()[0]
if max_id is None:

click_id = @
else:
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click_id = max_id + 1

self.curs.execute('select default_baf from ImageInfo where img_id = ?', [img_id])
baf = self.curs.fetchone()[0]

self.curs.execute('select width from ImageInfo where img_id = ?', [img_id])
img_width = self.curs.fetchone()[0]

diameter_pixel = int(in_tree_pixel(baf, img_width))
self.curs.execute('insert into ClickInfo values (?,?,?,?,?)", [click_id, img_id, x, y, baf])

if return_value:
return click_id, diameter_pixel

rm_tree(self, tree_id):
self.curs.execute('delete from TreeInfo where tree_id = ?', [tree_id])

rm_click(self, click_id):
self.curs.execute('delete from ClickInfo where click_id = ?', [click_id])

edit_tree(self, tree_id, 1x, ly, rx, ry, return_value=False):
self.curs.execute('select img_id from TreeInfo where tree_id = ?', [tree_id])
img_id = self.curs.fetchone()[0]

self.curs.execute('select width from ImageInfo where img_id = ?', [img_id])
img_width = self.curs.fetchone()[0]

width = self.length_calculator(lx, ly, rx, ry)
baf_max = self.max_baf_calculator(lx, ly, rx, ry, img_width)

self.curs.execute('update TreeInfo set 1x = ?, 1ly = ?, rx = ?, ry = ?, max_baf = ? where tree_id = ?',
[1x, ly, rx, ry, baf_max, tree_id])
if return_value:
return width, baf_max

edit_click(self, click_id, x, y, return_value=False):
self.curs.execute('update ClickInfo set x=?, y=? where click_id = ?', [x, y, click_id])

get_tree_info(self, img_id):
self.curs.execute('select default_baf from ImageInfo where img_id = ?', [img_id])
default_baf = self.curs.fetchone()

tree_info = {'tree_id': [], 'left': [], 'right': [], 'width': [], 'state': []}

if default_baf is not None:
default_baf = default_baf[@]
self.curs.execute('select tree_id, 1x, ly, rx, ry, max_baf from TreeInfo where img_id = ?', [img_id])

for ti in self.curs.fetchall():
tree_info[ "tree_id'].append(ti[0])
tree_info[ 'left'].append([ti[1], ti[2]])
tree_info[ 'right'].append([ti[3], ti[4]])
tree_info[ ‘width'].append(self.length_calculator(ti[1], ti[2], ti[3], ti[4]))
if ti[5] >= default_baf:
state = 'in'
else:
state = 'out’
tree_info[ ‘state'].append(state)

return tree_info

get_click_info(self, img_id):
self.curs.execute('select default_baf from ImageInfo where img_id = ?', [img_id])
default_baf = self.curs.fetchone()

self.curs.execute('select width from ImageInfo where img_id = ?', [img_id])
img_width = self.curs.fetchone()[0]

diameter_pixel = int(in_tree_pixel(default_baf[@], img_width))
click_info = {'click_id':[], 'x':[], 'y':[], ‘width':[], ‘state':[]}

if default_baf is not None:
default_baf = default_baf[@]
self.curs.execute('select click_id, x, y from ClickInfo where img_id = ? AND baf=?', [img_id, default_baf])

for ci in self.curs.fetchall():
click_info['click_id'].append(ci[@])
click_info['x"'].append(ci[1])
click_info['y'].append(ci[2])
click_info['width'].append(diameter_pixel)
click_info['state'].append('in")
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return click_info

get_tree_info_all(self):
self.curs.execute('select img_id, tree_id, 1x, ly, rx, ry, max_baf from TreeInfo order by img_id')
tree_info_all = {'img_id':[], 'tree_id':[], ‘width':[], 'max_baf':[]}
for item in self.curs.fetchall():
tree_info_all[ 'img_id'].append(item[0])
tree_info_all[ 'tree_id'].append(item[1])
tree_info_all['width'].append(self.length_calculator(item[2], item[3], item[4], item[5]))
tree_info_all[ 'max_baf'].append(item[6])

return tree_info_all

get_click_info_all(self):
self.curs.execute('select img_id, click_id, x, y, baf from ClickInfo order by img_id, baf')
click_info_all = {'img_id':[], 'click_id':[], 'x':[], 'y':[], 'baf':[]}
for item in self.curs.fetchall():
click_info_all[ 'img_id"'].append(item[0@])
click_info_all[ 'click_id'].append(item[1])
click_info_all['x'].append(item[2])
click_info_all['y'].append(item[3])
click_info_all['baf'].append((item[4]))

return click_info_all

commit(self):
self.conn.commit()

max_baf_calculator(self, 1x, ly, rx, ry, img_width):
diameter_pixel = self.length_calculator(lx, ly, rx, ry)
baf_max = max_baf(img_width, diameter_pixel)

return baf_max

aticmethod
length_calculator(lx, ly, rx, ry):
return int(sqrt((lx - rx) ** 2 + (ly - ry) ** 2))

me__ == '__main__":
esting
os.path.exists('test.sqlite'):

os.remove('test.sqlite')

= DataBase()

esting add img

add_img(r'..\images\examples\COR R1 S@@ © 16.JPG')
add_img(r'..\images\examples\COR R1 S@@ 1 16.JPG')

esting remove img

rm_img(0)

esting add img to discontinuous img_1id
add_img(r'..\images\examples\COR R1 S12 © 16.JPG')
add_img(r'..\images\examples\COR R1 S12 1 16.JPG')

esting edit baf info without trees

edit_img_baf(img_id=1, baf=3)

ry to update non exist img

edit_img_baf(0, 3.4)

dd trees to test

add_tree(img_id=1, 1x=360, ly=720, rx=658, ry=720)
add_tree(img_id=1, 1x=360, ly=720, rx=358, ry=720) # Lx < rx
add_tree(img_id=2, 1x=390, ly=720, rx=458, ry=770) # not horizontal
add_tree(img_id=2, 1x=380, ly=720, rx=489, ry=720)

.add_click(img_id=1, x=300, y=500)

add_click(img_id=1, x=500, y=765)
add_click(img_id=2, x=5640, y=725)

est delete tree

rm_tree(tree_id=0)

rm_click(click_id=1)

est update tree info

edit_tree(tree_id=3, 1x=240, ly=430, rx=261, ry=430)
edit_click(click_id=2, x=430, y=370)

est getting info from db for gui.py
nt(db.get_img_info())

nt(db.get_tree_info(img_id=2))
nt(db.get_click_info(img_id=2))

esting edit baf info and change tree info at the same time
edit_img_baf(img_id=2, baf=300)

nt(db.get_tree_info(img_id=2))
nt(db.get_click_info(img_id=2))
commit()
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Appendix B: Plant Fraction Calculation Code

All the following codes in this appendix can be download from: https://github.com/

HowcanoeWang/Spherical2 TreeAttributes/tree/master/Plant%20Fraction

config.py (HSV Threshold)

hsv_version = 190410
hsv_threshold = {'sky':{'min':[(0, 0, 0.88), (175/360, ©.15, 0.85), (180/360, 0.45, 0.75)],
‘max':[(1, ©.15, 1), (220/360, 0.45, 1), (245/360, 1, 1) 13,
‘leaf':{'min':[(60 / 360, ©.15, 0.2)],
‘max':[(170 / 360, 1, 1)]}}

femel_path = r'D:\OneDrive\Documents\3_UNB\3_Graduate\[Data].FieldPhoto\Femel_Data\Femel_Panorama’'
nl_path = r'D:\OneDrive\Documents\3_UNB\3_Graduate\[Data].FieldPhotos\Newfoundland_Data\Newfoundland_Panorama’

Hemispherical/converse.py

import os

import time

import numpy as np

import pandas as pd

from PIL import Image, ImageDraw

from scipy import interpolate

from skimage import filters

from skimage.morphology import disk, binary_dilation
import multiprocessing

import scipy.interpolate as spint
import scipy.spatial.ghull as ghull
import itertools

# ================= Three main functions ==
def pano2fisheye(pil_img, model='equal_width', inter_method='linear', log='off', multi='off'):
if log == 'on':
print('|- Start conversing...')
img_df, shape = img2dataframe(pil_img)
if log == 'on':
print('|- Image DataFrame initialized')
img_conv, fisheye_shape = coordinate_converse(img_df, shape, model=model)
if log == 'on':
print('|- New pixel positions calculated')
img_cali = unique_points(img_conv)
if log == 'on':
print('|- Duplicated pixels removed')
if log == 'on':
print('|- Start fixing holes')

red, green, blue = interpolate_img(img_cali, fisheye_shape, method=inter_method, multi=multi, log=log)
fisheye_img = merge_layers(red, green, blue)
if log == 'on':
print('|- Image combined')
return fisheye_img

def fisheye_correction(img, center_radius, model='equidistant', vision_angle=50, inter_method='linear', multi="off’,
log="off"):
X, y, r = center_radius
if log == ‘on':
print('- Start conversing...')
img_df, shape = img2dataframe(img, center_radius)

if log == 'on':

print('|- Image DataFrame initialized')
img_df = calculate_radius_calibrated(img_df, r, model=model)
if log == 'on':

print('|- New radius calculated')
img_df, r_new = zenith_filter(img_df, r, vision_angle)
if log == 'on':

print('|- Vision angle filtered')
img_df = calculate_new_xy(img_df, r, r_new)
if log == 'on':

print('|- New pixel positions calculated')
df_cali = unique_points(img_df)
if log == 'on':
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print('|- Duplicated pixels removed')
print('|- Start fixing holes')
length = int(np.ceil(r_new * 2))
red, green, blue = interpolate_img(df_cali, (length, length), method=inter_method, multi=multi)
corrected_img = merge_layers(red, green, blue)
if log == 'on':
print('|- Image combined')
return corrected_img

def pano2fisheye_correction(pil_img, trans_model='equal_width', cali_model='equisolid', vision_angle=58,
inter_method="linear', multi='off', log='off"'):
if log == 'on':
print('- Start conversing...')
img_df, shape = img2dataframe(pil_img)

del pil_img
if log == 'on':
print('|- Image DataFrame initialized')
img_conv, fisheye_shape = coordinate_converse(img_df, shape, model=trans_model)
if log == 'on':
print('|- New pixel positions calculated')
img_cali = unique_points(img_conv)
if log == 'on':
print('|- Duplicated pixels removed')

del img_conv
r = int(fisheye_shape[@] / 2)

img_df = calculate_radius_calibrated(img_cali, r, model=cali_model)
del img_cali

if log == 'on':
print('|- New radius calculated')
img_df, r_new = zenith_filter(img_df, r, vision_angle)
if log == ‘on':
print('|- Vision angle filtered')
img_df = calculate_new_xy(img_df, r, r_new)
if log == 'on':
print('|- New pixel positions calculated')

df_cali = unique_points(img_df)

if log == 'on':
print('|- Start fixing holes')
length = int(np.ceil(r_new * 2))
red, green, blue = interpolate_img(df_cali, (length, length), method=inter_method, multi=multi)
del df_cali

fisheye_cali_img = merge_layers(red, green, blue)
if log == 'on':
print('|- Image combined')

return fisheye_cali_img

========= The modules that used for previews three main functions ==
def img2dataframe(img, center_radius=None):

if img is a fisheye image, (x, y, r) is required to crop fisheye edge.

if type(center_radius) == tuple and len(center_radius) == 3:
# fisheye image
X, y, radius = center_radius
img_crop = img.crop((x - radius - 1, y - radius - 1, x + radius - 1, y + radius - 1))

mask = Image.new('RGBA', (2 * radius, 2 * radius))
draw = ImageDraw.Draw(mask)
draw.ellipse((0, ©, 2 * radius, 2 * radius), fill='blue', outline='blue')
# overlay mask on image
img_out = Image.new('RGBA', (2 * radius, 2 * radius))
img_out.paste(img_crop, (@, @), mask)
else:
# panorama image need crop half
width, height = img.size
img_out = img.crop((®, @, width, int(height / 2)))

'''PIL.img.size = (w, h)"'"’
w, h = img_out.size
np_img = np.asarray(img_out)

numpy .ndarray:

—y
| np.asarray(img).shape = (h, w, d)
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def

def

x{
x_grid, y_grid = np.mgrid[@:h, 0:w]
red = np_img[:, :, 0]
green = np_img[:, :, 1]
blue = np_img[:, :, 2]
if np_img.shape[2] == 4:
alpha = np.asarray(img_out)[:, :, 3]
img_df = pd.DataFrame({'x': x_grid.flatten(), 'y': y_grid.flatten(),
‘red': red.flatten(), 'green': green.flatten(), 'blue': blue.flatten(),
‘alpha’: alpha.flatten()},
columns=['x", 'y', 'red', 'green', 'blue', ‘'alpha'])
# remove alpha Layer
img_df = img_df.loc[img_df['alpha'] == 255]
img_df = img_df.drop([‘'alpha'], axis=1)
else:
img_df = pd.DataFrame({'x': x_grid.flatten(), 'y': y_grid.flatten(),
‘red': red.flatten(), ‘green': green.flatten(), 'blue’': blue.flatten()},
columns=['x"', 'y', 'red', 'green', 'blue'])
np_shape = (h, w)
return img_df, np_shape

unique_points(img_df):

remove duplicate points which overlay one the same pixel
x: conversed x (float)

y: conversed y (float)

shape: (height, width)

return x, y , v_new
x_int = img_df[ 'x_cali'].astype(int)
y_int = img_df['y_cali'].astype(int)
df_cali = pd.DataFrame(
{'x': x_int, 'y': y_int, 'red': img_df['red'], 'green': img_df['green'], ‘blue': img_df['blue’']})
df_cali = df_cali.groupby(['x", 'y'], as_index=False).mean()

return df_cali

interpolate_img(img_df, shape, method="'none', log='off', multi='off'):

shape: (height, width)

method: using griddata.linear to interpolate, this is very slow and time consuming
return 2D.ndarray of that Layer

xi, yi = np.mgrid[@:shape[@], @:shape[1]]
if method == 'none':

red = np.zeros(shape)

green = np.zeros(shape)

blue = np.zeros(shape)

red[img_df['x"'], img_df['y']] = img_df['red']
green[img_df['x"'], img df['y']] = img_df['green']
blue[img_df['x"'], img_df['y']] = img_df['blue’]

if log == 'on': print('| |- no interpolate method applied')

return red, green, blue

if method == 'linear':
if multi == 'on':
key_words = ['red', ‘green', 'blue']
multiprocessing.freeze_support()
pool = multiprocessing.Pool(processes=3)
pool_list = {}
for channel in key_words:
pool_list[channel] = pool.apply_async(interpolate.griddata,

args=((img_df['x"'], img_df['y']), img_df[channel], (xi, yi)))

result_list = {key:value.get() for key, value in pool_list.items()}

pool.close()

pool.join()

return result_list['red'], result_list['green'], result_list['blue']
else:

mask_hole = np.zeros(shape)

mask_hole[img_df['x"'], img_df['y']] = 1

mask_circ = createCircularMask(*shape)

mask = (mask_hole==0) * mask_circ
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if log == 'on':

print('| |- mask generated')

red = np.zeros(shape).astype(np.uint16)
green = np.zeros(shape).astype(np.uinti16)
blue = np.zeros(shape).astype(np.uint16)

red[img_df['x"'], img_df['y']
green[img_df['x"], img_df['y
blue[img_df['x"'], img_df['y']

red_filter =
green_filter

if log == 'on':

#mask_deli =

?

1
1

]

img_df['red']

= img_df[ 'green']
= img_df['blue']

filters.rank.mean(red, disk(1),mask=mask_hole==1)
filters.rank.mean(green, disk(1),mask=mask_hole==1)
blue_filter = filters.rank.mean(blue, disk(1),mask=mask_hole==1)

print('| |- filter generated')

binary_dilation(mask)

red[mask] = red_filter[mask]
green[mask] = green_filter[mask]
blue[mask] = blue_filter[mask]

t = time.time()

red = interpolate.griddata((img_df['x"'], img_df['y']), img_df['red'], (xi, yi))

if log == 'on':

print(f'| |- [red] channel finished, {time.time() - t}s spend')
tr = time.time()
green = interpolate.griddata((img_df['x'], img_df['y']), img_df['green'], (xi, yi))

if log == 'on':

print(f'| |- [green] channel finished, {time.time() - t}s spend')
tr = time.time()
blue = interpolate.griddata((img_df['x'], img_df['y']), img_df['blue'], (xi, yi))

if log == 'on':

print(f'| |- [blue] channel finished, {time.time() - t}s spend')

return red, green, blue

def merge_layers(r, g, b):
img = np.zeros((r.shape[@], r.shape[1], 3))

def

def

img[:, :, @] =r
img[:, :, 1] = g
img[:, :, 2] = b
img[np.isnan(img)] =

2}

img = img.astype('uint8")
pil_img = Image.fromarray(img)

return pil_img

coordinate_converse(img_df, panorama_size, model='equal_width"):

panorama size = (h, w

)

h: panorama image height
w: panorama image width

model

‘equal_width': assume height of one pixel in panorama
'projection’: assume height of panorama = height of hemisphere of fisheye ghostball,
which the radius of ghostball (r), height of pixel in panorama (h),
distance to circle center of fisheye for that pixel(d) satisfy:
r*2 = h"2 + d"2

h, w = panorama_size
r=nh

fisheye_size = (2 * r, 2 * pr)
theta = (img_df['y'] + ©.5) / w * 360 # +0.5 is to mark pixel center
sin_theta = np.sin(np.deg2rad(theta))
cos_theta = np.cos(np.deg2rad(theta))
if model == 'equal_width':

img_df['x_cali']
img df['y_cali']

r + sin_theta
r + cos_theta

if model == 'projection’:
d = np.sqrt(abs(2 * (img_df['x"']

img_df['x_cali']
img_df['y_cali']

r + sin_theta
r + cos_theta

return img_df, fisheye_size

*

img_df['x"]
img_df['x"]

= the distance to circle center in fisheye

0.5) * r - (img_df['x'] + 0.5) ** 2))

d
d

calculate_radius_calibrated(img_df, img_radius, model='equidistant’, log='off'):

img_radius: half of fisheye width or height

models:
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'equidistant’
'equidolid"’
'orthographic’
'stereographic’

if model == 'equidistant':
f = img_radius * 2 / np.pi # the radius of fake sphere
d = np.sqrt((img_df['x'] - img_radius) ** 2 + (img_df['y'] - img_radius) ** 2)
img_df['r_cali'] = f * np.tan(d / f)

elif model == 'equisolid':
f = img_radius / np.sqrt(2)
d = np.sqrt((img_df['x'] - img_radius) ** 2 + (img_df['y'] - img_radius) ** 2)
img_df['r_cali'] = f * np.tan(2 * np.arcsin(d / (2 * f)))

elif model == 'orthographic’:
f = img_radius
d = np.sqrt((img_df['x'] - img_radius) ** 2 + (img_df['y'] - img_radius) ** 2)
img_df['r_cali'] =d / np.sqrt(1 + (d / f) ** 2)

elif model == 'stereographic':
f = img_radius / 2
d = np.sqrt((img_df['x'] - img_radius) ** 2 + (img_df['y'] - img_radius) ** 2)
img_df['r_cali'] = f * np.tan(2 * np.arctan(d / (2 * f)))

else:
d = np.sqrt((img_df['x'] - img_radius) ** 2 + (img_df['y'] - img_radius) ** 2)
if log == 'on': print('no input [' + model + '] model, please choose another one!'")
img_df['r_cali'] = d

return img_df

def zenith_filter(img_df, img_radius, filter_degree=50):
f = img_radius * 2 / np.pi
if filter_degree <= 70:
threshold = f * np.tan(np.deg2rad(filter_degree))
img_df = img_df.loc[np.abs(img_df['r_cali']) <= threshold]

return img_df, threshold
else:
return img_df, False

def calculate_new_xy(img_df, img_radius, cali_radius):
rad_theta = np.arctan2((img_df['x"'] - img_radius), (img_df['y'] - img_radius))
rad_theta += (img_df['x"'] <= img_radius) * 2 * np.pi
img_df = img_df.assign(x_cali=cali_radius + np.sin(rad_theta) * img_df['r_cali'])
img_df = img_df.assign(y_cali=cali_radius + np.cos(rad_theta) * img_df['r_cali'])

return img_df

def createCircularMask(h, w, center=None, radius=None):
if center is None: # use the middle of the image
center = [int(w/2), int(h/2)]
if radius is None: # use the smallest distance between the center and image walls
radius = min(center[@], center[1], w-center[0], h-center[1])

Y, X = np.ogrid[:h, :w]
dist_from_center = np.sqrt((X - center[0])**2 + (Y-center[1])**2)

mask = dist_from_center <= radius
return mask

Hemispherical/plant_fraction_hemi.py

import numpy as np

import pandas as pd

from PIL import Image, ImageDraw
from skimage.color import rgb2hsv
from math import floor

import sys
sys.path.insert(0, '..")
import config
class PF:
def __init_ (self, img_path, threshold):
img = Image.open(img_path)

self.img = np.asarray(img)

self.threshold = threshold
self.img_data = rgb2hsv(self.img)

199



#self.binary = self._in_range(threshold['min'], threshold[ 'max'])
#self.overlay, self.pai = self.count_pai(self.binary)
self.kind = self._classify()
self.kind_ref = {'plant': self.kind != 2,
‘stem': self.kind == @,
‘leaf': self.kind 1,
‘sky': self.kind == 2}

def _in_range(self, lower, upper):
input a image and threshold, give a classified binary image (m*n booleans ndarray)
Image out is binary w*h matrix, T is in threshold (sky), F is out of threshold (plant)

img_data = self.img_data
mask = np.zeros(img_data.shape[0:2], dtype=bool)

for min, max in zip(lower, upper):
mask_0 = (img_data[:, :, @] >= min[@]) * (img_data[:, :, @] <= max[e])
mask_1 = (img_data[:, :, 1] >= min[1]) * (img_data[:, :, 1] <= max[1])
mask_2 = (img_data[:, :, 2] >= min[2]) * (img_data[:, :, 2] <= max[2])

mask_all = mask_0@ * mask_1 * mask_2
mask += mask_all

return mask

def _classify(self):
threshold = self.threshold
self.sky_mask = self._in_range(threshold[ 'sky']['min’], threshold['sky'][ 'max'])
self.leaf_mask = self._in_range(threshold['leaf']['min’], threshold['leaf'][ 'max'])

kind = np.zeros(self.img_data.shape[0:2], dtype=int)
# stem = 0, leaf = 1, sky = 2

kind[self.leaf_mask] = 1

kind[self.sky_mask] = 2

return kind

@staticmethod
def createCircularMask(h, w, center=None, radius=None):
if center is None: # use the middle of the image
center = [int(w/2), int(h/2)]
if radius is None: # use the smallest distance between the center and image walls
radius = min(center[@], center[1], w-center[0], h-center[1])

Y, X = np.ogrid[:h, :w]
dist_from_center = np.sqrt((X - center[0])**2 + (Y-center[1])**2)

mask = dist_from_center <= radius
return mask

def count_pai(self, binary_img):
h, w = binary_img.shape
r=w/2
mask = self.createCircularMask(h, w)
overlay = binary_img * mask

u_img, counts_img = np.unique(overlay, return_counts=True)
u_mask, counts_mask = np.unique(mask, return_counts=True)

sky_percent = counts_img[1] / counts_mask[1]
pai = 1-sky_percent
return overlay, pai

def write_result(self, result_dir, mode='binary'):
h, w, d = self.img.shape

rua = np.zeros((h, w, 3))

if mode=='colored’
rua[:, :, @] = self.img[:,:,0] * abs(self.overlay - 1)
rual:, :, 1] self.img[:,:,1] * abs(self.overlay - 1)
rual:, :, 2] self.img[:,:,2] * abs(self.overlay - 1)
# merge img|classified
img_comb = Image.fromarray( np.hstack((self.img, rua)).astype('uint8'))
img_comb.save(result_dir)

else:
for i in range(0,3):

rua[:,:,i] = self.binary * 255
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rua.save(result_dir)
def pf_value(self, kind='plant', zenith_angle=57.5):
h, w = self.kind.shape
r=w/2
mask = self.createCircularMask(h, w)

binary_img = self.kind_ref[kind]
overlay = binary_img * mask

u_img, counts_img = np.unique(overlay, return_counts=True)
u_mask, counts_mask = np.unique(mask, return_counts=True)

percent = counts_img[1] / counts_mask[1]

return percent

Hemispherical/classify_all_fisheye.py

import os
import pandas as pd
from plant_fraction_hemi import PF

import sys
sys.path.insert(0, '..")
import config

g = os.walk(r'Conversed_57.5/")

# plant fraction, leaf fraction, stem Fraction sky fraction
pai_data = pd.DataFrame(columns=['File_name', 'PlantFrac', 'LeafFrac', 'StemFrac', 'SkyFrac'])

write_dir = f'./Classified_57.5_ver.{config.hsv_version}/'
if not os.path.exists(write_dir):
os.mkdir(write_dir)

e

for path, dir_list, file_list in g:
for file_name in file_list:
if file_name[-4:] == '.JIPG':

img_path = os.path.join(path, file_name)
img = PF(img_path, config.hsv_threshold)

result_list = [file_name,
img.pf_value('plant’, 57.5),
img.pf_value('leaf', 57.5),
img.pf_value('stem', 57.5),
img.pf_value('sky', 57.5)]

#img.write_result(write_dir + file_name)
#result_List.append()
pai_data.loc[len(pai_data)] = result_list

print(str(result_list))

pai_data.to_csv(f'pf57.5_3classes_fisheye_ver.{config.hsv_version}.csv', index=False)

Cylindrical/plant_fraction_cyli.py

import numpy as np

import os

import pandas as pd

from PIL import Image, ImageDraw
from skimage.color import rgb2hsv
from math import floor

import sys

sys.path.insert(0, '..")
import config

class PF:
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def __init_ (self, img_path, threshold):
img = Image.open(img_path)
self.img_name = os.path.basename(img_path)

w, h

mg.size

= il
self.h_half = int(h / 2)

self.threshold = threshold

self.img = np.asarray(img.crop((0, @, w, self.h_half)))
self.img_data = rgb2hsv(self.img)

= self.radius = self.h_half

self.width = w

self.height

self.aw = self._angle_weight()
self.kind = self._classify()
self.row_percent = self._percent_each_row()

= self._ring_area(calibration=True)

self.ring_s

def _classify(self):

threshold =

self.threshold

self.sky_mask = self._in_range(threshold['sky']['min"], threshold['sky'][ 'max'])
self.leaf_mask = self._in_range(threshold['leaf']['min'], threshold['leaf']['max"'])

kind = np.zeros(self.img_data.shape[0:2], dtype=int)
leaf = 1, sky = 2, plant =0 +1

kind[self.leaf_mask] = 1
kind[self.sky_mask] = 2

# Stem = 0,

return kind

def _in_range(self, lower, upper)

input a image and threshold, give a classified binary image (m*n booleans ndarray)

Image out is binary w*h matrix,

img_data =

S

elf.img_data

T is in threshold (sky), F is out of threshold (plant)

mask = np.zeros(img_data.shape[0:2], dtype=bool)

for min, max in zip(lower, upper):
>= min[@]) * (img_data[:, :, @] <= max[e@])
>= min[1]) * (img_data[:, :, 1] <= max[1])
>= min[2]) * (img_data[:, :, 2] <= max[2])

mask_©
mask_1
mask_2

(img_data[:, :, @]
(img_data[:, :, 1]
(img_data[:, :, 2]

mask_all = mask_© * mask_1 * mask_2
mask += mask_all

return mask

def _percent_each_row(self):
(self.kind == @).sum(axis=1)
(self.kind == 1).sum(axis=1)

stem_num =
leaf_num =
plant_num =

stem_num + leaf_num

sky_num = (self.kind == 2).sum(axis=1)

stem_percen
leaf_percen

sky_percent

t
t

= stem_num / self.width

= leaf_num / self.width
plant_percent = plant_num / self.width
= sky_num / self.width

return {'plant’:plant_percent,

'leaf':leaf_percent, 'stem':stem_percent,

def _ring_area(self, calibration=False):
r_range = np.arange(®, self.radius + 1)

if calibration:
f = self.radius / np.sqrt(2)
r_new = f * np.tan(2 * np.arcsin(r_range / (2 * f)))

else:
r_new =

self.r_in =

r_range

r_new[:-1]

self.r_out = r_new[1:]

s = np.pi * self.r_out ** 2 - np.pi * self.r_in ** 2

return s

def _angle_weight(self):

202

‘sky':sky_percent}



line_id = np.arange(®, self.h_half, step=1)
angle_weight = np.cos(line_id / self.h_half * np.pi / 2)

return angle_weight

# TODO
def write_output(self, result_dir='outputs/', return_jpg=True, return_csv=False, merge=False):

if return_jpg:
rua = np.zeros((self.height, self.width, 3))

#sky:  white R=255, G=255, B=255
#plant: blue R=0, G=0, B=255
#leaf: green R=0, G=255, B=0

# Red Channel

rua[:, :, @] = (self.kind == 2) * 255 # only sky = 255

# Green Channel

rual:, :, 1] = ((self.kind == 1) | (self.kind == 2)) * 255 # sky & leaf = 255
# Blue Channel

rual:, :, 2] = ((self.kind == @) | (self.kind == 2)) * 255 # sky & plant = 255

img_class = Image.fromarray((rua).astype('uint8'))

d = ImageDraw.Draw(img_class)
d.text((10,10), str(self.threshold), fill=(0,0,0))

img_class.save(f'{result_dir}/class/{self.img_name}_class.jpg")

if merge:
# merge img|classified|leaf[plant|sky
img_comb = Image.fromarray(np.vstack((np.asanyarray(self.img), rua)).astype('uint8'))
d = ImageDraw.Draw(img_comb)
d.text((10, 10), str(self.threshold), fill=(0,0,0))
img_comb.save(f'{result_dir}/merge/{self.img_name}_merge.jpg"')

if return_csv:
np.savetxt(f'{result_dir}/csv/{self.img_name}.csv', self.kind.astype(int), fmt="%i', delimiter=",")

def pf_value(self, kind='plant', zenith_angle=57.5):
# zenith_angle should < 80 to be more precious
line_num = floor(self.height * zenith_angle / 90) - 1

percent = self.row_percent[kind][:1line_num]
#aw = self.aw[:line_num]
r_max = self.r_in[line_num]

s_max = np.pi * r_max ** 2
ring_s = self.ring_s[:1line_num]
weight = ring_s / s_max

pf_row = percent * weight# * aw
return pf_row.sum()

Cylindrical/classify_all_cylindrical.py

import os
import pandas as pd
from plant_fraction_cyli import PF

import sys
sys.path.insert(@, '..")
import config

paths = [r'D:\OneDrive\Documents\3_UNB\3_Graduate\[Data].FieldPhoto\Newfoundland_Data\Newfoundland_Panorama‘,
r'D:\OneDrive\Documents\3_UNB\3_Graduate\[Data].FieldPhoto\Femel_Data\Femel_Panorama']

# plant fraction, leaf fraction, stem Fraction sky fraction
pai_data = pd.DataFrame(columns=['File_name', 'PlantFrac', 'LeafFrac', 'StemFrac', 'SkyFrac'])

write_dir = f'./Classified_57.5_ver.{config.hsv_version}/'
if not os.path.exists(write_dir):
os.mkdir(write_dir)

for path in paths:
g = os.walk(path)
for path, dir_list, file_list in g:
for file_name in file_list:
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if file_name[-4:] == '.JPG':

img_path = os.path.join(path, file_name)
img = PF(img_path, config.hsv_threshold)

result_list = [file_name,
img.pf_value('plant’', 57.5),
img.pf_value('leaf', 57.5),
img.pf_value('stem', 57.5),
img.pf_value('sky', 57.5)]
#img.write_result(write_dir + file_name)
#result_Llist.append()
pai_data.loc[len(pai_data)] = result_list

print(str(result_list))

pai_data.to_csv(f'pf57.5_3classes_matrix_ver.{config.hsv_version}.csv', index=False)
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Appendix C: Individual Tree Extraction Software Code

All the following codes in this appendix can be download from: https://github.com/

HowcanoeWang/Spherical2 Tree Attributes/tree/master/Individual%20Tree

app.py

import sys

import os

import numpy as np

from PyQt5.QtWidgets import *
from PyQt5.QtGui import *
from PyQt5.QtCore import *

from PIL import Image, ExifTags

from scipy import ndimage

from scipy.interpolate import interpld
import imageio

from skimage.exposure import equalize_hist

from ba import in_tree_pixel
baf20 = in_tree_pixel(baf=20, img_width=5376)

class MainWindow(QMainWindow):
keyPressed = pyqtSignal(QEvent)
vLocked = pyqtSignal(int)

def __init_ (self, parent=None):
super().__init__ (parent)

self.coordinate = '(x, y)'

self.setWindowTitle( 'IndividualDemo")
self.setupUI()
self.functionConnector()

self.initPlot()
self.initTree()

self.addTree = -1 # No add

self.el = 1.6

self.e2 = 2.6

def setupUI(self):
self.mainWidget = QWidget()

self.panell6 = ImgPanel(self, 1.6)
self.panel26 = ImgPanel(self, 2.6)

self.line = QFrame()
self.line.setFrameShape(QFrame.VLine)
self.line.setFrameShadow(QFrame.Sunken)

self.wl = QHBoxLayout(self.mainWidget)

self.wl.addWidget(self.panell6)
self.wl.addWidget(self.line)
self.wl.addWidget(self.panel26)

self.setCentralWidget(self.mainWidget)

def functionConnector(self):
self.panell6.xScrollChanged.connect(self.panel26.setXScroll)
self.panel26.xScrollChanged.connect(self.panell6.setXScroll)
self.panell6.yScrollChanged.connect(self.panel26.setYScroll)
self.panel26.yScrollChanged.connect(self.panell6.setYScroll)

self.panell6.exifData.connect(self.updatePlot)
self.panel26.exifData.connect(self.updatePlot)
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self.keyPressed.connect(self.panell6.imgShow.changeDirection)
self.keyPressed.connect(self.panel26.imgShow.changeDirection)

self.panell6.imgShow.emitPoint.connect(self.addTree)
self.panel26.imgShow.emitPoint.connect(self.addTree)

self.vLocked.connect(self.panell6.imgShow.changeVLock)
self.vLocked.connect(self.panel26.imgShow.changeVLock)

def keyPressEvent(self, event):
if event.key() == Qt.Key_L:
v, okPressed = QInputDialog.getInt(self, "Get integer","Y pixel", 6000, 0, 13000, 1)
if okPressed:
self.vLocked.emit(v)
elif event.key() == Qt.Key_U:
self.vLocked.emit(-1)
elif event.key() == Qt.Key_N: # Add tree easy mode
self.addTree = 0
self.initTree()
self.changeDirection('NE")
self.showStep('[S1:1.6Base]")
else:
self.keyPressed.emit(event)

def initPlot(self):
self.plot = {'GCP16':0,

‘LatDegl6':0, 'LatMinl6':@, 'LatSecl6':0.0,
‘LonDegl6':0, 'LonMinl6':@, ‘'LonSecl6':0.0,
‘Altitudel6':0.0, 'Northl6':0.0,
'GCP26':0,
'LatDeg26':0, 'LatMin26':0, 'LatSec26':0.0,
‘LonDeg26':0, 'LonMin26':@, 'LonSec26':0.0,
‘Altitude26':0.0, 'North26':0.0}

def updatePlot(self, ht, data_list):

if ht == 1.6:
self.plot['GCP16'] = data_list[0]
self.plot['LatDegl6"] = data_list[1]

self.plot['LatMin16"] data_list[2]
self.plot['LatSec16'] data_list[3]
self.plot['LonDegl6"] = data_list[4]
self.plot['LonDegl6"] data_list[5]
self.plot['LonDegl6"] data_list[6]
self.plot['Altitudel6"] data_list[7]
self.plot['Northl6"] = data_list[8]
else:
self.plot['GCP26"] data_list[@]
self.plot['LatDeg26"] data_list[1]
self.plot['LatMin26"] = data_list[2]
self.plot['LatSec26'] data_list[3]
self.plot['LonDeg26"] data_list[4]
self.plot['LonDeg26"] = data_list[5]
self.plot['LonDeg26"] data_list[6]
self.plot['Altitude26'] data_list[7]
self.plot['North26"] data_list[8]

print(self.plot)

def initTree(self):
self.tree = {"16BX':0, '16BY':0, '16TX':0, '16TY':0,
'26BX':@, '26BY':0, '26TX':0, '26TY':0,
'16LX':@, '16LY':0, '16RX':0, '16RY':0,
'26LX':0, '26LY':0, '26RX':0, '26RY':0,
‘Dist':0.0, 'DeltaH':0.0, 'HT':0.0, 'DBH':0.0, 'Gamma':0.0, 'Altitude':0.0}

def addTree(self, x, y):

# 0: Add 16Base

# 1: Add 26Base => Calculate Dist, DeltaH, Altitude, Gamma, 1.3m, set panel16, panel 26
change direction to "W"
2: Add 16Left => change direction to "E"
3: Add 16Right => change direction to "W"
4: Add 26Left => change direction to "E"
5: Add 26Right => calculate DBH
6: Add 16Top
7: Add 26Top => calculate HT, change to -1
if self.addTree ==

self.tree['16BX'] = X

self.tree['16BY'] =y

self.addTree += 1

self.showStep('[S2: 2.6Base]')
elif self.addTree ==

self.tree['26BX'] = X
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self.tree['26BY'] =y

k1l = np.tan(-self.zenithRadians(self.tree['16BY']))
k2 = np.tan(-self.zenithRadians(self.tree['26BY']))
ix, iy = self.interactBase(kl, self.el, k2, self.e2)
self.tree['Dist’'] = -ix

self.tree['DeltaH'] = iy

self.tree['Altitude'] = (self.plot['Altitudel6'] + self.plot['Altitude26']) / 2 + iy
gammal = self.horizonAngle(self.tree['16BX'], self.plot['GCP16'], self.plot['Northl6'])
gamma2 = self.horizonAngle(self.tree['26BX'], self.plot['GCP26'], self.plot['North26'])
self.tree['Gamma'] = (gammal + gamma2) / 2

dbhl6pos = self.getDBHPosition(self.el, ix, iy)
dbh26pos = self.getDBHPosition(self.e2, ix, 1iy)

self.panell6.imgShow.changeVLock(int(dbh1l6pos))
self.panel26.imgShow.changeVLock(int(dbh26pos))

self.changeDirection('NW")
self.showStep('[S3:1.6Left]")
self.addTree += 1

elif self.addTree ==
self.tree['16LX"'] = X
self.tree['16LY'] =y
self.changeDirection('NE")
self.showStep('[S4:1.6Right]")
self.addTree += 1

elif self.addTree == 3:
self.tree['16RX'] = X
self.tree['16RY'] =y
self.changeDirection('NW")
self.showStep('[S5:2.6Left]")
self.addTree += 1

elif self.addTree == 4:
self.tree['26LX"'] = x
self.tree['26LY'] =y
self.changeDirection('NE")
self.showStep('[S6:2.6Right]")
self.addTree += 1

elif self.addTree == 5:
self.tree[ '26RX'] = x
self.tree['26RY'] =y
self.changeDirection('NW")

dbh16 = self.getDBH(self.tree['16LX"'], self.tree['16RX'], self.tree['Dist'])
dbh26 = self.getDBH(self.tree['26LX"'], self.tree['26RX'], self.tree['Dist'])
self.tree['DBH'] = (dbhl6 + dbh26) / 2

self.panell6.imgShow.changeVLock(-1)
self.panel26.imgShow.changeVLock(-1)
self.showStep('[S7:1.6Top]")

self.addTree += 1

elif self.addTree ==
self.tree['16TX"'] = x
self.tree['16TY'] =y
self.showStep('[S8:2.6Top]")
self.addTree += 1

elif self.addTree ==
self.tree['26TX'] = x
self.tree['26TY'] =y

k1l = np.tan(-self.zenithRadians(self.tree['16TY']))
k2 = np.tan(-self.zenithRadians(self.tree['26TY"']))
htl = - self.tree['Dist'] * k1 + self.el - self.tree['DeltaH']
ht2 = - self.tree['Dist'] * k2 + self.e2 - self.tree['DeltaH']

self.tree['HT'] = (htl + ht2) / 2
self.showStep('[Done&Paste]")

text = "'
for key, value in self.tree.items():
text += f'{value}\t'

self.cb = QApplication.clipboard()
self.cb.clear(mode=self.cb.Clipboard)
self.cb.setText(text[:-1], mode=self.cb.Clipboard)
print(text)

self.addTree = -1

207



def changeDirection(self, direct="NE'):
self.panell6.imgShow.corner = direct
self.panel26.imgShow.corner = direct
self.panell6.imgShow.update()
self.panel26.imgShow.update()

def showStep(self, string):
self.panell6.updateProgress(string)
self.panel26.updateProgress(string)

@staticmethod

def interactBase(kl, bl, k2, b2):
x = (b2-b1)/(k1-k2)
y = k1*x + bl
return x, y

@staticmethod
def zenithRadians(ypos):
return np.radians((1344 - (ypos - 1))/2688*180)

@staticmethod
def horizonAngle(xpos, gcp, north)
gamma = (xpos+gcp) / 5376 * 360 - north
if gamma < O:
gamma += 360
if gamma > 360:
gamma -= 360
return gamma

@staticmethod

def getDBHPosition(e, bx, by):
angles = -np.degrees(np.arctan((e-1.3-by)/(0-bx)))
pos = 1344 - angles / 180 * 2688
return pos

@staticmethod
def getDBH(1x, rx, dist):
omiga = np.radians(abs(rx-1x) / 5376 * 360)
sin_half_omiga = np.sin(omiga / 2)
dbh = 2 * sin_half_omiga * dist / (1 - sin_half_omiga) * 100
return dbh

class ImgPanel(Qwidget):
xScrollChanged = pyqtSignal(int)
yScrollChanged = pyqtSignal(int)
exifData = pyqtSignal(float, list)

def __ init_ (self, parent=None, ht=1.6):
super().__init__ (parent)
self.refX = @
self.refY = @

self.scrollX = @
self.scrollY = @
self.ht = ht

self.converter = Converter(self)

self.setupUI(ht)
self.functionConnector()

def setupUI(self, ht):
self.layout = QVBoxLayout(self)
self.infolLayout = QHBoxLayout()

self.htName = QLabel(f"[{ht}m]:")
self.imgName = QLabel('D:/xxx.Jpg')
self.infoBtn = QPushButton('Info")
self.changeImgBtn = QPushButton('OpenImg")
self.convertBtn = QPushButton('Convert")
self.saveImgBtn = QPushButton('save')

self.imgShow = ImgShow(self)
#self.scrollArea = QScrollArea()
self.scrollArea = Scroller()
self.scrollArea.setWidget(self.imgShow)

self.hBar = self.scrollArea.horizontalScrollBar()

self.vBar = self.scrollArea.verticalScrollBar()
self.scrollX = self.hBar.value()
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self.scrollY = self.vBar.value()

self.infolLayout.addWidget(self.htName)
self.infolayout.addwWidget(self.imgName)
self.infolLayout.addStretch(0)
self.infolayout.addWidget(self.infoBtn)
self.infolLayout.addWidget(self.changeImgBtn)
self.infolLayout.addWidget(self.convertBtn)
self.infolLayout.addWidget(self.saveImgBtn)

self.layout.addLayout(self.infolLayout)
self.layout.addWidget(self.scrollArea)

functionConnector(self):
self.imgShow.mouseClicked.connect(self.updateRef)
self.infoBtn.clicked.connect(self.showInfo)
self.changeImgBtn.clicked.connect(self.loadImg)
self.convertBtn.clicked.connect(self.convertImg)
self.saveImgBtn.clicked.connect(self.imgShow.saveImg)
self.hBar.valueChanged.connect(self.emitX)
self.vBar.valueChanged.connect(self.emitY)
self.converter.sigOut.connect(self.updateProgress)
self.imgShow.saver.sigOut.connect(self.updateProgress)

emitX(self):
self.xScrollChanged.emit(self.hBar.value())

emitY(self):
self.yScrollChanged.emit(self.vBar.value())

setXScroll(self, value):
self.hBar.setValue(min(self.hBar.maximum(),value))

setYScroll(self, value):
self.vBar.setValue(min(self.vBar.maximum(),value))

wheelEvent(self, event):

if event.modifiers() == Qt.ShiftModifier:
self.hBar.wheelEvent(event)

else:
self.vBar.wheelEvent(event)

getExifInfo(self):
self.show_str = "'
self.clip_str =
# gcp, lat.D, lat.M, lat.S, Lon.D, Lon.M, Lon.S, Altitude, North
#e0, 1, 2, 3, 4, 5, 6, 7, 8
self.data_list = [0, ©, 0, 0.0, 0, @, 0.0, 0.0, None]

if self.imgShow.img_path is not None:
img = Image.open(self.imgShow.img_path)
exif_human = {ExifTags.TAGS[k]: v for k, v in img._getexif().items() if k in ExifTags.TAGS}
gps_info = exif_human['GPSInfo']

self.data_list[@] = self.refX

lat_label = gps_info[1] # N

lat_exif = gps_info[2] # ((45, 1), (56, 1), (4682, 100))

self.data_list[1] = lat_exif[@][0]

self.data_list[2] = lat_exif[1][0]

self.data_list[3] = lat_exif[2][0]/lat_exif[2][1]

self.show_str += f"{lat_exif[@][0]}°{lat_exif[1][0]}'{self.data_list[3]}” {lat_label}\n"

lon_label = gps_info[3] # W

lon_exif = gps_info[4] # ((66, 1), (38, 1), (3938, 100))

self.data_list[4] = lon_exif[@][0]

self.data_list[5] = lon_exif[1][@]

self.data_list[6] = lon_exif[2][0]/lat_exif[2][1]

self.show_str += f"{lon_exif[0][0]}°{lon_exif[1][0]} '{self.data_list[6]}" {lon_label}\n"

alt_exif = gps_info[6] # (3512, 100)
self.data_list[7] = alt_exif[@]/alt_exif[1]
self.show_str += f"altitude:{self.data_list[7]}\n"

if 17 in gps_info.keys():
north_angle = gps_info[17] # (1125, 10)
self.data_list[8] = north_angle[@]/north_angle[1]
self.show_str += f"north:{self.data_list[8]}°"
else:
self.show_str += f"north: missing"

for i in self.data_list:
self.clip_str += f'{i}\t’
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def showInfo(self):

self.getExifInfo()

try:
QMessageBox.information(self, "GPS Info", self.show_str)
self.cb = QApplication.clipboard()
self.cb.clear(mode=self.cb.Clipboard)
self.cb.setText(self.clip_str[:-1], mode=self.cb.Clipboard)

except:
QMessageBox.information(self, "GPS Info", "Please use raw images!")

de

-+

loadImg(self, choose=True):
if not isinstance(choose, str):
options = QFileDialog.Options()
fileName, _ = QFileDialog.getOpenFileName(self, 'QFileDialog.getOpenFileName()', "',
‘Images (*.png *.jpeg *.jpg *.bmp *.gif)', options=options)
self.convertBtn.setEnabled(True)
else:
fileName=choose

if fileName:
image = QImage(fileName)
if image.isNull():
QMessageBox.information(self, "Image Viewer", "Cannot load %s." % fileName)
return

self.imgName.setText(fileName[:10]+"'... '+fileName[-20:])
self.imgShow.img_path = fileName
self.imgShow.addImg = True
self.imgShow.update()
if ‘'converted_imgs/' not in fileName:
self.getExifInfo()

def convertImg(self):

if self.imgShow.img_path is not None:

self.converter.set_param(self.imgShow.img_path,append=self.ht,
zenith=89, equalize=False, gcp=self.refX)

self.data_list[@] = self.refX
self.exifData.emit(self.ht, self.data_list)
self.converter.start()

else:
print('empty img')

def updateRef(self, X, Y):
self.refX = X
self.refY = Y

def updateProgress(self, percent):

if isinstance(percent, str):
self.htName.setText(percent)

else:
# finished processing
base = os.path.basename(self.imgShow.img_path)
file, ext = os.path.splitext(base)
#self.loadImg(f'converted_imgs/{file} M{self.refX}{ext}")
self.loadImg(f'converted_imgs/{file} D{self.refX}{ext}"')
self.htName.setText(f"|{self.ht}m|:")
self.convertBtn.setEnabled(False)

class Scroller(QScrollArea):

def __init_ (self):
QScrollArea.__init_ (self)

def wheelEvent(self, ev):
if ev.type() == QEvent.Wheel:
ev.ignore()

class Converter(QThread):
sigOut = pyqtSignal(object)

def __init__ (self, parent=None):
super().__init__ (parent)
self.img_path = None
self.mode = ‘direct’
self.append = 1.6
self.zenith = 85
self.equalize = False
self.gcp = @
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def set_param(self, img_path, append=1.6, zenith=85, equalize=False, gcp=0, mode='direct'):
self.img_path = img_path
self.append = append
self.zenith = zenith
self.equalize = equalize
self.gcp = gep
self.mode = mode

def run(self):
""'Document see mercator.py'"’'
img = imageio.imread(self.img_path)
h, w, d = img.shape
self.sigOut.emit('[10%..]")

if self.mode == 'mercator':
if self.equalize:
img = equalize_hist(img)
self.sigOut.emit('[20%..]")

h_id = np.arange(h)
w_id = np.arange(w)
self.sigOut.emit('[30%..]")

angle_id = h/2 - h_id - @.5
angle = angle_id / angle_id.max() * 90 # degree
self.sigOut.emit('[40%..]")

select = abs(angle) <= self.zenith
select_angle = angle[select]
self.sigOut.emit('[45%..]")

select_img = img[select, :, :]
select_h, _, = select_img.shape # (2538, 5376, 3)

self.sigOut.emit('[50%..]")

mecator_coord = h / 2 * np.log(np.tan(np.deg2rad(45 + select_angle / 2)))
mecator_coord_zero = mecator_coord.max() - mecator_coord
self.sigOut.emit('[55%..]")

f = interpld(mecator_coord_zero, np.arange(select_h), fill_value="extrapolate")
self.sigOut.emit('[60%..]")

xnew = np.arange(@, np.ceil(mecator_coord.max())*2, 1)

mecator_id = f(xnew) # related img_h id in raw image (85 degree selected)
self.sigOut.emit('[65%..]")

# table to refer mecator_id -> zenith angle

f_angle = interpld(mecator_coord_zero, select_angle, fill_value="extrapolate")
mecator_angle = f_angle(xnew)

self.sigOut.emit('[70%..]")

ww, hh = np.meshgrid(w_id, mecator_id) # shape (8404, 5376)
self.sigOut.emit('[75%..]")

img_out = np.zeros((*hh.shape, 3))
for i in range(@ ,3):
img_out[:,:,i] = ndimage.map_coordinates(select_img[:,:,i],
np.array([hh,ww]),output=float,order=1)
self.sigOut.emit(f'[{70 + 9*(i+1)}%..]1")

img_out = np.hstack((img_out[:,self.gcp:, :], img_out[:,@:self.gcp, :1))
self.sigOut.emit('[98%..]")

base = os.path.basename(self.img_path)
file, ext = os.path.splitext(base)
imageio.imwrite(f'converted_imgs/{file}_M{self.gcp}{ext}', img_out)

self.m2a = mecator_angle

else:
self.sigOut.emit('[40%..]")
img_out = img_out = np.hstack((img[:,self.gcp:, :], img[:,0:self.gcp, :1))
self.sigOut.emit('[60%..]")
base = os.path.basename(self.img_path)
file, ext = os.path.splitext(base)
self.sigOut.emit('[80%..]")
imageio.imwrite(f'converted_imgs/{file} D{self.gcp}{ext}', img_out)
self.sigOut.emit('[99%..]")

self.sigOut.emit(True)

211



class ImgShow(QWidget):
mouseClicked = pyqtSignal(object, object)
emitPoint = pyqtSignal(object, object)

def __init_ (self, parent=None):
super().__init__ (parent)
self.x = @
self.y = @
self.w = self.frameGeometry().width() # 100
self.h = self.frameGeometry().height() # 30

self.corner = 'NE' # North East(default)
self.vLock = -1

self.img_path = None
self.addImg = False
self.isMoving = True
self.leftPressed = False

self.setMinimumSize (5376, 2000)
self.tempPix = QPixmap(5376, 2000)

self.pix = QPixmap(5376, 2000)
self.pix.fill(Qt.white)

self.saver = Saver(self)

self.setMouseTracking(True)
self.setCursor(Qt.BlankCursor)

self.functionConnector()

def functionConnector(self):
pass

def paintEvent(self, event):
painter = QPainter(self)

if self.addImg:
imgPixmap = QPixmap.fromImage(QImage(self.img_path))

imgH = imgPixmap.height()
imgW = imgPixmap.width()

self.pix = QPixmap(imgW, imgH)
self.tempPix = QPixmap(imgW, imgH)
self.resize(imgW, imgH)

p = QPainter(self.pix)
p.setPen(QColor(255, 255,0))
p.drawPixmap(@, @, imgPixmap)
p.drawLine(@, imgH/2, imgW, imgH/2)
self.addImg = False

fm = QFontMetrics(QFont('SimSun', 10))
pw = fm.width(f'{self.x},{self.y}")
ph = fm.height()
if self.corner == 'NE':
text_x, text_y = self.x, self.y
rect_x, rect_y = self.x-baf20, self.y-20
elif self.corner == "'NW':
text_x, text_y = self.x-pw, self.y
rect_x, rect_y = self.x, self.y-20
elif self.corner == 'SE':
text_x, text_y = self.x, self.y+ph
rect_x, rect_y = self.x-baf20, self.y-20
else:
text_x, text_y = self.x-pw, self.y+ph
rect_x, rect_y = self.x-baf20, self.y-20

if self.isMoving:
# HLLFTHY pix B ( #25 F7E5)
self.tempPix = self.pix.copy()

gp = QPainter(self.tempPix)
gp.setPen(QColor(255, 0,0))
gp.setFont(QFont('SimSun', 10))

gp.drawLine(self.x, 0, self.x, self.h)
gp.drawLine(@, self.y, self.w, self.y)
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def

def

def

def

def

def

def

gp.drawText(text_x, text_y, f'{self.x},{self.y}")

gp.drawRect(rect_x, rect_y, baf20, 20)

painter.drawPixmap(@, 0, self.tempPix)
else:

gp = QPainter(self.pix)

gp.setPen(QColor (255, 0,0))

gp.setFont(QFont('SimSun', 10))

gp.drawLine(self.x, self.y-20, self.x, self.y+20)
gp.drawLine(self.x-20, self.y, self.x+20, self.y)
gp.drawText(text_x, text_y, f'{self.x},{self.y}")

painter.drawPixmap(@, 0, self.pix)

saveImg(self):
if self.img_path is not None:

self.saver.set_param(self.img_path, self.pix.toImage())

self.saver.start()

mousePressEvent(self, event):
if event.button() == Qt.LeftButton:
self.leftPressed = True
self.x = event.x()
if self.vLock == -1:
self.y = event.y()
else:
self.y = self.vLock
self.mouseClicked.emit(self.x, self.y)

self.w = self.frameGeometry().width() # 100
self.h = self.frameGeometry().height() # 30

self.isMoving=False
self.update()

mouseMoveEvent(self,event):
if not self.leftPressed:
self.x = event.x()
if self.vlLock == -1:
self.y = event.y()
else:
self.y = self.vlLock

self.w = self.frameGeometry().width() # 100
self.h = self.frameGeometry().height() # 30

self.update()

mouseReleaseEvent(self, event):
if event.button() == Qt.LeftButton:
self.leftPressed = False
self.isMoving=True
if window.addTree == -1:
self.copy2Clipboard()
else:
self.emitPoint.emit(self.x, self.y)

changeDirection(self, event):
if event.key() == Qt.Key_W:
if 'S’ in self.corner:

self.corner = self.corner.replace('s’,

elif event.key() == Qt.Key_S:
if 'N' in self.corner:

self.corner = self.corner.replace('N’,

elif event.key() == Qt.Key_A:
if 'E' in self.corner:

self.corner = self.corner.replace('E",

elif event.key() == Qt.Key_D:
if 'W' in self.corner:

self.corner = self.corner.replace('W’,

self.update()

changeVLock(self, value):
self.vLock = value
self.update()

copy2Clipboard(self):

text = f'{self.x}\t{self.y}’

self.cb = QApplication.clipboard()
self.cb.clear(mode=self.cb.Clipboard)
self.cb.setText(text, mode=self.cb.Clipboard)

‘s
W

)
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class Saver(QThread):
sigOut = pyqtSignal(object)

def __init_ (self, parent=None):
super().__init__ (parent)
# https://stackoverflow.com/questions/46945997/creating-qpixmaps-in-a-thread
# that *QPixmaps* cannot be created outside the main thread.
# But it's pretty straightforward to instead use an image loader object,
# move it to one or more background threads, in which it loads a QImage,
# and then sends that to the main thread for Llater use
self.qimage = QImage()
self.img_path = 'result_imgs/rua.png’

def set_param(self, img_path, qimage):
self.img_path = img_path
self.qimage = qimage

def run(self):
self.sigOut.emit('[20%..]")
base = os.path.basename(self.img_path)
self.sigOut.emit('[40%..]")
file, ext = os.path.splitext(base)
self.sigOut.emit('[60%..]")
#self.pix.save(f"result_imgs/{file}_C{ext}", "PNG")
self.qimage.save(f"result_imgs/{file}_C{ext}", "PNG")
self.sigOut.emit('[Saved]")

if __name__ == '__main__':
app = QApplication(sys.argv)
window = MainWindow()
window.showMaximized()
sys.exit(app.exec_())
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