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Accurate 3D phenotyping of agricultural produce remains challenging due to the trade-off between recon-
struction quality and acquisition throughput in existing sensing technologies. While RGB-D cameras enable high-
throughput scanning in operational settings like harvesting conveyors, they produce incomplete, low-quality 3D
models. Conversely, close-range Structure-from-Motion (SfM) produces high-quality reconstructions but is not
suitable for high-throughput field application. This study bridges this gap through 3DPotatoTwin, a paired dataset
containing 339 tuber samples across three cultivars collected in Hokkaido, Japan. Our dataset uniquely com-
bines: (1) conveyor-acquired RGB-D point clouds, (2) ground measurement, (3) SfM reconstructions under indoor
controlled environment, and (4) aligned model pairs with transformation matrices. The multi-sensory alignment
employs an semi-supervised pin-guided pipeline incorporating single-pin extraction and referencing, cross-strip
matching, and binary-color-enhanced ICP, achieving 0.59 &+ 0.11 mm registration accuracy. Beyond serving as a
benchmark for 3D phenotyping algorithms, the dataset enables training of 3D completion networks to recon-
struct high-quality 3D models from partial RGB-D point clouds. Meanwhile, the proposed semi-automated
annotation pipeline has the potential to accelerate 3D dataset generation for similar studies. The presented
methodology demonstrates broader applicability for multi-sensor data fusion across crop phenotyping applica-
tions. The dataset and pipeline source code are publicly available at HuggingFace and GitHub, respectively.

Dataset

1. Introduction

Potato (Solanum tuberosum L.) is currently one of the most important
food crops in the world, after rice and wheat [1]. It has been widely
grown for food, seed tuber production, animal feed, and industrial uses.
Due to the richness of carbohydrate, energy, Vitamin B complex and C,
with little fat in potato tuber, more and more people are choosing it as a
staple in the diets. Meanwhile, the increase of world population also puts
an urgent need for doubling current yield gains to ensure the food se-
curity. Classical breeding of new potato cultivars remains primarily
dependent on empirical experience and the selection of simple pheno-
typic traits [2]. To provide more useful information for validating new
varieties, there is an increasing need for precise and efficient modeling
of morphological shapes and measurement of advanced morphological
traits.

With the development and affordability of sensing techniques,
commercial RGB-color cameras has been used to analyze potato tubers
based on their produced 2D images. By using computer vision and ma-
chine learning segmentation algorithms, Lee et al. [3]; Lee and Shin [4]
detected and counted potato tubers in the field for yield monitoring
while Si et al. [5] evaluated the tuber shape. Dolata et al. [6] segmented
individual potatoes on the conveyor and then used simulation-based
learning to obtain physical dimensions and yield monitoring. Howev-
er, due to the dimensional reduction when projecting a 3D object onto a
2D image, most image-based methods can only evaluate potato tuber
shapes using basic 2D morphological traits. Traits such as width, height,
and minimum diameter can be extracted from a 2D image using tech-
niques like bounding box or ellipse extraction, although these are not
that accurate. Estimating volume or mass, which is difficult to derive
directly from 2D images, often involves correlating these simple
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morphological traits with manually measured data. The accuracy of
such volume estimation approaches is frequently questioned.

Advances in 3D scanning and reconstruction technologies have
enabled the capture of complex plant structures. While numerous 3D
reconstruction methods and sensors are available, cost considerations
and technical complexity often guided researchers toward more acces-
sible options. While direct high-precision 3D scanning methods using
laser technology certainly exist, many of these solutions come with
significant costs. For instance, desktop scanners like the Matter and
Form THREE (approximately $1500-$2400) or the Shining 3D EinScan
SP V2 (approximately $2500) offer high accuracy. Even more advanced
systems like the Artec Micro II can cost around $22,500. Handheld
scanners such as the Revopoint POP series (e.g., POP 2 at approximately
$400) or the Creality CR-Scan Otter (approximately $900) are more
affordable but still represent an investment. Additionally, these devices
often require a controlled scanning environment and scanning ap-
proaches with limited flexibility. As a result, stereo-photogrammetry
(Structure-from-Motion/Multi-View Stereo, SfM-MVS) and depth sen-
sors (with the RGB-D cameras as the most prominent) are widely used in
many studies due to their lower device cost and ease of operation. SfM
methods only require common cameras and photogrammetry processing
software, while RGB-D sensors can directly capture images and 3D
results.

The SfM photogrammetry approach offers high quality but often low
efficiency. It involves extracting and matching feature points from
different view images, estimating their relative positions, densifying
them into a dense point cloud using multi-view stereo, and converting
the point cloud into mesh models with corresponding textures. The
measured area ranging from large fields [7] to individual plant [8] and
to plant organs [9]. When focusing on organ-level 3D reconstruction in
the close-range, to ensure the completion of object scanning and scan-
ning efficiently, often multiple cameras, a rotation table, and a photo
studio are often required to capture enough views of objects [10]. The
produced 3D model quality is high under the controlled condition, but
even with multiple cameras, the data collection and processing speed is
slow and cumbersome.

In contrast, depth sensors, particularly when combined with RGB
images in RGB-D cameras, offer high efficiency but often low quality.
Several low-cost and lightweight commercial products are available,
including Intel RealSense (Intel Corporation, California, U.S.), Azure
Kinect (Microsoft, Washington, U.S.) and ZED camera (StereoLabs, San
Francisco, USA). The primary outputs for these depth sensors are a 2D
depth image and/or 2D RGB image. This depth image can subsequently
be converted into a 3D point cloud and modeled in 3D by using the
pinhole camera model and the camera intrinsics. For potato tuber
studies, Long et al. [11] investigated the feasibility of using RGB-D
cameras to estimate the volume of potato tubers. Su et al. [12] uti-
lized depth cameras to estimate the thickness and predict the mass of
potato tubers, and further extended their research to quality grading
using machine vision [13]. Although these studies successfully captured
3D surfaces of potato tubers, the bottom portion of the tubers remained
obscured and invisible. Consequently, depth sensor-based approaches
could only reconstruct the upper half of the potato. This limitation could
introduce potential errors in volume and mass estimation, particularly
for irregularly shaped potato tubers [11]. Thus, solving the problem of
occlusion that causes incomplete data and improving data quality and
efficiency are urgent for the actual application of precision agriculture,
not just limited to potato tubers.

To better address the incomplete shape, advanced machine learning
algorithms often requires to be developed on a incomplete-complete
paired dataset. Traditional methods, such as those relying on symme-
try assumptions [14] or super-ellipsoid matching [15], use manually
defined rules based on object features. However, these handcrafted ap-
proaches are organ-specific, labor-intensive, and struggle with the
irregular geometries and high morphological variability of crops like
potato tubers. To overcome these challenges, recent work has turned to
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deep learning methods, which automatically learn and extract shape
features from data, thereby reducing reliance on explicit geometric
rules. For example, Tang et al. [16] proposed LakeNet for furniture point
cloud completion, while Park et al. [17] introduced DeepSDF to infer
complete 3D shapes from partial RGB-D inputs. DeepSDF is a 3D shape
completion network that has also been used for completing agricultural
products: sweet pepper [18], strawberry [19], grape [20], and even
potato [21]. Despite the potential, training effective deep learning
models demands high-quality and domain-specific datasets. Trans-
ferring existing industrial datasets like furniture are not directly appli-
cable to agricultural shape completion tasks. Thus, there is a critical
need for specialized paired potato dataset, which combines partial and
complete 3D representations of the same potato tubers, to facilitate
robust network training and benchmarking.

A proper pairing method across different scans views and sensors is
also important, as it can accelerate annotation when preparing paired
datasets and contribute to the fusion of results from multiple sensors. For
example, Sampaio et al. [22] combined 3D models of in-field individual
maize plants, captured with an RGB-D camera, with data on tempera-
ture, humidity, and luminosity to provide a more comprehensive un-
derstanding of maize growth stages. Such multi-sensor fusion approach
can also combine the advantages of SfM and RGB-D sensor, achieving
the quality of SfM with the scanning speed of depth sensors. However,
integrating data from different sensors presents significant challenges to
traditional Iterative Closest Point (ICP) algorithms due to variations in
color and shape characteristics, even among sensors of the same type
under different lighting conditions or limited overlap. To address this,
Isachsen et al. [23] integrated the Absolute Trajectory Error (ATE) into
their method, while Guo et al. [24] modified the SAC-IA algorithm with
ICP to better align 3D fruit models scanned from different views. In
addition to an object's geometry, surrounding objects can also serve as
useful references for registration. For example, Zhou et al. [25]
employed three white calibration spheres, and Zhang et al. [26] used
conical surface fitting of pots assist ICP to align and register multiple
point cloud scans in crop studies. Utilizing surface colors and textures
offers another registration approach for aligning multiple scans. Yuan
et al. [27] used a color-guided ICP algorithm for registering peach tree
scans from UAV-mounted LiDAR, while Wan et al. [28] developed a
robust LAB color space ICP registration for complex vegetation. Despite
the great potential shown by these studies, an available open-source
pipeline, feasible for potato tubers and capable of accelerating paired
dataset generation, is still missing.

Additionally, actual potato tuber harvesting scenarios present
further challenges. First, although RGB-D cameras can capture tuber
geometry on conveyor belts at speeds of approximately 0.5-1.2 m/s, the
resulting scans often contain significant occlusions and noises. Second,
during the initial RGB-D scan on the conveyor, tuber surfaces are
covered in soil. They are later cleaned to expose the original surface for
an accurate ground truth scan. This process alters their visual texture,
color, and even shape. Third, marker-based approaches have practical
limitations. While multi-point registration theoretically requires over
three reference markers, the conveyor's vibration and tuber rotation
only permit the reliable placement of a single marker without compro-
mising operational workflow. These challenges increase both the diffi-
culty and value of creating high-quality, well-paired 3D potato tuber
datasets from multiple sensors and scenarios.

Thus, we acquired a paired dataset of potato tubers via low quality
outdoor RGB-D camera imaging on harvest conveyor belt and high
quality indoor close-range stereo photogrammetry (SfM-MVS). The
contributions of this study are as follows:

1. The paired 3D Dataset: a paired potato tuber 3D point clouds
dataset scanned from both RGB-D (incomplete, low quality but high-
throughput) and SfM reconstruction (complete, high quality, but
low-throughput), supplemented by corresponding ground-truth
measurements (e.g. axis length, width, depth, volume, weight),
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high-resolution RGB images, depth images, and transformation
matrices for each tuber pair's spatial relationship;

2. Semi-automated 3D alignment annotation pipeline: a semi-
automated pipeline with a simple interactive user interface (UI) for
aligning and registrating two separate 3D point clouds obtained from
RGB-D camera and SfM photogrammetry techniques, despite their
differences in shape, texture color, resolution and acquisition
method, time and location.

2. Methods and materials

This section first introduces the conditions in which the data was
acquired in the field and on the harvester (Subsection 2.1). Subse-
quently, the setups for RGB-D data collection are described (Subsection
2.2). The process for performing manual measurements is then outlined
(Subsection 2.3). Next, the devices and methods used for close-range
stereo photogrammetry reconstruction (SfM-MVS) are detailed (Sub-
section 2.4). Finally, after acquiring the 3D data, the semi-automated 3D
data alignment annotation pipeline implements a single pin-guided and
color-based ICP algorithm is explained, along with the user interface
designed for interactive manual operations (Subsection 2.5).

2.1. Field condition and harvesting devices

The potato tubers were grown in a farmland located in Sarabetsu
village, Hokkaido prefecture, Japan (Fig. la-b), at coordinates
42.610316N latitude and 143.156753E longitude. A Toyonoki Top-1
single-row potato harvester (Fig. 1c), equipped with a conveyor belt
(Fig. 1d), was employed for the harvesting process. The potato cultivar
Sayaka was grown within the field, the rows were spaced 0.75 m apart,
and 12 rows were selected randomly for conducting the dataset collection
experiment. Those Sayaka tubers were sampled on September 14 and 21,
2023. To increase the diversity of potato sizes and shapes, we also
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collected data by operating the harvester in the farm's barn. On September
15, we dumped boxes of the Kitahime potato cultivar onto the conveyor
belt, and on September 22, we did the same with the Corolle cultivar.

2.2. Partial low-quality 3D data collection by a RGB-D camera

We developed an imaging system for RGB-D data collection on a
conveyor belt (Fig. 2a). The system was enclosed within a modified
black plastic box with dimensions of 85 x 45 x 39 cm (width, depth, and
height, respectively). To enhance lighting conditions inside the box, four
LED light strips with a color temperature of 6000K were fixed to the
interior ceiling (Fig. 2b). A single Intel RealSense D405 RGB-D camera
was positioned in the center of the box to capture top-view RGB-D im-
ages. The camera was operated using the Robot Operating System 2
(ROS2, Humble Hawksbill version), which was installed on an Ubuntu
22.04 system running on a Lenovo ThinkPad P53 laptop. The RGB-D
camera was configured to capture both RGB and depth images at a
resolution of 1280 x 720 pixels, 30 frames per second (FPS), and with an
exposure time of 5 ms to reduce motion blur (Fig. 2d—e). Considering the
conveyor belt speed, each potato tubers was captured around 20-30
frames. Initially, the captured images were stored as ROS2 bag files.
However, for ease of use in the published dataset, they were converted
into separate RGB and depth image files in PNG format.

The region of each target potato tuber (with a reference pin) was
annotated with the LabelMe software across all frames (Fig. 2e-f). For
each tuber, its mask was assigned a value of 255 in the alpha layer of the
PNG file, while the alpha values of the background were set to 0. Lastly,
the 3D point cloud of each tuber was generated from the annotated
depth images and colored using the corresponding RGB pixels (Fig. 2g).
This process was performed using the Python Open3D package and the
camera's intrinsic parameters [29], resulting in the final collected RGB-D
data. Since only the upper surface is visible, this RGB-D approach
collected the partial 3D point cloud data.

Fig. 1. Plot locations and harvesting devices. (a) The potato farmland is located in Sarabetsu Village, Hokkaido, Japan (42.610316N, 143.156753E); Its boundary is
shown in (b); (c) The Toyonoki Top-1 single-row potato tuber harvester; and (d) is a view of the conveyor belt.
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Fig. 2. Devices and outputs for RGB-D data collection on conveyor belt. (a) Devices used for data collection on the conveyor belt; (b) The internal setup of the
imaging system for providing good lighting condition; (c) An example of an RGB image captured by the RGB-D camera; (d) An example of a depth image captured by
the RGB-D camera; (e—f) An example of an annotated RGB and depth image of a single tuber, stored in PNG format in the published dataset, with the mask included as
an alpha layer; (g) The extracted 3D partial point cloud from three different views of a potato tuber.

Despite the ability of the RGB-D imaging system to capture all potato
tubers and their 3D point clouds at 30 FPS, it was not practical to
perform subsequent manual measurements and SfM-MVS reconstruction
for all tubers. Therefore, potato tubers were randomly selected by
inserting single colored pins (Figs. 2c and 3a) into them before they
passed through the RGB-D imaging system. The pins were round-head
thumbtacks, also known as push pins, with an 11 mm diameter and an
approximate head thickness of 1 mm, resulting in a volume of about
0.095 ml. This volume increase is negligible compared to the total vol-
ume of a potato tuber. After image acquisition, another researcher
manually collected these marked tubers and stored them in bags for
further indoor processing.

2.3. Ground truth measurements

A total of 339 potato tubers of varying sizes and shapes from three
cultivars were sampled and marked as the source for the dataset. Ten
different pin colors were used as one group, and all tubers sampled on
the first day are shown in Fig. 3a. The three-axis dimensions of each
tuber, also referred to as length, width, and depth, were measured using
digital calipers (Fig. 3b). The tuber weight was recorded (Fig. 3c), fol-
lowed by tuber volume measurements using the water displacement
method (Fig. 3d). Finally, the surface of each potato tuber was wiped

with tissue, and a hole was drilled using a handheld drill (Fig. 3e) to
allow fixing onto a support for conducting Structure from Motion (SfM)
reconstruction.

2.4. Complete high-quality 3D data collection by SfM

To obtain a complete and high-resolution 3D model of each potato
tuber, we utilized Structure-from-Motion (SfM) reconstruction with the
Metashape software. Multiple images of each tuber were captured from
various angles under controlled imaging studio conditions. These im-
ages were subsequently preprocessed and used to reconstruct a 3D point
cloud and generate 3D meshes for the potato tubers in Metashape
(Agisoft LLC, St. Petersburg, Russia). All the batch processing scripts
mentioned in this section were provided in the 3dscan folder at Github
(https://github.com/UTokyo-FieldPhenomics-Lab/PotatoScan/).

The imaging studio setup consisted of three Canon X7 DSLR cameras,
an automated turntable, four LED lights, and a portable photo studio
(Foldio360 by OrangeMonkie Inc.) to ensure a controlled environment
(Fig. 4a). To capture the full longitudinal cross-section of each potato
tuber effectively, each tuber was mounted on a long threaded screw
secured to a white wooden fixed to the turntable (Fig. 4b). To facilitate
accurate camera alignment, Metashape's 12-bit circular automatic
detectable markers were strategically placed around the setup, with

Fig. 3. Manual measurements conducted in the barn. (a) all sampled potato tuber of one day harvest; (b) length measure by digital calipers; (c) weight measure; (d)
volume measure by water displacement method; (e) surface cleaning and hole drilling.
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Fig. 4. The workflow for semi-automatic 3D reconstruction of potato tuber using stereo photogrammetry (Structure from Motion and Multi-view stereo, SfM-MVS).
(a) the commericial imaging studio for multi-view data collection; (b) the marker frames for image alignment; (c) the multi-camera shutter controller and image data
transformer; (d) the open-source DigiCamControl software for camera configuration and image renaming; (e) the data structure for image data storage; (f-i) potato
tuber segmentation preprocessing; (j) the automatic batch reconstruction pipeline using Metashape software python API.

some markers positioned on the narrow threaded bolt at the tuber's
hovering height (Fig. 4b). For comprehensive image capture with suf-
ficient overlap, the turntable was controlled by the official app to rotate
at 15-degree intervals. At each interval, it briefly stopped for 2 s to allow
the cameras to capture images. The three DSLR cameras were mounted
on tripods and positioned at different heights and viewing angles. They
were synchronized using an Esper TriggerBox (Fig. 4c), enabling all
cameras to simultaneously take photographs upon pressing a button on
the connected trigger controller. The cameras were consistently
configured using the open-source software DigiCamControl (https://
digicamcontrol.com/). Setting parameters included manual mode, ISO
of 200, shutter speed of 1/15, aperture of f/13.0, manual white balance,
exposure compensation of 0.0, and single-shot autofocus mode (Fig. 4d).
DigiCamControl also renamed the captured images automatically upon
transfer to a cached folder, using the naming format: DSC_[camera_id]_
[date]_[time][unique_id]. A Python script was later used to organize the
cached image files into a designated directory with subfolders catego-
rized by tuber ID and corresponding cameras for ease of later access and
analysis (Fig. 4e).

To isolate the potato tuber models and remove the influence of the
background, segmentation was performed on the tuber regions in the
images. Since the environment was controlled and the background was
relatively simple (Fig. 4f), a color-based filtering method was initially
used to obtain a rough mask of the tubers. Potato tubers typically exhibit
yellow shades, which are best identified in the CIELAB color space. In
the La*b* color space, yellow is characterized by high positive values in
the b* channel and near-zero values in the a* channel. Setting a
threshold of b* > 15 generated an initial rough mask of the tubers
(Fig. 4g). However, challenges such as soil residue and light reflections
on the tuber surface sometimes resulted in black or white spots similar to
the background. To address this, we directly applied the pretrained
CascadePSP [30] deep learning segmentation refinement network to
enhance the initial mask. Although the network had not been trained on
our dataset, it performed well due to the distinct boundaries of the ob-
jects in the images (Fig. 4h-i).

We developed an automated batch processing pipeline using the
Metashape Python API for 3D reconstruction (Fig. 4j). Initially, the
required tuber images and corresponding generated tuber region masks
were loaded into Metashape. One tuber was defined as one chunk in
Metashape and each view angles from the same camera were grouped as
a camera group. Subsequently, 12-bit circular markers were automati-
cally detected as control points using Metashape's built-in functions. The
distances between specific markers were imported as scale bars to
ensure accurate scaling of the 3D tuber models. Next, the images were
batch-aligned, and corresponding key points were generated. The point
densification and mesh generation functions provided by Metashape
were then applied to produce 3D point clouds, meshes, and textures of
the potato tubers. Finally, minor noise in the 3D models was manually
identified and removed using open-source software CloudCompare
(https://www.danielgm.net/cc/) to ensure clean and precise represen-
tations of the potato tubers. In total, 339 potato tubers were successfully
scanned and modeled. All models were processed into watertight meshes
using MetaShape's built-in hole-filling function.

We also developed a Python-based pipeline to calculate morpho-
logical traits from 3D plant mesh models generated in Agisoft Meta-
Shape. The pipeline processes mesh data and computes the following
key traits:

Three Axis Lengths (cm): The major, intermediate, and minor axis
lengths, derived from the Open3D axis-aligned bounding box.

Surface Area (cm?): The total external surface area of each plant
mesh, calculated using Metashape Python API chunk.model.area().

Volume (cmg): The enclosed volume of each plant mesh, calculated
using Metashape Python API chunk.model.volume().

Volume-to-Surface ratio: The ratio of potato volume to surface area.
Spherical potatoes have the highest ratio, while more irregular shapes
have lower ratios.

Aspect Ratio: The ratio of the longest to shortest bounding box di-
mensions (Lmax/Lmin). This index close to 1 indicates a shape
approaching spherical, and the larger the value, the more the shape
deviates from spherical.
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Sphericity Index: Defined as v/367V2 /A, where V is volume and A is
surface area. This index ranges from 0 to 1, with 1 representing a perfect
sphere.

Convexity Index: The ratio between mesh volume and its convex hull
volume. Values range from 0 to 1, where 1 indicates a smooth surface,
while a smaller value indicates more concave regions (i.e., valleys).

2.5. Semi-automated 3D alignment annotation pipeline

The proposed semi-automated annotation pipeline comprises three
main steps: 1) Referencing pin segmentation for both RGB-D and SfM
point clouds; 2) Stepwise rough matching based on the minimum cross-
strip area error around the pin; 3) Fine matching using color-based
Iterative Closest Point (ICP) with semi-supervised manual inspection.
The python scripts were available in 03 sfm rgbd registration of the
3dscan folder at Github (https://github.com/UTokyo-FieldPhenom
ics-Lab/PotatoScan/).

2.5.1. Reference pin segmentation

Since the data sources for RGB-D and SfM differ, we implemented
distinct pin segmentation approaches for each method. For the RGB-D
method, the partial 3D point cloud data is generated by combining
RGB images with depth images from a single view. Transferring a mask
from an RGB image to the generated 3D point clouds is straightforward.
Therefore, we projected the annotated masks onto the corresponding
point clouds. In contrast, the SfM multi-view approach is more complex
due to its multi-view nature and the need to handle occlusions. For this
method, we directly segmented the 3D point cloud using color infor-
mation. Specifically, we applied iterative HSV color space thresholding
and denoising to ensure accurate segmentation.

The core of the segmentation process involved iteratively adjusting
the color distance threshold to isolate the pin region. First, we prepared
a set of reference images for all pins, containing only the pin region with
the background removed (Fig. 5a). Since the potato tubers were labeled
in the same order as the pin colors (Fig. 3a), the reference image file for
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each tuber's pin can be directly obtained using its ID. Its median HSV
value Cref = (Mref, Sref, Vref) Was then calculated from the reference pin
image to represent its color characteristics (Fig. 5b).

For each point ¢; = (h;, s;, v;) in the tuber point cloud C = {cy, ¢, ...,
c,}, the color distance d; between ¢; and ¢, was computed by:

3

ighted

4= AcE
j=1

where j represents different components in HSV color space, and the
weighted differences were given by:

AU — Ac;w = Aci+(0.5,0.1,0.3)

where, Aci(Ahy, As;, Av;) = |¢; — Cref| = (i — href], |Si — Srefl> [Vi — Vref])-
The weights (0.5, 0.1, 0.3) were chosen based on the relative importance
of each component manually in the pre-experiment.

Since hue (h) was a circular component, the difference must account
for this periodicity. Specifically, if the absolute difference in hue
exceeded 0.5 (half of the range), it should wrap around:

1— Ak if Ak >0.5,
Ahi = { Ah; otherwise.

This color distance d; was then normalized between 0 and 1, and an
initial threshold of 0.35 was applied to select points likely to belong to
the pin. We then calculated the convex hull volume of the selected points
to check for outlier noise. Noise was removed using radius outlier
filtering with a minimum of 40 points and a radius of 5 mm. For the
denoised points, the convex hull volume was recalculated. If the volume
still exceeded the predefined limit (60 mms), the threshold was
decreased by 0.05, and the process was repeated until the pin region was
narrowed without noise. For example, Fig. 5e shows the segmentation
result obtained at a threshold of 0.25, where the convex hull volume
satisfies the required condition.

®

Fig. 5. Illustration of the pin segmentation process. (a) Pin reference images used for calculate median HSV values; (b) Median HSV values of pins from reference
images; (c) Source potato tuber with black pins in the center, the most difficult case; (d) Calculated HSV color distance; (e) Segmentation results with threshold =
0.25; (f) Projection of pin point cloud onto 2D plane using minimum bounding box; (g) Pin center calculation through convex hull bounding points and hyperLSQ
circular fitting; (h) Visualization of pin plane and circular fit; (i) Pin plane with normal vector pointing outward; (j) Results on RGB-D 3D model; (k) Results on SftM

3D model.
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After segmenting the pin area, which served as a reference point for
aligning two point clouds, it is necessary to compute the circular center
and the outward-pointing normal vectors. To calculate the center, we
first determined the oriented bounding box of the 3D convex hull
derived from the pin point cloud. The perpendicular bisector plane of
the shortest axis of this oriented bounding box was used as a reference
plane. All 3D points of the pin were then projected onto this plane to
obtain a 2D representation (Fig. 5f). Next, the hyperLSQ circle fitting
algorithm (https://github.com/AlliedToasters/circle-fit) was applied to
find the center of the convex hull points (Fig. 5g). The fitted radius and
reference plane were visualized in Fig. 5h). To compute the outward-
pointing normal vector, all points were projected along the normal
vector axis to identify two endpoints. The endpoint closest to the pin's
center was selected, ensuring the normal vector's direction was opposite
to the other endpoint (Fig. 5i). The final results of the pin segmentation,
including the segmented pin points, pin center, radius, plane, and
outward-pointing normal vectors, were shown for RGB-D 3D point
clouds and SfM point clouds in Fig. 5j and k, respectively.

2.5.2. Stepwise cross-strip rough matching

Two tuber point clouds were initially aligned using the center posi-
tion and normal vector of reference pins (Fig. 6a). This initialization
fixed the %, y, and z positional degrees of freedom, leaving only the
rotation angle undetermined. To achieve better alignment, we adjusted
the rotation around the normal vector (N) and its associated tangent (1)
and bitangent (v) vectors between the two point clouds (Fig. 6a). To
minimize the effects of the tuber's backside and focus only on the area
around pins, we used only the neighboring region within a 3 cm radius
from the pin center for subsequent analysis.

We rotated the RGB-D point cloud around N and pin center point by
10° increments. For each stepwise rotation around N, we applied the
cross-strip error minimization to obtain the optimal rotation angles
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around u and v. We first extracted the cross-strip regions with the same u
and v directions (Fig. 6b). The strip widths were set to 1 mm in this
study. For strips with the same vector direction, we rotated RGB-D ones
around pin center point with 5° increments (Fig. 6¢). Fig. 6d and 6f
shows the stepwise rotation around u and v, respectively. For each
rotation, the root mean square of point distances (RMSD) were calcu-
lated to reveal the distance and error between RGB-D and SfM strips.
Instead of using the commonly used Chamfer distance, which computes
the sum of bidirectional errors [distance(A — B) + distance(B — A)],
RMSD only evaluates unidirectional error [distance(A — B)], which can
also renamed as one-way Chamfer distance. This unidirectional
approach is more suitable for our study because we aim to align partial,
low-resolution RGB-D data to a complete, high-resolution SfM reference.
Furthermore, it reduces computational overhead by half compared to
Chamfer distance.

1< 2
RMSD =, [~ ) . target,
\/n 2 ||source; — target,||

where n is the number of points of RGB-D strips, and || || denotes
Euclidean distance of two points. The source was one point in RGB-D
strips, while the target was the closest point in SfM strips. The rota-
tion angles around u and v that yield the minimum RMSD values (Fig. 6
e&g) were selected as the optimal angles for each step.

After determining the optimal rotation angles around axes u and v for
a given N rotation angle, we computed the RMSD in a 3 cm radius region
surrounding the pin. By repeating this process for each incremental
rotation of N, we examined how the RMSD changes with rotation around
N (Fig. 6h). The optimal rotation angles correspond to local minima
(shown by colored vertical lines in Fig. 6h), although the global mini-
mum does not always yield the correct match. Therefore, we incorpo-
rated manual verification through an interactive UI to select the
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Fig. 6. Cross-strip alignment for potential rotation matrix estimation: (a) Rotate around pin normal vectors (N) in 10° increments. For each step, apply the cross-strip
error minimization to determine the optimal v and u angles; (b) Extract the cross-strip region around the pin neighborhood; (c) The strip derived from vector u; (d) &
(f) Rotate the RGB-D point cloud strip in 5° increments; (e) & (g) Compute the RMSD between RGB-D and SfM strips after each rotation step, where red indicates
angles with minimum errors; (h) Using the optimal u and v rotation angles in previous cross-strip error minimization, calculate the total errors after each rotation step
around pin normal vectors. The local minimum are chosen as potential rotation angles (colored vertical lines); (i) The global minimum is not always the best choice
for rotation angles; (j) An interactive UI is provided for manual inspection; (k) The second-rank local minimum matches the actual results from manual inspection

in ().
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appropriate rotation angles (Fig. 6 i&j). In the example shown, the
second local minimum (Fig. 6k) provided the best match based on
manual inspection (Fig. 61).

2.5.3. Matching refinement by interactive color-based ICP

The initial alignment using pin-guided stepwise matching provided a
rough registration for potato tuber point clouds from two scanning
methods (Fig. 7al). However, small gaps often remain between the two
point clouds (Fig. 7a2). To refine these minor discrepancies, we
employed a color-based ICP algorithm to strengthen the guidance of pin
positions. The tuber point cloud was labeled with two colors. We used
pure red (255, 0, 0) for pins and pure blue (0, 0, 255) for the tuber
surface. Then, both tuber point clouds were down sampled by 1 mm
voxels to remove the effects of different model resolution. The geometry
weight was set to 10 % while color weight was 90 % to prioritize label
consistency. The convergence threshold was set to 0.5 mm to terminate
iterations when mean correspondence distance falls below this value.

For the iteration setting, different potato tubers have different
shapes, their gap size also varies. In our pre-experiment, it was chal-
lenging to automatically define the optimal number of iterations. Thus,
we implemented the color-based ICP algorithm with a manual interac-
tive iteration setting, users can adjust the number of iterations interac-
tively and inspect the results in real-time to find the best iteration
number (Fig. 7b-d). Finally, the transform matrix obtained from color-
based ICP was saved to JSON file for further processing.

3. Results and discussion
3.1. Paired 3D dataset structure

We provide all ground measurement data, source image data from
both RGB-D and SfM pipelines, and the resulting transformation
matrices as a dataset named 3DPotatoTwin on the Hugging Face plat-
form (https://huggingface.co/datasets/UTokyo-FieldPhenomics-Lab/
3DPotatoTwin). It enables researchers to develop and test their 3D al-
gorithms and networks. The data are organized into three subfolders:
RGB-D source data and models, SfM source data and models, and paired
transformation matrices with ground truth data (Fig. 8).

(al) Top view (a2) Side view
X » Need more ICP iteration?
Q Current is 0 iter(s), decrease if pin shifted
-20 -10 -5 -1 OK
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Within the 1_rgbd directory, the 0_camera_intrinsics subfolder con-
tains two JSON files storing camera intrinsic parameters. These pa-
rameters are essential for accurate reconstruction and mapping in RGB-
D image analysis. The 1_images subfolder stores RGB and depth images
organized by {tuber_id}. The files follow a systematic naming conven-
tion: {tuber_id}_{type}_{pos} for RGB data and its corresponding depth
data. For each potato tuber, all frames captured by the RGB-D cameras
were stored. The frames were renamed based on the pixel position of the
tuber center along the image's y-axis, with the value 0 being the bottom
of the image and 720 being the top of the image. This was renaming was
chosen such that the images names were having a sequential order in
correspondence with the movement of the potato tubers on the conveyor
belt during image acquisition. The image alpha layer provides mask
information for individual tuber regions. These segmentation masks are
also stored in COCO dataset format in a root folder file named pin_re-
gions.json. A Python script, pin_regions.py, is provided for easy access to
these masks. The 2 pcd subfolder contains 3D point cloud data of the
scanned potato tubers. The point cloud files are organized by tuber index
and named as {tuber_id}_pcd_{y_pixels}.ply.

The 2_sfm directory contains source images, project files, and 3D
models generated using Metashape software. The 0_images stores the
input RGB images for 3D reconstruction, organized by {tuber_id} and
{camera_id}. Images were captured using three cameras labeled 000,
001, and 002. The O masks subfolder contains segmentation masks
following the same folder structure as 0_images. Metashape project files
for 3D reconstruction are stored in O metashape.projects, with each
project containing approximately 50 potato tubers to ensure stable batch
processing. The 1_mesh holds the final textured 3D mesh models
exported from Metashape in OBJ format. From these high-quality
meshes, we extracted 3D point clouds of individual tubers. We gener-
ated point clouds at three densities: 10,000, 20,000, and 30,000 points
per tuber. These point clouds are named {tuber_id}_{num_points}.ply
and stored in the 2 pcd subfolder.

In the 3_pair section, the transformation matrix for aligning RGB-D
and SfM tuber point clouds is stored in the tmatrix JSON files. Inter-
mediate data, including parameters from the manual alignment anno-
tation by pin-guided algorithms, the RMSE and our modified one-way
chamfer distance (RMSD) between two point clouds are also recorded. A
Python script named transforms.py verifies the transformations and

(d) Interactive UI for adjusting iters

(c2) Global view after 5 iters

Fig. 7. Alignment refinement using interactive color-based ICP iterations. (al)-(a2) Initial rough alignment without color-based ICP; (b) Result after 2 color-based
ICP iterations; (c1)-(c2) Final alignment after 5 color-based ICP iterations; (d) Interactive UI for adjusting iterations and inspecting results (c2).
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Fig. 8. Folder structure of 3DPotatoTwin, containing 3 subfolders. One for RGB-D source data and models, one for SfM source data and models, and one for paired

matrix and ground truth data.

evaluates performance. The ground truth measurements are provided in
ground_truth.csv, with some sample data shown in Table 1.

3.2. Dataset variations

Fig. 9 shows the distribution of several morphological traits to
illustrate the variability in the potato tuber dataset. The length varia-
tions of tuber axes are presented in Fig. 9a—c. The longest tuber length
ranges from 4.92 cm to 13.90 cm (Fig. 9a), with volumes ranging from
33.97 cm® (ml) to 457.89 cm® (ml) (Fig. 9e) and weights from 36 g to
494 g (Fig. 9f). Potato volume and weight show high correlation, as most
cultivars have a density ranging from 1.07 to 1.1 (Abbasi et al., 2019,
Table 1a). This trend is also observed on the Japanese sweet potato
([32], Fig. 9). This range covers most common market sizes.

Table 1
Short summary of potato ground measurements including volumes.

Different potato cultivars exhibit distinct shapes. Kitahime shows
greater middle axis length (Fig. 9b) and shorter axis length (Fig. 9¢)
compared to Sayaka and Corolle. This results in a lower aspect ratio
(where 1 represents a perfect sphere, Fig. 9g) and higher sphericity
index (Fig. 9h). According to Abbasi et al. [31], the sphericity index
ranges from 79.8 % (Cardinal) to 94.3 % (Lady Rosetta). Corolle exhibits
the least spherical shape and shows significant variation in surface
smoothness (Fig. 9i).

3.3. Precision analysis

To evaluate the accuracy of 3D modeling, we compared manual
measurements with four overlapping morphological traits derived from
3D SfM models. These traits included lengths along three axes and total

Label Cultivar Color Weight (g) Length (mm) Width (mm) Depth (mm) CircX1 (cm) CircX2 (cm) Volume (ml)
R1-1 Sayaka black 84 63 50.2 43.2 - - 80

R1-2 Sayaka blue 234 104.1 69.1 53.3 - - 230

R1-3 Sayaka red 154 73.4 63.1 54.4 - - 150

2R1-1 Kitahime black 346 95 88 55 28 25.6 320

2R1-2 Kitahime blue 248 80 71 70 25.5 23 230

2R1-3 Kitahime red 118 58 60 52 19 185 105

5R3-8 Corolle magenta 100 86 47 37 21 15 80

5R3-9 Corolle green 188 98 61 56 25.5 185 150

5R3-10 Corolle purple 136 80 55 46 21 17 120

Note: CircX1 represents major axis circumference; CircX2 represents minor axis circumference. Missing values are marked with —.
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Fig. 9. Kernel density estimates (KDEs) for visualizing the traits distribution of potato tuber dataset. Please note, these KDEs are computed independently for each
cultivar. Density values are not directly comparable across features due to differences in data scales (e.g., length vs. convexity index).

volume. (Fig. 10). For the longest axis length and volumes, the manual
measurement and 3D approach showed high correlations with R2
around 0.88 and RMSE with 5.2 mm and 25.3 cm® (Fig. 10a&d). The
results for middle axis length and minor axis length exhibited less con-
sistency compared to major axis length. It is primarily because identi-
fying a potato's longest dimension is relatively straightforward, making
it easier to measure consistently in both 3D model calculations and
manual measurements. However, determining the shortest and inter-
mediate axes proved more challenging in practice. Manual measure-
ments are often less precise due to imperfect orthogonal alignment of the
axes, whereas computational bounding box (bbox) calculations assume
ideal geometric orientations. Additionally, the bbox-derived minor axis
length does not strictly correspond to the physically measured shortest
dimension obtained using digital calipers. The bbox method tends to
overestimate the thinnest section, which aligns with the overestimation
observed in (Fig. 10c). Similar studies support the high accuracy of 3D
reconstruction methods. For instance, Liu et al. [33] reported that
structure-from-motion (SfM)-based volume estimation achieved an
RMSE of 10.4 cm?’, while Huynh et al. [32] demonstrated 97 % accuracy
in sweet potato measurements using a 3D reconstruction approach. In
practical applications, the 3D reconstruction method provides more
reliable ground truth than manual measurements. During this study,
manual measurements introduced uncontrollable human errors, result-
ing in several extreme outliers in the data.

Our pin-guided point cloud alignment method, assisted by manual
interactive refinement, achieved a modified one-way Chamfer distance
(RMSD) of 1.04 £+ 0.29 mm and yielded a RMSE of 0.59 + 0.11 mm,
calculated by Open3d. In comparison, similar studies on multi-sensor
data fusion report varying degrees of accuracy. Wan et al. [28]
demonstrated that incorporating color information (via L*a*b* space
and Cauchy kernel) improved ICP performance by three orders of
magnitude, reducing alignment error from 45 mm (classical ICP) to 2.08
mm. Zhang et al. [26] achieved a mean registration error of 1.98 mm for
maize plants using conical surface fitting-enhanced ICP. Yuan et al. [27]
reported RMSE values of 0.05-0.2 m for GNSS-IMU-assisted colored ICP
in UAV-LiDAR peach tree registration. Xie et al. [34] fused spectral and
RGB-D data, achieving an RMSE of 0.4 mm. Huang et al. [35] noted a
mean error of 2.2 mm (maximum 3.3 mm) in their fusion framework.
While the accuracy of our method is slightly lower than some
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algorithmic benchmarks, it remains competitive with state-of-the-art
fusion approaches, particularly in complex practical application
scenarios.

3.4. Limitations and future works

While the pin-guided approach demonstrates promising matching
results, several limitations remain. The method performs better on
irregularly shaped objects compared to more spherical produce, as
spherical geometries provide fewer distinctive features for determining
optimal rotation angles. Particularly challenging are smooth-surfaced
crops like tomatoes and grapes, where both the shape regularity and
surface reflectivity complicate 3D data acquisition. A potential solution
may involve employing multiple pins for enhanced positioning accu-
racy, though this would increase preprocessing complexity and pin oc-
clusion. Future work will focus on expanding multi-scale mixed datasets,
such as our ongoing broccoli collections combining low-resolution
outdoor drone scans with indoor high-resolution reconstructions.
Methodological improvements may incorporate deep learning and
active learning [36] to reduce manual intervention, along with training
set augmentation strategies similar to automatic synthetic weed dataset
generation [37].

While RGB-D cameras provide scalability and real-time performance,
their inherent limitations, such as partial observations, depth noise, and
low resolution, have traditionally limited their use in applications
requiring precise 3D reconstruction. Our paired dataset and completion
framework show how data-driven approaches can address this accuracy
gap: by using high-fidelity SfM references as training targets, networks
can learn to compensate for sensor-level inaccuracies while maintaining
the speed advantages of RGB-D systems. Building on this dataset, we
extended the 3D fruit completion work [17] and proposed a 3D potato
tuber shape completion network for partial RGB-D inputs. Our method
achieves an average completion accuracy of 2.8 mm with 10 ms pro-
cessing time per tuber, showing better volumetric estimation (RMSE:
22.6 ml) compared to linear regression (31.1 ml) and baseline models
(36.9 ml) [21]. These limitations apply not only to agricultural appli-
cations but also to industrial inspection, logistics automation, and
infrastructure monitoring. By integrating high-quality reconstructed
data with low-quality sensor data, the performance of robotic or
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Fig. 10. Comparison between manual measured morphological traits and SfM produced Mesh traits.

industrial applications can be improved. For example, training on partial
scans from Time-of-Flight sensors and RGB cameras, along with CAD
models using Monte Carlo-optimized ICP 3D matching, significantly
enhances industrial defect inspection [38]. Similarly, Kawka et al. [39]
combined partial RGB-D scans with complete LiDAR-based 3D scanning,
achieving sub-centimeter precision in pipe diameter inspection for
matte and non-reflective surfaces. Additionally, integrating deep rein-
forcement learning in a digital twin environment, reconstructed via 3D

effective alignment despite significant variations in shape representa-
tion, texture color, and spatial resolution of potato tuber 3D models. The
proposed dataset and annotation pipeline also show great potential for
multi-sensor fusion applications across various crop phenotyping sce-
narios or other applications which employ RGB-D cameras and 3D
complete models.
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scanning and simulated in visual components, improves camera pose
estimation and collision detection [40]. Future work could explore
domain adaptation techniques to generalize this approach across
different environments (e.g., from controlled agricultural settings to
unstructured construction sites) or hybrid architectures that combine
RGB-D inputs with inertial or sparse LiDAR data for robustness. Adding
3D point cloud from handheld laser scanner or table laser scanner
platform can also expand the data source of multi-sensory fusion. Such
advancements would further expand 3D perception capabilities for
resource-constrained applications.

4. Conclusion

This data article releases a paired 3D dataset and its semi-automated
annotation pipeline for pairing potato tuber reconstructions from stereo
photogrammetry (SfM-MVS) and RGB-D sensing modalities. Our pri-
mary contribution, the 3DPotatoTwin dataset, comprises 339 tuber
samples across three cultivars from Hokkaido, Japan, featuring com-
plete ground truth measurements, source imagery, reconstruction met-
adata, and aligned 3D models from both sensing approaches. The
proposed dataset serves dual purposes as both training data for 3D
completion networks and as a benchmark for agricultural vision sys-
tems. Our secondary contribution is a semi-automated annotation
pipeline that reduces manual annotating effort when aligning 3D models
with varying shapes and textures captured by different sensors. This
pipeline achieved a fusion accuracy of 0.59 + 0.11 mm RMSE and 1.04
+ 0.29 mm modified one-way Chamfer distance, demonstrating
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