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Abstract: This article addresses the challenges of measuring the 3D architecture traits, such as
height and volume, of fruit tree canopies, constituting information that is essential for assessing
tree growth and informing orchard management. The traditional methods are time-consuming,
prompting the need for efficient alternatives. Recent advancements in unmanned aerial vehicle
(UAV) technology, particularly using Light Detection and Ranging (LiDAR) and RGB cameras, have
emerged as promising solutions. LiDAR offers precise 3D data but is costly and computationally
intensive. RGB and photogrammetry techniques like Structure from Motion and Multi-View Stereo
(SfM-MVS) can be a cost-effective alternative to LiDAR, but the computational demands still exist.
This paper introduces an innovative approach using UAV-based single-lens stereoscopic photography
to overcome these limitations. This method utilizes color variations in canopies and a dual-image-
input network to generate a detailed canopy height map (CHM). Additionally, a block structure
similarity method is presented to enhance height estimation accuracy in single-lens UAV photography.
As a result, the average rates of growth in canopy height (CH), canopy volume (CV), canopy width
(CW), and canopy project area (CPA) were 3.296%, 9.067%, 2.772%, and 5.541%, respectively. The
r2 values of CH, CV, CW, and CPA were 0.9039, 0.9081, 0.9228, and 0.9303, respectively. In addition,
compared to the commonly used SFM-MVS approach, the proposed method reduces the time cost of
canopy reconstruction by 95.2% and of the cost of images needed for canopy reconstruction by 88.2%.
This approach allows growers and researchers to utilize UAV-based approaches in actual orchard
environments without incurring high computation costs.

Keywords: aerial photogrammetry; fruit tree canopy structure; cost-efficient 3D trait extraction

1. Introduction

The canopy architecture traits of fruit trees, such as height, shape, arrangement, and
volume, offer critical insights into a tree’s growth status and potential yield [1–3] and
play a pivotal role in guiding management decisions. These decisions span a spectrum
of tasks, including pruning, irrigation, fertilization strategies [4], and pesticide applica-
tion plans [5]. However, the task of measuring such tree canopy architecture traits can
be laborious and time-consuming, particularly considering the expansion of production
areas in recent decades. Although simplified measurement methods have significantly
contributed to various aspects of fruit production, there have been instances where their
accuracy falls short in practical scenarios. Consequently, there is an imperative need to
advance research into precision orchard management to obtain architecture traits about
fruit tree canopies swiftly, accurately, and cost-effectively. This approach aims to cater to
the unique characteristics of individual trees, ultimately enhancing production, ensuring
high-quality yields, and promoting environmental conservation.
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With the recent development of low-altitude unmanned aerial vehicle (UAV) tec-
hnology, the application of UAVs in the field of agriculture is becoming increasingly
widespread [6–8]. With the advantages of low-altitude flight and fast maneuverability,
UAVs can acquire higher-quality raw data in less time. This capability enables accurate
measurement of the canopy structures of fruit trees in large-area scenarios.

Mounted on UAV platforms, Light Detection and Ranging (LiDAR) sensors [9–12]
and RGB cameras [13–19] are utilized to acquire the architecture traits of fruit tree canopies.
Among the two, LiDAR scanning is the most direct and precise way of obtaining 3D point
cloud data of fruit tree canopies. Slavík et al. [9] used a UAV-mounted VUX-1UAV laser
scanner to ascertain the canopy structure of spruce trees and differentiate the survival or
non-survival of these spruce trees based on this canopy structure. Hyyppä et al. [10] used
a UAV-LS-RiCOP UAV laser-scanning system to acquire point cloud data of birch forests,
based on which the canopy heights of birch trees were calculated. Chisholm et al. [11]
used a UAV equipped with a UTM-30LX radar to acquire a point cloud of jatropha trees
and detected and measured the diameter at breast height (DBH) of the trees using a fitted
cylinder method. Ghanbari et al. [12] used an airborne Phoenix ALPHA LiDAR sensor
to acquire canopy data. Point clouds of eucalyptus, Ficus macrocarpa, and elm trees are
used to calculate structural parameters, including canopy width and volume. However, the
substantial cost of LiDAR devices and the computational workload involved in collecting
and analyzing canopy point cloud data pose significant challenges in measuring fruit tree
canopies, particularly in large-scale orchard settings.

To lower the device costs of acquiring 3D canopy architecture traits, numerous studies
have integrated photogrammetry techniques such as Structure from Motion and Multi-View
Stereo (SfM-MVS) [13–18]. Sun et al. [13] used a UAV to capture image sequences of apple
orchards and generate a 3D point cloud model of an orchard to establish a prediction model
linking the morphological characteristics of fruit tree canopies to apple yields. Similarly,
Mu et al. [14] generated a digital surface model (DSM) using photogrammetry for the
detection of peach tree canopy growth dynamics. Hao et al. [15] reconstructed canopy
point cloud models of Laurel and Ficus to calculate tree heights. Nasiri et al. [16] obtained
a point cloud model of a mountainous deciduous mixed forest during the leaf-opening
and leaf-declining seasons to calculate the canopy height and canopy diameter on the
point cloud model. Krause et al. [17] reconstructed a canopy height model of a Scottish
pine forest to measure the heights of individual trees. Hobart et al. [18] reconstructed a
point cloud model of the canopy part of an apple tree wall by using a low-flying UAV
designed to monitor its growth status. The abovementioned studies demonstrated the
feasibility of using photogrammetry for acquiring information on tree canopy structures.
While the photogrammetry approach reduces hardware costs compared to those incurred
when using LiDAR, it still necessitates handling a large number of images and involves
high computation costs for the 3D reconstruction process.

Along with the abovementioned SfM-MVS approach, binocular stereovision, in which
a simpler binocular parallax principle is utilized to calculate depth information, has been
considered as a solution for reducing the computational cost of acquiring 3D structural
data [19–21]. However, most of the tasks are performed in short-range photography
scenarios; in long-range photography scenarios, such as aerial imagery, a long baseline
binocular system is required, and such a system is not feasible for hardware design.

To overcome this limitation, a UAV-based single-lens stereoscopic photography method
has been designed: Matsuura et al. [22] simulated a long-baseline binocular photography
system by using a UAV to take two overhead photographs with the help of the RTK-GNSS
positioning system. It can only obtain the height information of buckwheat plants, but
provides an idea for the detailed canopy measurement task in this study.

Therefore, we propose a fruit tree canopy architecture trait measurement method
based on a single UAV lens. It can comprehensively obtain information on fruit tree canopy
height, canopy volume, canopy width, and canopy projected area with low cost and high
accuracy for outdoor scenes. The main contributions of this study are as follows:
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Firstly, to obtain fruit tree canopy heights using single-lens UAV photography, we
leveraged the distinct color variations in fruit tree canopies resulting from lighting con-
ditions, canopy structure, texture, and UAV photography angles. We introduce a novel
dual-image-input canopy height calculation network to account for these characteristics.
This network harnesses both color information from a canopy foreground RGB (CFM-RGB)
map and height information from a canopy-height-estimated (CHM-estimated) map. By
combining these inputs, this can network effectively learn the height distribution patterns
of real canopies, leading to the generation of a refined canopy height map (CHM). In this
context, we define the CHM as a map that accurately represents the foreground heights of
a canopy. This paper also introduces a canopy height distribution supervision mechanism,
which serves as a means of assessing the appropriateness of the computed CHM’s height
value distribution to ensure that the final CHM is finely detailed and shows a rational
height distribution. Secondly, to improve the accuracy of canopy height estimation under
UAV single-lens photography conditions, we introduce a novel method that relies on block
structure similarity. In this approach, area similarity is used as a metric for feature matching,
resulting in a notable reduction in the time required for feature matching between images
captured by a single UAV lens and improving the accuracy of canopy height estimation.
Our approach represents a valuable contribution, particularly for scenarios where single-
lens UAV photography is a limiting factor, and it promises to enhance the overall quality of
canopy height estimation procedures.

2. Materials and Methods
2.1. Experiment Field and Data Acquisition

Twelve peach trees with a complex canopy structure in a peach orchard in Fukushima
prefecture, Japan (37◦50′15.0′′N 140◦31′18.5′′E), were selected in this experiment (Figure 1).
During the fruit-ripening stage in August 2019, aerial image data were collected using a
low-cost drone (DJI Phantom 4 RTK, DJI, Shenzhen, China) equipped with an airborne
RGB camera. This camera has a lens field of view (FOV) of 84 degrees and a focal length of
8.8 mm. It is capable of capturing images with a maximum resolution of 5472 × 3648 pixels.
The flight height was set to 30 m, resulting in a ground resolution of 0.82 cm/pixel.

Remote Sens. 2024, 16, x FOR PEER REVIEW 3 of 29 
 

 

canopy height, canopy volume, canopy width, and canopy projected area with low cost 
and high accuracy for outdoor scenes. The main contributions of this study are as follows: 

Firstly, to obtain fruit tree canopy heights using single-lens UAV photography, we 
leveraged the distinct color variations in fruit tree canopies resulting from lighting condi-
tions, canopy structure, texture, and UAV photography angles. We introduce a novel dual-
image-input canopy height calculation network to account for these characteristics. This 
network harnesses both color information from a canopy foreground RGB (CFM-RGB) 
map and height information from a canopy-height-estimated (CHM-estimated) map. By 
combining these inputs, this can network effectively learn the height distribution patterns 
of real canopies, leading to the generation of a refined canopy height map (CHM). In this 
context, we define the CHM as a map that accurately represents the foreground heights 
of a canopy. This paper also introduces a canopy height distribution supervision mecha-
nism, which serves as a means of assessing the appropriateness of the computed CHM’s 
height value distribution to ensure that the final CHM is finely detailed and shows a ra-
tional height distribution. Secondly, to improve the accuracy of canopy height estimation 
under UAV single-lens photography conditions, we introduce a novel method that relies 
on block structure similarity. In this approach, area similarity is used as a metric for fea-
ture matching, resulting in a notable reduction in the time required for feature matching 
between images captured by a single UAV lens and improving the accuracy of canopy 
height estimation. Our approach represents a valuable contribution, particularly for sce-
narios where single-lens UAV photography is a limiting factor, and it promises to enhance 
the overall quality of canopy height estimation procedures. 

2. Materials and Methods 
2.1. Experiment Field and Data Acquisition 

Twelve peach trees with a complex canopy structure in a peach orchard in Fukushima 
prefecture, Japan (37°50′15.0″N 140°31′18.5″E), were selected in this experiment (Figure 1). 
During the fruit-ripening stage in August 2019, aerial image data were collected using a 
low-cost drone (DJI Phantom 4 RTK, DJI, Shenzhen, China) equipped with an airborne 
RGB camera. This camera has a lens field of view (FOV) of 84 degrees and a focal length 
of 8.8 mm. It is capable of capturing images with a maximum resolution of 5472 × 3648 
pixels. The flight height was set to 30 m, resulting in a ground resolution of 0.82 cm/pixel. 

 
Figure 1. The experiment field in Fukushima prefecture. Figure 1. The experiment field in Fukushima prefecture.

Simultaneously, we captured a 3D point cloud of the orchard using Topcon GLS-2000
laser scanner(TOPCON, Tokyo, Japan) on the same day of the flight. The geographic
information was also added by setting up control points (measured using RTK GPS) and
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then placing TLSs on the tops of these control points during the scanning process. So, the
point clouds from the TLSs were also georeferenced.

2.2. Algorithm and Methodology

This section mainly describes the method used in this study. Figure 2 illustrates the
functional structure of the method, which consists of the following components.
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Figure 2. General framework of the methodology of this study. (a) Canopy foreground RGB map
(CFM-RGB). (b) Canopy-height-estimated map (CHM-estimated). (c) Canopy height map (CHM).

(1) Image-Preprocessing Module: In order to minimize the impact of ground back-
ground information on the estimation of canopy height, this module removes the back-
ground information in aerial images and generates a standard binocular canopy foreground
RGB map (CFM-RGB) of the fruit tree target. This facilitates the subsequent process of
canopy height estimation. The details of this process are described in Appendix A.1.1.

(2) Canopy Height Estimation Module. This module utilizes the canopy height
estimation method proposed in this paper, which is based on block structural similarity. It
performs matching of corresponding areas between binocular CFM-RGB maps using block
similarity metrics and calculates the binocular parallax to obtain a canopy-height-estimated
map (CHM-estimated) (corresponding to Section 2.2.1).

(3) Canopy Height Calculation Module based on the correlation between canopy
color and height distribution: This module uses the canopy height calculation network
proposed to calculate the Canopy Height Map (CHM). It takes CHM-estimated and CFM-
RGB as inputs and uses the canopy foreground RGB information to guide the calculation
of CHM. The module then outputs the refined CHM (Corresponding to Section 2.2.2).

(4) Canopy structure reconstruction module: In the task of simulating long baseline
binocular canopy structure measurements using a single UAV lens, the 3D structure of the
canopy is obtained from the refined binocular CHM via the canopy structure reconstruction
module. This module is described in detail in Appendix A.1.2.

This paper focuses on the canopy height estimation module and the canopy height
calculation module within the overall structure of this methodology.



Remote Sens. 2024, 16, 1570 5 of 27

2.2.1. Canopy Height Estimation Module

Since there is a strong correlation between the calculability of canopy height and the
image quality of the input canopy height estimation module proposed in Section 2.2.2, the
performance of the model proposed in this paper can be further enhanced if the speed and
accuracy of canopy height estimation can be improved in the CHM estimation process.
However, conventional binocular depth estimation algorithms typically rely on pixel-point
matching [23,24]. These algorithms often require generating a larger number of feature
points for the subsequent matching process, resulting in reduced efficiency in estimating
canopy height. Additionally, these algorithms are highly sensitive to variations in texture
and lighting conditions, leading to an increased number of false matches in the foreground
of complex fruit tree canopies. Consequently, this negatively impacts the accuracy of
canopy height estimation.

In this paper, we observe that in binocular photographic images with long baselines,
the same region in the canopy shows high structural similarity between the binocular
images (as depicted in Figure 3). However, the canopy texture details of fruit trees are
more intricate. Based on this experimental phenomenon, we hypothesize that we can use
the high-dimensional information similarity between canopy structures as a metric for
binocular matching. Therefore, based on this concept, the canopy height estimation module
of this paper provides a method for estimating canopy height based on the structural
similarity of blocks. The core idea is to extract high-dimensional architecture traits from the
binocular canopy blocks using a down-sampling strategy. This allows for the comparison
of structural similarity. The specifics of this approach are as follows:
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In the process of canopy block matching, the accuracy of the similarity between blocks
directly affects the calculation of subsequent block height values. This method is designed
to optimize the utilization of the structural characteristics of canopy blocks in order to
determine the similarity between two blocks. To achieve this, the two block images are
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initially down-sampled before the similarity of the blocks is computed [this process is
illustrated in Figure 4a and Algorithm 1 outlined in the pseudo-code]. Subsequently, the
high-dimensional features of the two blocks are extracted, and their similarity is calculated
based on the high-dimensional feature maps. This approach enhances the significance
of the canopy’s structural features in determining the structural similarity of the blocks
while reducing the impact of canopy details on the structural similarity. Then, the distance
between the high-dimensional feature maps of the two blocks is calculated. (In this paper,
the cosine distance was chosen as the measure of similarity.) The smaller the cosine
distance between the two high-dimensional feature maps, the higher the similarity in terms
of canopy structure between them. The formula for determining the cosine distance is
shown in Equation (1):

dcos(ML, MR) = 1− ∑m
i=1 ∑n

j=1 MLi,j MRi,j√
∑m

i=1 ∑n
j=1 ML2

i,j

√
∑m

i=1 ∑n
j=1 MR2

i,j
(1)

where ML and MR are the high-dimensional feature maps of the left and right visual
canopy blocks whose similarity is to be calculated by Algorithm 1, and their pixel matrices
are MLm×n and MRm×n, respectively.

Algorithm 1. Similarity calculation process for binocular canopy block matching

Input: left eye block: BL, matched right eye block: BR
Output: similarity between canopy blocks: si

1: for i← 1 to 5 do
2: BL← convolutional_downsampling (BL, kernel size: 3×, step size: 1)
3: BR← convolutional_downsampling (BR, kernel size: 3×3, step size: 1)
4: end for
5: ML, MR← high-dimensional feature map of BL, BR, respectively.
6: si = dcos(ML, MR), the cosine distance between ML and MR by Equation (1)
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Using the coronal block structure similarity measure mentioned above, divide the
coronal foreground region into blocks (referred to as blocks in this paper). Then, in the
other binocular image, find the most similar block by using each block of the coronal
structure as a matching block (referred to as a matched block in this paper). Compute
the centroid of the two matching blocks [as indicated by the coordinates (xb, yb) and (xm,
ym) shown in Figure 4] in the parallax between binoculars. Because the UAV used in this
study is integrated with an RTK module, assume that the flight altitude will not change
drastically during the acquisition of the left and right views (as shown in Figure 4, for
example). Then, based on the information from the photographic images, use the stereo
vision principle to calculate the height value at the block [as demonstrated in Figure 4b].
Because of the typical binocular form correction that the preceding binocular canopy
foreground-generating module already executed, only the region containing the upper
and lower borders of the block area (as depicted in the bar area in Figure 4) can be used to
search for the matching block.

In order to obtain the left-eye canopy foreground height matrix M, traverse all of the
left-eye CFM-RGB blocks, use the above matching method to identify the best matching
region, and calculate the height value. Next, eliminate any outliers from M, and note the
maximum value, or hmax, in M. Finally, normalize the matrix M to a grayscale image with
0–255 levels, keeping only the canopy foreground region in the grayscale image [illustrated
in Figure 5c]. To generate the right-eye CHM-estimated map, swap the left- and right-eye
CFM-RGB maps and apply the previously described canopy height estimation method
based on block structure similarity. Figure 5 displays the CFM-RGB map, the canopy
foreground block division image, and the CHM-estimated map. According to the CHM-
estimated map, the total height of the canopy in the area is represented by the height value
of each block in the picture. In addition to serving as the input object for the following
module that calculates canopy height, the CHM-estimated map also provides canopy height
value guidance for the network process used to calculate canopy height in the foreground.
This allows the network to incorporate RGB information from the foreground to calculate
the heights of the canopy at each location more precisely. In addition, the gray values in
the CHM-estimated map are records of the relative heights of each canopy segment. These
records serve as the vertical mapping scale for the subsequent reconstruction of the canopy,
ensuring that the new canopy has a reasonable 3D scale.
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2.2.2. Canopy Height Calculation Module

Fruit tree canopy height calculation requires not only the generation of a reasonable
canopy height distribution but also the certainty of the invariance of the contour shape
of the canopy foreground since the 3D structure of the canopy needs to be reconstructed



Remote Sens. 2024, 16, 1570 8 of 27

from the computed fine CHM. In light of this, this paper suggests a network for calculating
the foreground height of fruit trees using the correlation between canopy color and height
distribution. Figure 6 displays the training flowchart for this network model. The network
uses a generative adversarial network structure. Here, the “generator network with dual
input images” is utilized to calculate canopy height. The generator takes two inputs,
CFM-RGB and CHM-estimated, which supply the RGB color information of the canopy
foreground and the in-region predicted height values of the canopy, respectively. The
generator network combines the canopy foreground color from CFM-RGB and the canopy
height estimation information from CHM-estimated, from which it learns the deep mapping
relationship between the canopy RGB information and the estimated height information
for the real canopy height, generates a refined CHM image with reasonable canopy height
distribution characteristics (introduced in the Generator Network with Dual Input Images
Section), and outputs a refined CHM with the canopy heights. The loss function of canopy
height distribution proposed in this paper (introduced in the Loss Function for Canopy
Height Distribution Section) is used in the calculation process to accelerate the convergence
speed of the generator network and enhance the reasonableness of the height distribution
of the generated CHM; meanwhile, the pixel-by-pixel loss function is used to ensure the
invariance of the two-dimensional contour structure of the computed CHM. In addition,
the ‘discriminator network’ learns how to distinguish between the generated CHM and
the label CHM and improves the ability of the ‘generator network’ by using dual input
images to calculate the canopy height during the adversarial training of the generator
and discriminator. Such a network structure meets the needs of fruit tree canopy height
calculation. To train the canopy height calculation network, the label CHM was generated
by projecting terrestrial-laser-scanner-acquired point cloud data.
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Generator Network with Dual Input Images

The network’s specific structure is shown in Figure 7. The generator is based on
U-Net, with CFM-RGB and CHM-estimated as dual inputs and the computed fine CHM
as the output, the last of which is designed to utilize the canopy foreground RGB infor-
mation in CFM-RGB and the predicted canopy height information in CHM-estimated to
guide the generator network towards learning the label CHM’s canopy height distribution
characteristics to generate a fine and reasonably distributed CHM.
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In the U-Net down-sampling process (Figure 7), a continuous convolutional layer
module is used to extract the input CFM-RGB and CHM-estimated features at the same
time and fuse the RGB information of the canopy layer and the height information of the
canopy layer during the down-sampling process to obtain the high-dimensional features
that are enriched with the color and height information of the canopy layer; the inverse
convolution module is used to reconstruct the image step-by-step in the up-sampling
process, and the skip-connection structure is used in this process to jump-connect the down
sampling feature layers of the same scale, rendering the image restoration process capable
of fusing the feature information of the canopy layer’s color tone and outline at different
scales, in addition to enhancing the quality of the reconstruction of the image.

Loss Function for Canopy Height Distribution

The generator uses a pixel-by-pixel L1 loss function to ensure the invariance of the
2D contour structure of the generated CHM, but in the actual training process, only using
this loss will render the network incapable of learning the characteristics of canopy height
distribution, which will lead to problems such as slow convergence of the generator
network, unreasonable generation of canopy height distribution, and other problems.
Therefore, this paper proposes, for the first time, the canopy height distribution loss
function lossQD (quantity and distribution loss of canopy height), which evaluates the
similarity of the distribution of height values between the generated CHM and the label
CHM and makes the distribution of canopy heights generated by the generator network
more reasonable. This loss consists of canopy height value quantity distribution loss, i.e.,
lossquality, and canopy height value location distribution loss, that is, lossdistribution, and it
is defined as shown in Equation (2):

lossQD = lossquantity + lossdistribution (2)

where lossquality is calculated by counting the number of height values in the canopy region,
focusing on the part of the generated CHM and the label CHM in the foreground region
of the canopy only [shown in Figure 8a], and counting the number of height values of the
canopy in the region [as shown in Figure 8b, the height value of the canopy is represented
by the grayscale values between the 0–255 threshold]. This is defined in Equation (3):

lossquantity =
∑255

i=1|g(i)− t(i)|
255

(3)

where g(i) is the number of pixels generating the ith level of height values in the foreground
portion of the CHM, and t(i) is the number of pixels generating the ith level of height values
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in the foreground portion of the true CHM, and the difference between the two is used as
a loss function so that the network learns the variability between the distributions of the
number of height values in the canopy.
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lossdistribution is calculated by determining the distribution distance of each height
value in the canopy region from the center of the canopy, first determining the center O
of the smallest outer circle in the canopy foreground [Figure 9a]. First, the center O of the
smallest outer circle in the foreground of the canopy is determined. Then, the distance
ri,1, ri,2, ri,3 . . . ri,j . . . ri,m−1, ri,m between a height value hi(i ∈ [1, 255]) and the center O of
the circle in the canopy (where m is the number of height values hi in the canopy) is
determined. In this paper, we define the distribution distance of the canopy height value hi
as ri, with ri denoting the distance from the main distribution location of this height value
in the canopy to the center point of the canopy [as shown by the radius of the red dashed
circle in Figure 9a], which is defined as shown in Equation (4):

ri =

[
∑m

j=1 ri,j

m

]
, j ∈ [1, m] (4)

The calculated CHM and the distribution distance ri for each height value hi are shown
in Figure 9b.

In order to describe the variability between the two images in terms of the distribution
distance of canopy height values, this paper defines lossdistribution as shown in Equation (5):

lossdistribution =

255
∑

i=1
|g(ri)− t(r i)|

255
, i ∈ [1, m] (5)
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where g(ri) is the distribution distance of a level of height values in the foreground part of
the generated CHM, and t(r i) is the distribution distance of a level of height values in the
foreground part of the label CHM. Using the difference between the two as a loss function
allows the network to learn about the variability between the distributions of the locations
of the canopy height values.
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Figure 9. Schematic representation of the distribution distances of the heights of a level of the
canopy in the CHM (a) and statistics of the distribution distances of height values of the CHM in the
foreground region of the canopy (b).

Before the fusion of lossquality and lossdistribution, we first normalized them to [0, 1] via
decimal scaling to ensure that both of their losses are of the same scale. Figure 10 shows the
comparison effect before and after adding lossQD to the generator’s loss function for the
same number of training rounds. In contrast to Figure 10a, Figure 10b illustrates a distinct
variation in height within the inner canopy, and in terms of canopy details, this result
is more in line with the actual CHM. As can be observed, the network can significantly
increase the quality of CHM generation and speed up the training process after the addition
of lossQD within the same training iteration rounds. The generator significantly increases
CHM generation quality and quickens the network’s convergence process after lossQD
is added.
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2.3. Canopy Architecture Traits Extraction

The measurement of fruit tree canopy architecture traits is mainly concerned with
the relevant parameters of a fruit tree canopy in 3D space, of which the most important
structural parameters include tree height, canopy width, canopy projected area, canopy
volume, etc. [25–28]. These architectural traits directly reflect the growth status of fruit
trees and play an important guiding role in the monitoring and management of fruit trees.
Therefore, in this paper, the above four canopy structure parameters are used to evaluate
the performance of canopy measurement methods, and the definitions of these four canopy
structure parameters are as follows:

1. CH (Canopy Height)—the vertical distance from the highest part of the canopy to the
ground, as shown in Figure 11a;

2. CW (Canopy Width)—the diameter of the smallest outer circle of the vertical projec-
tion of the canopy, as shown in Figure 11b;

3. CPA (Canopy Projected Area)—the vertically projected area of the canopy (empirical
value used in this paper: CPA ≈ 0.65 ∗ π ∗ (CW/2)2 [15], as shown in Figure 11c;

4. CV (Canopy Volume)—the volume of the 3D convex envelope of the canopy, as
shown in Figure 11d.
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2.4. Implementation

In the experiment, we employed the same computer, with 32 GB of RAM and an
Intel i7-12700F CPU (Intel, Santa Clara, CA, USA) running at 2.10 GHz, to execute all
the methods. Additionally, this machine has an RTX4090 GPU (Nvidia, Santa Clara, CA,
USA) with 24 GB of VRAM. The operating system used for the experiment is Ubuntu
18.04. The proposed approach was implemented using Python 3.7. The canopy height
calculation network and foreground segmentation network for this method were im-
plemented using the Pytorch version 1.12.1 framework. Appropriate adjustments were
made to the training process’s epoch (epoch = 500), learning_rate (learning_rate = 0.001),
and batch_size (batch_size = 4). With a calculation amount amounting to 28.2 GFLOPS
and 5.45 M parameters, the training procedure took roughly 6 h, the more details can
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found in Supplementary Materials. The SFM+MVS method was executed using Pix4D
Mapper version 1.1.38 software. Demo software version 1.0 and data can be accessed at
https://github.com/I3-Laboratory/EasyCanopy (accessed on 22 February 2024).

3. Results

Currently, the method based on SFM+MVS reconstruction is the most commonly
used method in the field of UAV agricultural surveying and mapping [29–32]. In this
method, first, feature points between image sequences are extracted; then, feature matching
is performed, and the spatial position relationships between photographic images are
estimated; finally, a three-dimensional point cloud of the object based on the estimated
camera parameters is constructed. The existing fruit tree canopy architecture trait mea-
surement methods are mostly based on this method. Therefore, we chose SFM+MVS as
a comparison method. Since UAV photogrammetry often requires using oblique photog-
raphy technology to improve canopy structure reconstruction, the camera angle and the
UAV route need to be adjusted to ensure the overlap rate between the image sequences,
which undoubtedly increases the cost of image data acquisition. In order to further simplify
the UAV aerial photography work and reduce the cost of data acquisition, the UAV aerial
photographs were taken using a vertical overhead angle in this experiment. This section
details comparative experiments conducted in terms of canopy structure traits (introduced
in Section 3.1), canopy 3D structure (introduced in Section 3.2), and canopy reconstruction
efficiency (introduced in Section 3.2).

3.1. Validation via Canopy Structure Traits

In this section, we calculate the error rate and linear correlation between the measure-
ment results and the true values. Figure 12 shows the results of a comparison between the
canopy structure parameters measured using the two methods and the true values for each
fruit tree. Table A1 shows the absolute values of the errors between the canopy structure pa-
rameters measured using the two methods and the true values of each fruit tree. Figure 13
shows the linear correlation between the canopy structure parameters measured using the
two methods and the true values for each fruit tree. Figure 14 shows the structural visual-
ization point cloud reconstructed using the two methods and its terrestrial-laser-scanning
point cloud for each fruit tree canopy.
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As shown in Figure 12 and Table A1, the experimental error rate of the proposed
method for each fruit tree canopy characteristic parameter is small, with an average error
rate of 3.296% for the CH, 9.067% for the CV, 2.772% for the CW, and 5.541% for the CPA,
and proposed method has a small error rate for each canopy structural parameter. The
average error rate absolute value between the measurement results and the true value for
each canopy structure parameter assessed using this method is below 10%. On the other
hand, the SFM+MVS method has a higher error rate for each canopy structure parameter,
and the absolute value of the average error rate for the CV parameter is more than 50%.
The measured values of the CV parameters determined using the SFM+MVS method are
all smaller than the ground-truth values. It can be speculated that the three-dimensional
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structure of the canopy reconstructed using this method has a large loss, resulting in a large
gap between the convex hull volume and the actual canopy volume.
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Figure 14. Visualization results of the comparison between the canopy structure of fruit trees
reconstructed using the proposed method and SFM+MVS method and its terrestrial laser scanner
(TLS)-derived point cloud (in the case of peach tree canopy No. BC4). (a) Structure of terrestrial-laser-
scanner-scanned point cloud. (b) Canopy point cloud structure reconstructed using the proposed
method. (c) The canopy point cloud structure reconstructed using the SFM+MVS method.

Meanwhile, as shown in Figure 13, the correlation coefficient R2 (which measures the
linear correlation between the measured value and the true value) of the proposed method
for the CH is 0.9039, on the CV is 0.9081, on the CW is 0.9228, and on the CPA is 0.9303. The
linear correlation coefficients R2 of the structural parameters of the reconstructed canopy for
the proposed method and the true value are all in the range of 0.9303. The linear correlation
coefficients between the structural parameters of the reconstructed canopy and the true
values for this method are all above 0.9, which shows a strong linear correlation between
the measured values and the true values, while the linear correlation coefficients between
the structural parameters of the reconstructed canopy and the true values of the indicators
for the SFM+MVS method are below 0.8, which is a weaker linear correlation compared
with that of the proposed method. For the CV parameters, the r2 of the SFM+MVS method
is only 0.6778, which also shows that there is a large error in the measurement results of
this method.

3.2. Validation

As shown in Figure 14, by comparing the reconstructed fruit tree canopy structure
with that of SFM+MVS, although the reconstructed fruit tree canopy point cloud structure
in this paper is different from that of the terrestrial laser scanner point cloud in relation
to some details (as shown in the blue dashed area in Figure 14b), the reconstructed fruit
tree canopy structure has greater similarity with the 3D structure of the ground point
cloud in terms of the overall convex packet morphology. This verifies the accuracy of
the measurement of the fruit trees in terms of their canopy structure parameters. On the
other hand, the point cloud reconstructed using the SFM+MVS method is centered on
the top of the fruit tree canopy, which is mostly in the form of a slice. The reconstructed
canopy structure is partially missing from the top-view perspective (as shown by the orange
dashed area in Figure 14c). The bumpy packet structure is also quite different from that
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in the terrestrial-laser-scanner-scanned canopy point cloud, which did not reconstruct the
3D structure of the canopy well, and this directly affects the accuracy of the parameters
relating to the canopy structure of fruit trees. This also directly affects the accuracy of the
canopy structure parameters. It can be seen that the method proposed in this paper can
better reconstruct the 3D structure of a fruit tree canopy and obtain more-accurate canopy
structure parameters using UAV aerial images compared with the SFM+MVS method.

3.3. Reconstruction Efficiency Comparison

In addition, as shown in Table 1, in terms of the reconstruction cost for the fruit tree
canopy, the proposed method requires only two images to complete the reconstruction
of a single fruit tree canopy. It takes only 24 images to complete the reconstruction of the
canopies of all 12 fruit trees, with an average of 30 s required for the reconstruction of
a single fruit tree canopy. In contrast, the SFM+MVS method used 203 images and took
02 h:06 m:04 s to complete the reconstruction of all 12 fruit trees. The proposed method
reduces the time cost of canopy reconstruction by 95.2% and the cost of images needed for
canopy reconstruction by 88.2%. It can be seen that the proposed method can reduce the
image acquisition cost of fruit tree canopy reconstruction and the time required for fruit
tree canopy structure reconstruction more substantially.

Table 1. The comparison of the time and the number of images required to reconstruct the canopy
structures of 12 fruit trees between the proposed method and the SFM+MVS method(↓: The reduction
ratio of the proposed method compared to the SFM+MVS method).

Method SFM+MVS Our Method

Reconstruction time 02 h:06 m:04 s 6 m (↓95.2%)
Average reconstruction time/tree 630 s 30 s (↓95.2%)

Number of images needed for reconstruction/picture 203 24 (↓88.2%)

Although the Pix4D software based on the SFM+MVS method utilizes the GPS posi-
tioning information of UAV aerial photography images to assist in the reconstruction of fruit
tree canopies, it still needs to satisfy the geometrical constraints of the camera viewpoint
based on the feature point matching of the images, so this method’s feature-point-matching
process with respect to images is inevitably affected by the ground background and the
surrounding fruit tree canopy. This affects the derivation of camera position in the SFM
process. At the same time, because the UAV aerial images were acquired using tilt pho-
tography, the MVS process of this method is not sufficient for employment in the dense
reconstruction of the viewing angle information, resulting in the dense reconstruction
of the canopy 3D structure being inaccurate, a trait specifically reflected in the fact that
the reconstruction of the canopy point cloud has different degrees of missing features,
which seriously affects the accuracy of the canopy structural parameters. It can be seen
that the image sequences of UAV aerial photography obtained based on the SFM+MVS
method could not yield a very good reconstruction of the 3D structure of the canopy, so,
temporarily, UAV aerial photography and the SFM+MVS method cannot be used to obtain
more accurate measurements of the canopy architecture traits of a single fruit tree. The
proposed method uses the canopy height calculation network to learn the distribution
characteristics of canopy height and obtain a fine canopy height image. On this basis, a
more accurate 3D canopy structure can be obtained.

In addition, as shown in Table 1, regarding the cost required for fruit tree canopy
reconstruction, the SFM+MVS method requires a large number of photographic images
and a great deal of time for canopy reconstruction. On the other hand, since this method
cannot distinguish the front background of a canopy in the canopy reconstruction process,
the redundant ground background information is involved in the camera position inference
of SFM and the multi-view dense reconstruction process of MVS, resulting in additional
computational overhead and an increase the computational time required for canopy
reconstruction when using this method. In this paper, the proposed method requires only
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two images for the reconstruction of the same fruit tree canopy target. The foreground
generation of the same fruit tree canopy target in binocular vision is performed before
canopy height prediction, avoiding the influence of the ground background and other
fruit tree canopies on the reconstruction process. At the same time, the canopy height
prediction method based on the similarity of the block structures proposed also further
accelerates the speed of fruit tree canopy height prediction. It can be seen that compared
with the SFM+MVS method, the proposed method has lower costs and a faster speed in
canopy reconstruction.

4. Discussion

For precise fruit tree management, canopy architecture traits are important, and
with the rapid development of UAV sensing techniques, phenotyping such traits can
be performed efficiently. However, there are still limitations of the current solutions,
including the hardware costs of Lidar-sensor-based solutions and the calculation costs of
RGB photogrammetry-based solutions. In this paper, we propose a novel UAV-based single-
lens stereoscopic photography method designed to mitigate these challenges. The methods
were evaluated with respect to a peach orchard in the summer, and the results demonstrate
efficiency and cost-effectiveness in canopy reconstruction, significantly reducing both
the time and computational demands traditionally associated with such tasks. We also
recognize that canopy architecture traits are needed in the winter as well, so, in addition, a
preliminary experiment was also conducted using the image data of winter orchard trees
collected in another experiment field in Okayama prefecture (the experimental objects
included 12 peach trees, BF1-BF12), as shown in the Appendix. The proposed method
was also compared with the SFM+MVS method. The experimental results show that the
proposed method also shows effectiveness in the measurement of the canopy structures
of fruit tree branches in the winter (the experimental results are shown in Appendix A.3,
Figures A3–A6, and Tables A2 and A3).

Although the proposed method will produce more-accurate fruit tree canopy archi-
tecture trait measurement results in experiments, it is undeniable that measuring such
traits based on a single UAV lens is still a challenging task. First of all, in the experimental
results, it can be found that there are still some differences between the reconstructed
canopy and the real canopy in terms of the structural details of the proposed method,
especially in relation to the winter fruit tree branches and the trunks of the object. The
proposed method also failed to capture more branches and trunks, resulting in errors in
the CW and CPA parameters of the fruit trees. This misrepresentation was caused by
the inaccurate segmentation of the foreground (canopy), making the CFM-RGB partially
misrepresented, which affects the subsequent 3D structure reconstruction of the canopy.
It can be seen that the performance of the foreground segmentation network affects the
accuracy of canopy reconstruction, and a better foreground segmentation network can be
selected in the future to enhance canopy reconstruction. Secondly, the current experiment
was only carried out on fruit trees in a certain period, and the actual state of the canopy
of the fruit trees (the color of the canopy leaves, the degree of canopy leaf coverage, etc.)
changes dynamically with the change of season and time, which may pose a challenge
with respect to the generalization ability of the canopy height calculation network and the
canopy foreground segmentation network. Aerial photography data of fruit trees captured
throughout the whole year can be collected to improve the learning ability of the network
with respect to the canopy information of fruit trees in each period. If one needs to measure
fruit trees in a new orchard [33–35], the model generated in this study can be applied or
finetuned, using new trees as a training dataset.

The proposed method can efficiently measure the phenotypic traits of fruit tree
canopies in large-area orchards; has guiding significance for fruit tree yield prediction, fruit
tree pruning, water and fertilizer application, pest and disease control, etc.; and promotes
the development of precision agriculture. The proposed method can be adapted to the
edge devices carried by UAVs to realize online real-time phenotyping tasks. In addition,
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other phenotypic traits such as canopy light interception rate and leaf area index can be
further measured based on the reconstructed fruit tree canopy structure. Finally, so far,
the proposed method has been applied to fruit trees in orchards, but in future work, this
idea can be applied to the phenotypic measurement tasks of other crops, such as field
crops, low shrubs, and other scenarios, to broaden the scope of application of the proposed
method in agriculture.

5. Conclusions

In conclusion, in this study, we developed a high-precision, fast, and low-cost method
of measuring the canopy architecture traits of single fruit trees based on a single UAV lens.
This method can quickly obtain the 3D structure of a fruit tree canopy with higher accuracy
and calculate 3D characteristic parameter information regarding canopy structure, on the
basis of which we can reduce the cost of fruit tree canopy data collection and processing.
And compared to conventional methods, our method yields better results and has higher
efficiency. It can be adapted to the fruit tree canopy architecture trait measurement tasks in
different seasons and is suitable for the high-throughput and accurate measurement of the
canopy structure of a single fruit tree in a wide range of orchard scenarios to assist in the
analysis of the growth states of fruit tree canopies.

Supplementary Materials: A video about the workflow of this study can be found at https://youtu.
be/A-MN9hlXiQ4 (accessed on 22 February 2024).
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Appendix A

Appendix A.1 Methodologies of Image-Preprocessing Module and Canopy Structure
Reconstruction Module

Appendix A.1.1 Image-Preprocessing Module

Before estimating the height of the fruit tree canopy, we preprocessed the UAV image
sequence to generate a standard binocular CFM-RGB to facilitate subsequent canopy
height estimation work. The preprocessing process of this module is as follows (shown in
Figure A1):

1. Neighboring frame extraction: Extract neighboring frame images from UAV aerial
videos or image sequences.

2. Simulate binocular transformation: Since the UAV trajectory may not be parallel to
the camera lens CMOS sensor, it is necessary to convert the adjacent frames into a
standard binocular image. This paper provides two transformations for simulating
standard binocular photography, and the details of the process are as follows:

a. Known camera lens attitude: The attitude of the lens while capturing UAV
photographs can be obtained from the UAV aerial photography log. According

https://youtu.be/A-MN9hlXiQ4
https://youtu.be/A-MN9hlXiQ4
https://github.com/I3-Laboratory/EasyCanopy
https://github.com/I3-Laboratory/EasyCanopy
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to the rotation angle α of the horizontal direction of the camera lens, rotate the
neighboring frames of the image and crop out the redundant boundaries; thus,
the form of the standard binocular image can be obtained.

b. Unknown camera lens attitude: If the attitude of the UAV camera lens is un-
known, the rotation angle α can be calculated based on binocular feature point
matching, and the standard binocular image form can be obtained by rotating
the neighboring frame images according to the rotation angle α and cropping
out the redundant boundary.

3. Target canopy matching: In this study, we used high-dimensional feature template
matching to match the uniform canopy object in the binocular image, and we were
able to determine the region of the uniform canopy object in the binocular map.

4. Matching region segmentation: The matching region of the same fruit tree canopy in
the binocular image is segmented.

5. Canopy foreground segmentation: In order to reduce the impact of the ground
background region on the subsequent process of fruit tree canopy height estimation,
this module uses the foreground segmentation network (in this paper, we use the
U2-Net) to realize the separation of the front background of the fruit tree canopy.
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Appendix A.1.2 Canopy Structure Reconstruction Module

The measurement of fruit tree canopy structural characteristic parameters is based
on the 3D structure of fruit tree canopies. This module recovers the 3D point clouds of
fruit tree canopies from the CHM obtained from the canopy height calculation module in
Section 2.2.2 and calculates the characteristic parameters of a canopy on the basis of the 3D
point cloud of the canopy, and the structural restoration process of the canopy is shown in
Figure A2.

According to the hmax recorded in the process of canopy height estimation in Sec-
tion 2.2.2 of the main text, we determined the true canopy height corresponding to each
grey level in the high-quality CHM output from the canopy height calculation network
and then reconstructed the canopy point clouds for the left and right eyes, respectively,
according to the principle of small-hole imaging so as to obtain the canopy point clouds
pc_l and pc_r, align and merge the two pieces of point clouds in the 3D space, and carry out
smoothing processing on the merged point clouds (z-direction mean processing of point
clouds at the same horizontal position) to obtain the final 3D point cloud pc of the canopy.
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Appendix A.2 Canopy Structure Parameter Error Rates (Absolute Values) for the Proposed Method,
the SFM+MVS Method, and Ground Truth

Table A1. Error rates (absolute values) between the canopy structure parameters measured using
proposed method and the SFM+MVS method and the ground truth based on a summer fruit tree
canopy with leaf cover.

CH (mm)

Tree_Num GT Our Method SFM+MVS Error_Our Method Error_SFM+MVS

BC1 3291.9998 3180.4354 2643.0954 3.389% 19.712%

BC2 3296.9971 3161.1417 3481.7983 4.121% 5.605%

BC3 3493.9995 3389.718 3780.952 2.985% 8.213%

BC4 2644.9966 2731.0678 2773.5854 3.254% 4.862%

BC5 2705.9975 2592.0667 2167.6885 4.210% 19.893%
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Table A1. Cont.

CH (mm)

Tree_Num GT Our Method SFM+MVS Error_Our Method Error_SFM+MVS

BC6 3050.9987 2992.4442 2744.8381 1.919% 10.035%

BC7 2990.9973 2843.4558 2763.0019 4.933% 7.623%

BC8 2583.9996 2546.8567 2197.591 1.437% 14.954%

BC9 2954.9980 2882.5761 3045.1062 2.451% 3.049%

BC10 2892.9977 3036.5482 2716.9824 4.962% 6.084%

BC11 3206.9969 3134.6084 2922.3992 2.257% 8.874%

BC12 3138.9999 3024.7864 2969.2662 3.639% 5.407%

Average 3.296% 9.526%

CV (mm3)

Tree_Num GT Our Method SFM+MVS error_Our Method error_SFM+MVS

BC1 72,988,178,184 78,534,836,967 31,289,459,492 7.599% 57.131%

BC2 55,946,120,754 51,911,611,874 25,312,103,772 7.211% 54.756%

BC3 55,218,551,779 50,042,335,368 31,180,146,570 9.374% 43.533%

BC4 48,632,835,775 44,404,385,165 19,454,252,047 8.695% 59.998%

BC5 36,500,327,835 31,794,054,227 17,249,641,227 12.894% 52.741%

BC6 39,610,631,527 36,172,979,005 21,360,270,901 8.679% 46.074%

BC7 39,052,282,765 35,616,992,140 18,155,816,993 8.797% 53.509%

BC8 52,181,807,543 46,413,451,781 23,608,660,174 11.054% 54.757%

BC9 60,609,531,275 55,582,427,180 25,678,835,565 8.294% 57.632%

BC10 60,231,686,918 54,224,943,037 34,921,278,335 9.973% 42.022%

BC11 51,930,116,269 55,804,523,508 29,566,996,423 7.461% 43.064%

BC12 29,354,802,482 31,931,216,927 17,505,795,232 8.777% 40.365%

Average 9.067% 50.465%

CW (mm)

Tree_Num GT Our Method SFM+MVS error_Our Method error_SFM+MVS

BC1 8897.1615 9107.1821 7778.5201 2.361% 12.573%

BC2 8349.0019 8105.6921 7548.2131 2.914% 9.591%

BC3 7238.9471 6925.4361 6423.6768 4.331% 11.262%

BC4 8635.5524 8798.5615 7110.0029 1.888% 17.666%

BC5 7194.3135 6848.8549 6817.7399 4.802% 5.234%

BC6 8179.3771 8419.1807 7694.8620 2.932% 5.924%

BC7 6737.5763 7018.0028 5716.5546 4.162% 15.154%

BC8 8297.6803 8228.9672 6716.7766 0.828% 19.052%

BC9 7299.5998 7120.3661 6409.4224 2.455% 12.195%

BC10 8204.6801 8371.931 6656.2883 2.038% 18.872%

BC11 7155.1607 7227.6965 6593.3290 1.014% 7.852%

BC12 6569.0604 6801.6852 5475.4785 3.541% 16.647%

Average 2.772% 12.669%
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Table A1. Cont.

CPA (mm2)

Tree_Num GT Our Method SFM+MVS error_Our Method error_SFM+MVS

BC1 40,411,613.06 42,341,991.34 30,888,526.73 4.777% 23.565%

BC2 35,585,441.19 33,541,574.36 29,086,505.21 5.744% 18.263%

BC3 26,751,863.59 24,484,852.43 21065,443.24 8.474% 21.256%

BC4 38,070,053.30 39,520,878.15 25,807,313.27 3.811% 32.211%

BC5 26,422,989.60 23,946,341.33 23,729,254.56 9.373% 10.195%

BC6 34,154,166.95 36,186,193.38 30,227,686.49 5.950% 11.496%

BC7 23,174,513.56 25,143,765.19 16,682,915.49 8.497% 28.012%

BC8 35,149,295.93 34,569,563.87 23,031,649.66 1.649% 34.475%

BC9 27,202,031.82 25,882,599.11 20,972,056.82 4.850% 22.903%

BC10 34,365,806.90 35,781,168.46 22,618,691.96 4.119% 34.183%

BC11 26,136,174.62 26,668,774.15 22,192,832.34 2.038% 15.088%

BC12 22,029,759.19 23,617,628.86 15,305,495.50 7.208% 30.524%

Average 5.541% 23.514%

Appendix A.3 Winter Time Application

The flight was carried out in March 2018 over an orchard in Akaiwa, Okayama
prefecture, Japan (34◦46′52.9′′N, 134◦01′01.2′′E). At the same time, a FARO Focus 3D
Laser Scanner laser scanner was used to scan the 3D point cloud of this winter peach
orchard in Okayama. Figure A3 shows an orthophoto image of the experimental field in
Okayama prefecture.
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leaf cover. (a) Comparison of CH. (b) Comparison of CV. (c) Comparison of CW. (d) Compari-
son of CPA.

Remote Sens. 2024, 16, x FOR PEER REVIEW 25 of 29 
 

 

 
Figure A4. Comparison between the canopy structure parameters measured using the proposed 
method and the SFM+MVS method and the truth value based on a winter fruit tree canopy without 
leaf cover. (a) Comparison of CH. (b) Comparison of CV. (c) Comparison of CW. (d) Comparison of 
CPA. 

  

Figure A5. Cont.



Remote Sens. 2024, 16, 1570 24 of 27
Remote Sens. 2024, 16, x FOR PEER REVIEW 26 of 29 
 

 

Figure A5. Comparison of the linear correlations between the canopy structure parameters meas-
ured using the proposed method and the SFM+MVS method and their truth values based on a win-
ter fruit tree canopy without leaf cover. (a) Comparison of CH. (b) Comparison of CV. (c) Compar-
ison of CW. (d) Comparison of CPA. 

Table A2. Error rates (absolute values) between the canopy structure parameters measured using 
proposed method and the SFM+MVS method and the ground truth based on a winter fruit tree 
canopy without leaf cover. 

CH (mm) 
Tree_Num GT Our Method SFM+MVS Error_Our Method Error_SFM+MVS 

BF1 4484.98050 4618.509 5169.901 2.977% 15.271% 
BF2 4331.69937 4424.6815 4073.0618 2.147% 5.971% 
BF3 4360.79979 4502.2321 3770.4123 3.243% 13.539% 
BF4 4746.90247 4681.1086 5517.4742 1.386% 16.233% 
BF5 4175.70496 4092.5167 4544.5342 1.992% 8.833% 
BF6 4905.89905 4851.6634 5298.6295 1.106% 8.005% 
BF7 4717.59796 4559.8403 5621.1942 3.344% 19.154% 
BF8 4128.70026 4195.3521 4171.5054 1.614% 1.037% 
BF9 5077.59857 5185.1781 5536.7487 2.119% 9.043% 

BF10 4382.09534 4432.1185 5041.5632 1.142% 15.049% 
BF11 5107.99408 5226.1024 4316.4606 2.312% 15.496% 
BF12 4266.70075 4217.5366 4173.9611 1.152% 2.174% 

Average    2.044% 10.817% 
CV (mm3) 

Tree_Num GT Our Method SFM+MVS error_Our Method error_SFM+MVS 
BF1 136,229,237,885  133,655,821,175  94,728,440,093  1.889% 30.464% 
BF2 136,613,113,912  131,467,520,473  89,458,954,398  3.766% 34.517% 
BF3 147,484,106,788  148,983,106,913  97,456,201,958  1.016% 33.921% 
BF4 139,481,684,081  137,920,598,688  85,926,643,851  1.118% 38.395% 
BF5 114,622,326,464  106,985,450,087  75,644,170,444  6.662% 34.006% 
BF6 205,824,240,590  191,391,325,177  127,680,818,551  7.012% 37.966% 

Figure A5. Comparison of the linear correlations between the canopy structure parameters measured
using the proposed method and the SFM+MVS method and their truth values based on a winter fruit
tree canopy without leaf cover. (a) Comparison of CH. (b) Comparison of CV. (c) Comparison of CW.
(d) Comparison of CPA.

Table A2. Error rates (absolute values) between the canopy structure parameters measured using
proposed method and the SFM+MVS method and the ground truth based on a winter fruit tree
canopy without leaf cover.

CH (mm)

Tree_Num GT Our Method SFM+MVS Error_Our Method Error_SFM+MVS

BF1 4484.98050 4618.509 5169.901 2.977% 15.271%

BF2 4331.69937 4424.6815 4073.0618 2.147% 5.971%

BF3 4360.79979 4502.2321 3770.4123 3.243% 13.539%

BF4 4746.90247 4681.1086 5517.4742 1.386% 16.233%

BF5 4175.70496 4092.5167 4544.5342 1.992% 8.833%

BF6 4905.89905 4851.6634 5298.6295 1.106% 8.005%

BF7 4717.59796 4559.8403 5621.1942 3.344% 19.154%

BF8 4128.70026 4195.3521 4171.5054 1.614% 1.037%

BF9 5077.59857 5185.1781 5536.7487 2.119% 9.043%

BF10 4382.09534 4432.1185 5041.5632 1.142% 15.049%

BF11 5107.99408 5226.1024 4316.4606 2.312% 15.496%

BF12 4266.70075 4217.5366 4173.9611 1.152% 2.174%

Average 2.044% 10.817%

CV (mm3)

Tree_Num GT Our Method SFM+MVS error_Our Method error_SFM+MVS

BF1 136,229,237,885 133,655,821,175 94,728,440,093 1.889% 30.464%

BF2 136,613,113,912 131,467,520,473 89,458,954,398 3.766% 34.517%
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Table A2. Cont.

CV (mm3)

Tree_Num GT Our Method SFM+MVS error_Our Method error_SFM+MVS

BF3 147,484,106,788 148,983,106,913 97,456,201,958 1.016% 33.921%

BF4 139,481,684,081 137,920,598,688 85,926,643,851 1.118% 38.395%

BF5 114,622,326,464 106,985,450,087 75,644,170,444 6.662% 34.006%

BF6 205,824,240,590 191,391,325,177 127,680,818,551 7.012% 37.966%

BF7 152,807,118,136 155,486,208,774 85,291,725,418 1.753% 44.183%

BF8 115,944,151,016 112,997,614,846 73,508,895,423 2.541% 36.600%

BF9 177,349,329,903 189,563,398,636 116,836,062,676 6.887% 34.121%

BF10 137,619,496,656 127,814,375,449 93,184,910,986 7.124% 32.288%

BF11 178,161,183,739 194,327,302,860 102,912,299,940 9.074% 42.236%

BF12 110,476,314,241 101,518,577,788 78,535,122,836 8.108% 28.912%

Average 4.746% 35.634%

CW (mm)

Tree_Num GT Our Method SFM+MVS error_Our Method error_SFM+MVS

BF1 10034.82887 9808.0548 7927.4768 2.260% 21.000%

BF2 10472.58835 9987.9103 8051.3289 4.628% 23.120%

BF3 9698.44070 9220.4719 6987.5975 4.928% 27.951%

BF4 9485.52571 9202.128 7186.9222 2.988% 24.233%

BF5 8848.54280 8674.1266 6989.1535 1.971% 21.014%

BF6 10574.19065 10077.6282 7977.6013 4.696% 24.556%

BF7 9685.14630 9508.4412 7049.7687 1.824% 27.211%

BF8 8794.72770 8994.9784 6217.5931 2.277% 29.303%

BF9 10297.73217 9877.8708 7934.2353 4.077% 22.952%

BF10 9595.50221 9238.7074 6781.9227 3.718% 29.322%

BF11 10089.13285 9845.3625 7600.5276 2.416% 24.666%

BF12 9132.31919 9409.2268 6995.2876 3.032% 23.401%

Average 3.235% 24.894%

CPA (mm2)

Tree_Num GT Our Method SFM+MVS error_Our Method error_SFM+MVS

BF1 51,407,108.77 49,109,894.98 32,082,868.96 4.469% 37.591%

BF2 55,990,107.86 50,927,517.27 33,093,170.3 9.042% 40.895%

BF3 48,018,331.73 43,401,979.28 24,926,367.84 9.614% 48.090%

BF4 45,933,130.88 43,229,456.74 26,368,724.64 5.886% 42.593%

BF5 39,971,159.81 38,410,923.68 24,937,470.29 3.903% 37.611%

BF6 57,081,780.4 51,846,554.61 32,489,863.98 9.171% 43.082%

BF7 47,886,777.1 46,155,332.97 25,371,899.03 3.616% 47.017%

BF8 39,486,444.75 41,305,081.9 19,735,486.28 4.606% 50.020%

BF9 54,136,032.3 49,811,534.49 32,137,596.21 7.988% 40.635%

BF10 47,004,415.65 43,573,822.86 23,480,584.78 7.298% 50.046%

BF11 51,964,998.49 49,484,212.18 29,491,082.82 4.774% 43.248%

BF12 42,576,053.49 45,197,156.4 24,981,262.74 6.156% 41.326%

Average 6.377% 43.513%
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Figure A6. Visualization results of the comparison between the canopy structure of fruit trees re-
constructed using the proposed method and SFM+MVS method and its terrestrial Lidar scanning 
point cloud (in the case of peach tree canopy No. BF3). (a) Structure of ground-based Lidar scanning 
point cloud. (b) Canopy point cloud structure reconstructed using the proposed method. (c) Canopy 
point cloud structure reconstructed using the SFM+MVS method. 

Table A3. Comparison of the time and number of images required to reconstruct the canopy struc-
ture of 12 fruit trees with SFM+MVS based on the canopy scene of fruit trees with no leaf cover in 
winter(↓: The reduction ratio of the proposed method compared to the SFM+MVS method). 
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point cloud structure reconstructed using the SFM+MVS method.

Table A3. Comparison of the time and number of images required to reconstruct the canopy structure
of 12 fruit trees with SFM+MVS based on the canopy scene of fruit trees with no leaf cover in
winter(↓: The reduction ratio of the proposed method compared to the SFM+MVS method).

Method Reconstruction Time Average Reconstruction
Time/Tree

Number of Images Needed for
Reconstruction/Picture

SFM+MVS 01 h:33 m:04 s 266 s 130

Our method 6 m (↓88.7%) 30 s (↓88.7%) 24 (↓81.5%)
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