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On-farm food loss (i.e., grade-out vegetables) is a difficult challenge in sustainable agricultural systems. 
The simplest method to reduce the number of grade-out vegetables is to monitor and predict the size 
of all individuals in the vegetable field and determine the optimal harvest date with the smallest grade-
out number and highest profit, which is not cost-effective by conventional methods. Here, we developed 
a full pipeline to accurately estimate and predict every broccoli head size (n > 3,000) automatically 
and nondestructively using drone remote sensing and image analysis. The individual sizes were fed 
to the temperature-based growth model and predicted the optimal harvesting date. Two years of field 
experiments revealed that our pipeline successfully estimated and predicted the head size of all broccolis 
with high accuracy. We also found that a deviation of only 1 to 2 days from the optimal date can considerably 
increase grade-out and reduce farmer's profits. This is an unequivocal demonstration of the utility of these 
approaches to economic crop optimization and minimization of food losses.

Introduction

Waste caused by nonstandard vegetables is an unavoidable 
component of food loss in modern society [1,2]. Vegetables 
that do not meet the cosmetic standards (e.g., size, shape, and 
aesthetics) cannot be easily sold and are not harvested [3]. 
Porter et al. [4] estimated that over one-third of the total 
agricultural production (e.g., 51,500 kilotons annually in 
the European Economic Area) is lost. For example, broccoli 
(Brassica oleracea L.) head is an important component of the 
global vegetable market with a high percentage of on-farm 
waste. Its nonedible parts (leaves, stems) account for over 75% 
of the above-ground biomass (Table 1 of [5]). For the remain-
ing marketable parts, the variable bud growth rate results in 
large variations in head size under complex field conditions. 
There fore, a certain amount of nonstandard harvested head is 
wasted from one-time mechanical harvesting. Although the 
conventional method of selective harvesting by hand during 
the growing season could minimize such waste, the labor cost 
(107 person-hours per hectare) eliminates its profits [6]. 
Because the shipping price is highly dependent on head size, 
the harvest date of one-time mechanical harvesting is essential 
to determine the proportion of nonstandard-size broccoli and 
the total income for farmers. If the growth status of all broccolis 
in the field could be determined and predicted in the short 
term, it would be possible to set the optimal harvest date to 
reduce the number of nonstandard-size vegetables and mini-
mize food losses.

Several studies have attempted to build models for predict-
ing the optimal harvest date by taking temperature as an impor-
tant factor into consideration. First, Marshall and Thompson 
[7,8] predicted the harvest date from the sowing date using 
solar radiation and temperature, without considering physio-
logical or phenological development, and achieved an accuracy 
rate of ±7 days. Later, Tan et al. [9,10] built a similar model that 
included 2 growth phases from the emergence date (emergence 
to flower induction and from flower induction to harvest), and 
improved the accuracy to ±3.30 days. Grevsen [11] integrated 
a model based on temperature sum during the juvenile phase, 
head induction phase, and head growth stage and achieved 
a standard error of ±3 days. Lindemann-Zutz et al. [12,13] 
combined temperature with a stochastic variation of time to 
head induction; the model predicted the head size variation 
and reduced the times of necessary selective hand harvests 
(from 3 times to 1.8 ± 0.4 times) to achieve the same “harvest 
percentages not less than 80%” standard. However, the afore-
mentioned models did not consider the differences among 
individuals, which is also a main cause of variation in head 
sizes at the time of harvesting. As Lindemann-Zutz et al. [13] 
reported, size variation in the heading stage causes an average 
of 79% variability in head size at the final harvest. Booij [14] 
also reported the mixed effects of individual size differences in 
the induction phase and temperature differences in the head 
growth phase on final head sizes. Since individuals in the same 
field often have quite similar solar and temperature condi-
tions, considering the size differences among each individual 
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would be valuable to further improve the accuracy of predic-
tion models. However, manually measuring the size of all 
broccoli heads in the entire field using conventional methods 
is unrealistic.

Smart farming is expected to be a possible solution for meas-
uring the sizes of all individuals. It involves new technologies 
such as remote sensing, high-throughput phenotyping, and 
artificial intelligence (AI) in agricultural production and has 
received considerable attention from researchers, farmers, 
and governments. The drone-based aerial pipeline provides a 
cost-efficient method to capture images for entire crop cano-
pies. The field maps and three-dimensional (3D) canopy mod-
els can also be reconstructed by photogrammetry, which is also 
known as structure from motion and multiview stereo (SfM-
MVS). Several studies extended this approach to estimate can-
opy architectural traits [15–17] and even traits for individual 
lettuce plants [18]. But such canopy- or individual-level trait 
phenotyping is not sufficient for the organ-level broccoli head 
size estimation. For example, in the Japanese market, the ship-
pable broccoli head sizes are usually divided into 3 price levels 
(M: 11 to 12 cm, L: 12 to 13 cm, and 2L: 13 to 15 cm), whose 
sizes vary by a few centimeters. Therefore, centimeter- or even 
millimeter-level accuracy is fundamental to estimate size 
distribution and profit of whole field. To meet this accuracy 
demand, many organ-level applications often collect the 
images close to the ground (less than 1 m between a sensor 
and a plant) by a handheld camera or a tractor. Although 
several studies successfully proved the accuracy and feasibility 
of this close-range approach on small-area experimental fields 
[6,19,20], its efficiency is not always applicable to the large-
area field with thousands of individuals. To apply the organ-
level analysis to a large field using the drone-based approach, 
there are 3 challenges to be solved.

One challenge is the insufficient quality of the canopy model 
(2D field map and 3D point cloud) obtained from photogram-
metry. Due to the plant structure movement in different drone 
images caused by wind, the canopy map and 3D model made 
by photogrammetry often have the effects of double mapping 
(ghost effect) and seamline distortion [21]. Many studies tried 
to fix the low quality using machine learning (ML) algorithms 
[22–24] or multispectral sensors [25,26]; these can be time- 
consuming and costly and are often not robust on different 
crops. The original drone images often have better quality 
but do not have pixel-level geographical coordinates; it is not 
possible to accurately match plants from images to corre-
sponding locations in the field. One solution is to reuse the 
intermediate parameters during the 3D reconstruction. In the 
3D reconstruction procedure, the relative rotation angle and 
position between the drone images and the object (field) have 
been calculated and calibrated by the ground control points 
(GCPs). Therefore, the transformation matrix from image pixel 
coordinates to real-world 3D geographical coordinates is avail-
able from the intermediate parameters. Duan et al. [27] and 
Guo et al. [28] tested this idea to find the real-world regions of 
interest (ROIs) on corresponding original drone images, while 
Lin et al. [21] developed their algorithms to fix the field map 
using the original drone images. But they did not publish 
any source code or tools. It is difficult and time-consuming to 
reproduce and use these research achievements directly.

The second challenge is the high labor cost of dealing with 
the complexity of image analysis. There are huge differences in 
sunlight, soil texture condition, and growing stage through 

the growing season. It is quite difficult to design a conventional 
computer vision (CV) algorithm to handle all types of variation 
at the same time. Deep learning (DL) has demonstrated consid-
erable advantages in complex CV tasks [29]. According to 
whether the datasets require labeling or not, DL techniques can 
be categorized as supervised or unsupervised [30]. The super-
vised networks utilized in agricultural studies predominantly 
encompass convolutional neural networks (CNNs; ConvNet) 
[31], recurrent neural networks (RNNs) [32], and their vari-
ants. Conversely, the unsupervised networks encompass gener-
ative adversarial networks (GANs) [33], autoencoder (AE) 
[34], and other variants [29,30]. Although there are some agri-
culture studies that investigated the use of GAN for enriching 
training data [35], AE for managing unlabeled input data [36], 
and RNN for predicting time-series data [37], the majority of 
agricultural studies still focused on using CNN variants to 
extract features from input image data [29]. For instance, 
VggNet, GoogleNet, and ResNet are utilized for image classi-
fication. Similarly, DetectNet, Faster-RCNN, and YOLO are 
used for object detection. Additionally, Mask-RCNN, SegNet, 
and U-Net serve the purpose of semantic segmentation. For the 
studies concerning broccoli heads, Zhou et al. [38] proposed an 
improved ResNet for broccoli head grading (classification), 
García-Manso et al. [20] applied the Faster-RCNN for broccoli 
head detection and classification, and Blok et al. [39] applied the 
modified Mask-RCNN for broccoli head region segmentation. 
Although most of them took images under controlled conditions 
(indoor or inside a black box), these studies still need to label 
hundreds or thousands of training data. To fulfill the more com-
plex outdoor tasks, a large amount of training data need to be 
manually labeled. Although there is a public training dataset for 
cauliflower available [40], it cannot be used directly on the broc-
coli head or another crop. Besides, labeling 14,000 individual 
plants manually as in that dataset is not feasible for building a 
new dataset for different crop or farmland applications.

To decrease the workload of training data annotation for 
DL solutions, transfer learning, data augmentation, and active 
learning are often used in plant phenotyping studies. For trans-
fer learning, Desai et al. [41] transferred the ResNet-50 model 
that pretrained on the ImageNet dataset to better estimate the 
paddy rice heading date, while Blok et al. [6] transferred the 
Mask-RCNN model pretrained on the COCO dataset to better 
segment the broccoli heads. For the data augmentation, Zhou 
et al. [38] used geometric transformations (random cropping 
and rotation), and Blok et al. [6] applied more geometric trans-
formations and added photometric transformations to them. 
A more advanced data augmentation strategy involves gener-
ating fake images [42]. All these studies have shown that data 
augmentation can improve model performance. For active 
learning, which iteratively trains the DL models and manually 
adjusts the outputs as new training data to further improve that 
model, Ghosal et al. [43] applied the active learning on sor-
ghum detection and decreased the 75% annotation time and 
85% annotation count. For agricultural applications, several 
aforementioned methods need to be used together to achieve 
better results. For one thing, it is due to the limited publicly 
available annotated agricultural data than CV datasets. As Blok 
et al. [6] reported, broccoli in the CV datasets are dishes on 
plates, rather than broccoli grown in the field. For another, 
many agricultural images demonstrate a higher level of occlu-
sion and background clutter than traditional CV datasets, 
which leads to higher possibilities of mixing foreground and 
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backgrounds [43]. To the best of our knowledge, there is no 
research on integrating all of the above solutions to maximize 
the reduction of data annotation workload currently.

The third challenge in high-throughput phenotyping is the 
computation costs involved. For instance, a high-resolution 
aerial image typically has a file resolution of over 5,000 by 3,000 
pixels. Surveying and processing a 1-hectare field often require 
collecting over 200 images with over 4 trillion pixels. Handling 
such a massive amount of data directly in time using formidable 
computational power may not be costly for widespread appli-
cations. To address this high computation cost issue, the char-
acteristic of agricultural tasks can be used to narrow down the 
regions for analysis. In agriculture, most crops or plants stay 
in the same position through the time-series data. Some diffi-
cult detection or segmentation tasks can be simplified when 
fusing with data collected from an earlier period. Mu et al. [44] 
obtained the convex hull of peach tree crowns from the easily 
analyzable winter time and used that to guide the difficult 
summer time crown segmentation task. Li et al. [45] located 
the maize positions on the seeding stage, and these positions 
were used to guide the difficult segmentation tasks when the 
maize canopy was closed with severe leaf overlapping. Similarly, 
for the broccoli tasks, the seedling stage was simpler than that 
during the flowering stage. The seedling position of the broc-
coli was almost the same as that of the broccoli head. Hence, 
the position detection results in the simple seedling stage could 
be a good reference for the subsequent complex flowering 
stage. This is expected to decrease the difficulty and workload 
of data analysis for broccoli head analysis. However, the fea-
sibility of applying such a time-series data fusion approach to 
broccoli applications has not been reported to the best of our 
knowledge.

In this study, we tried to improve the temperature-based 
broccoli size prediction model using individual data measured 
by drone-based phenotyping. We overcame the aforementioned 
challenges and provided a highly accurate and labor-saving 
pipeline for broccoli head size estimation. Using this pipeline, 
we developed a prediction system for harvest dates to reduce 
on-farm food loss and improve the profits of farmers. The goals 
of this study were to (a) overcome the insufficient quality for 
organ-level analyzing from the drone-based photogrammetry, 
by using the open-source python package we published earlier; 
(b) decrease the labor cost for DL broccoli segmentation task; 
(c) decrease the computation costs for high-throughput time- 
series aerial data; (d) build the temperature-based growth model 
for individual broccoli and predict the head size in the follow-
ing few days; and (e) conduct hypothetical harvesting and 
calculate the food loss and profit for the following days to deter-
mine the optimal harvest date. This pipeline also has great 
potential for seamlessly interfacing with other cabbage-like 
crops, including cauliflower, artichoke, and lettuce. Meanwhile, 
the use of a simple RGB sensor, not a complex integration of 
multiple or expensive sensors [i.e., multispectral and LiDAR 
(light detection and ranging)], makes it more applicable and 
user-friendly for the farmers, farming, and the economic sus-
tainability of many economically and socially disadvantaged 
rural regions.

Materials and Methods
The general workflow of the proposed pipeline is shown in Fig. 
1 and the supplementary video (https://youtu.be/SYuOCVqgtrU). 

First, time-series data of all broccoli were collected and ana-
lyzed using a drone-based pipeline. To solve the challenge of 
insufficient quality for organ-level analysis, the regions of interest 
(ROIs) were backward projected on the original drone images 
that have better quality. To solve the challenge of labor-saving 
DL analysis, we integrated time-series data fusion, active learn-
ing, transfer learning, and data augmentation into the DL 
workflow by YOLO v5 (detection task) and BiSeNet v2 (seg-
mentation task). The produced individual head sizes were used 
as the data source for the temperature-based growth model. 
Finally, a profit prediction model was generated according to 
the market price survey.

Plot conditions and field data collection
Field trials were conducted at the experimental farm of the 
Institute for Sustainable Agro-ecosystem Services (ISAS), 
Nishi-Tokyo, Tokyo, Japan (35∘43′N, 139∘32′E) in 2020 and 
2021 (Fig. 2). Detailed meteorological data during the growth 
period were collected by a local weather station and are shown 
in Table 1. The plot sizes were approximately 0.2 and 0.1 ha for 
2020 and 2021, respectively. During the 2-year experiment, the 
same broccoli cultivar (Jet dome) was planted under the same 
field management. Machine planting of seedlings at 35-cm 
intervals in rows 70 cm apart is consistent with local commer-
cial broccoli cultivation regimes.

The field data of the broccoli head size were manually meas-
ured as validation data (ground truth). This was conducted 
manually every 2 to 3 days using both destructive and nonde-
structive measurement methods. Nondestructive measures were 
conducted directly in the field, and destructive measures were 
conducted indoors. In 2020, the maximum broccoli head length 
[as head diameter (HD)] was measured by the visual judgment 
of the longest axis. A total of 360 (120 × 3 times) nondestructive 
and 434 destructive measurements of 7,438 individual broccoli 
were recorded.

In 2020, we identified the potential of the proposed algo-
rithm. To further validate this algorithm, we improved the 
measurement method and increased the number of field sam-
ples in 2021. The maximum head length (as HD) was measured 
using the maximum value of the length in the 0∘, 45∘, 90∘, and 
135∘ directions. To increase the variation in the broccoli head 
for each survey, there was an 8-day interval between seeding 
in the western and eastern parts (timeline in Fig. 2, yellow lunar 
phase). A total of 2,000 (400 × 5 times) nondestructive and 

Table 1. Meteorological data during the broccoli growth period.

Date
Mean 

tempera-
ture ( ∘C)

Mean pre-
cipitation 

(mm)

Sunshine 
duration 

(h)

Wind 
speed 
(m s−1)

2020.03 10.5 103.5 183.4 2.0

2020.04 12.8 228.5 218.1 1.9

2020.05 19.6 103.0 174.9 1.3

2021.03 12.5 143.0 186.5 2.0

2021.04 15.0 104.5 218.4 1.7

2021.05 19.7 72.0 145.0 1.3
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557 destructive measurements of 3,276 individual broccoli 
were recorded. To reduce the workload, only half of the area 
(east or west) was measured on a certain day (timeline in Fig. 2, 
blue lunar phase). HD measurements ranged from 2 to 25 cm.

Drone-based pipeline
The pipeline included the following steps: (a) aerial data col-
lection and data preprocessing (3D reconstruction by photo-
grammetry), (b) low labor-cost broccoli position detection using 
YOLO v5 at the seedling stage, (c) low labor-cost broccoli head 
segmentation using pretrained BiSeNet v2 on the original drone 
images, and (d) broccoli head size calculation.

Aerial data collection and preprocessing
After transplanting, several ground control points (GCP) boards 
were set at the 4 corners and within the field for aerial survery. 
This was an important resource for later 3D reconstruction and 
time-series alignment. In this study, all GCPs were measured 
using hemisphere real-time kinematic (RTK) differential Global 
Navigation Satellite System (GNSS) devices to obtain geograph-
ical coordinates. However, it is recommended but not man-
datory. For developing regions without RTK services, the GCPs’ 
coordinates can be replaced by measuring distances (as scalebar 
corrector) among each GCP and building a referencing map at 
the very beginning. The relative coordinates of those GCPs on 
the referencing map can function the same as the actual geo-
graphic coordinates for time-series alignment.

Aerial images were collected using DJI (SZ DJI Technology 
Co. Ltd., China) Phantom 4 v2 (camera model FC6310s), DJI 
Mavic 2 Pro (camera model Hasselblad) in 2020, and DJI Phantom 
4 RTK (camera model FC6310R) in 2021. The image resolution 

was the same at 5,472 × 3,648 pixels. The flight height in 2020 
was initially 15 m and then decreased to 10 m when the broccoli 
head turned up. The flight height in 2021 was constantly 15 m. 
Most of the flights were conducted before the field operation, 
except on 2020 May 22 and 26. On both these days, the destruc-
tively sampled broccoli did not exist in the drone image; hence, 
the destructive data were linked to the previous flight (the black 
broken lines in the timeline in Fig. 2). For all other times, data 
collected on the same day were paired together.

The configuration of the computer for 3D reconstruction 
was as follows: Intel i9-7980XE CPU 2.6GHz, 64GB RAM, 
2 NVIDIA GeForce GTX 1080Ti GPUs, and Windows 10 Pro 
64-bit operating system. Pix4DMapper Pro (Pix4D, S.A., Prilly, 
Switzerland) was used to perform aerial photogrammetry on 
drone images. The default software parameters were used, and 
the digital orthomosaic map (DOM) and digital surface model 
(DSM) were produced. The open-source software package 
QGIS (www.qgis.org) was used to prepare shapefiles for field 
boundary and grid plots. The field boundary was a rectangular 
region that tightly wrapped around the broccoli farmland in 
the same direction as the ridge (Fig. 2). It was used to filter the 
noise outside the broccoli plot. It is split into several small grids 
with an edge length of around 2.5 m (approximately 1,000 to 
1,500 pixels) and contained approximately 25 to 50 broccolis. 
The LabelMe annotation tool (https://github.com/wkentaro/
labelme) was used to label the training data for the DL models. 
EasyIDP (https://github.com/UTokyo-FieldPhenomics-Lab/
EasyIDP) [46] was used to locate and crop the same field region 
imagery on the original drone images (also known as backward 
projection or reverse calculation) when the DOM was not suf-
ficiently clear for head segmentation.

Fig. 1. Workflow and schematic of the study method. First was the drone-based pipeline that was used to obtain the time-series head size information (geometry traits) of all 
broccoli heads during the growing season (the outputs of each step are the inputs of the next step). We then obtained a simple growth model between head size and temperature 
data, which were combined with price data obtained via a market survey to build the profit prediction model for the optimal harvest date.
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Seedling position detection
Here, we detected the broccoli positions on the simple seeding 
stage, and the general steps are introduced in Fig. 3A. The flight 
at approximately 1 month after transplanting was used to detect 
seedling positions (Fig. 2, dark green circle in April). In this 
period, most broccoli leaves were sufficiently large to be clearly 
observed from aerial images and the leaves did not overlap. 
The uniform light conditions and differentiation between 
leaves and backgrounds were also taken into consideration 

when selecting the most suitable time for detection task. Then, 
the full DOM was split into several small pixel grids (named 
“sectors,” Fig. 3A). The sector size was set to 1,300 × 1,300, which 
can maximize the efficiency of GPU memory usage for DL. For 
those broccoli heads located on the sector boundaries, they were 
split to 2 sectors and detected partly in both sectors. To avoid this 
issue, we buffered the sector with 200 pixels (slightly larger than 
the biggest broccoli head). The buffered area is illustrated by 
the gray L-shape in Fig. 3A on the lower right corner.

Flight

Fig. 2. Plot conditions and timelines for field operation and data collection. The plots are connected but have not overlapped for 2 years. Field operations include transplanting, 
broccoli head nondestructive measurement in the field (field measure), broccoli head destructive measurement, and aerial survey. In the field map, the field measurements 
were conducted on the fixed blue positions on every occasion, whereas the orange positions were the final of all destructively sampled positions. In the timeline, the broken 
dashed line demonstrates how these data were paired.
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Subsequently, when this detection task was conducted in 
June 2020, the latest YOLO v5 (https://github.com/ultralytics/
yolov5) detection model with default settings was trained and 
applied to all sectors. Due to the strong contrast between the 
broccoli seeding and soils, the detection model achieved a good 
performance with only 2 training sectors. During the writing 
of this manuscript, YOLO has made advancements to version 
8, incorporating performance enhancements. However, for 
relatively simple head detection tasks with only 2 training 
images, where YOLO v5 has already achieved nearly perfect 
detection results (24 incorrect detections of 7,438 in 2020; 2 
incorrect detections of 3,276 in 2021), there is limited room for 
significant improvements for other YOLO versions. Therefore, 
we have made the decision to maintain our workflow utilizing 
YOLO v5. The duplicated detection results in buffer zones were 
merged using the nonmaximum suppression (NMS) algorithm. 
The center point of the bounding box was then viewed as the 
broccoli position. Finally, we manually inspected and adjusted 
these detection results in QGIS, ensuring no missing or dupli-
cate detection (Fig. 3A). The broccoli ID was given from the 
north to the south of each ridge and ridges from the west to 
the east by the ridge detection algorithm (Fig. 3A; please refer 
to the links in the Data Availability section for further details 
and the source code).

Broccoli head segmentation
The general workflow for broccoli head segmentation is illus-
trated in Fig. 3B. Only aerial surveys with clear broccoli heads 
were chosen for all 12 flight investigations over 2 years (Fig. 2, 
dark green circles in Mays). The field boundary (rectangle area 
containing broccoli) was divided into small grids (Fig. 3B1).

To improve the image quality for organ-level analysis, the 
same ROI on the original drone images rather than field map 

(DOM) were used for analysis by backward projection [46]. 
For each grid, its boundary and broccoli positions (detected in 
the previous section) were backward-projected onto the closest 
raw aerial image (Fig. 3B2). Surrounding the backward projec-
tion results, the original drone image was cropped into small 
sectors (1,500 × 1,500 pixel size, maximize the usage of GPU 
memory), with the grid boundary located in the center (yellow 
square in Fig. 3B3) and broccoli positions (red dots in Fig. 3B3).

To reduce the workload of DL data annotation and process-
ing, the following techniques were used during this DL pro-
cessing: (a) narrowed processing regions guided by time-series 
data fusion, (b) active learning (interactive annotation), and 
(c) transfer learning (pretrained model and data augmenta-
tion). The source code for this workflow is also available in the 
links in the Data Availability section.

For the first point, only the square area (approximately 
100 × 100 pixels, slightly larger than broccoli heads) around 
the seedling positions was used for broccoli head segmenta-
tion (yellow square in Fig. 3B4). These narrowed processing 
regions not only decreased the processing area to save pro-
cessing time on the unnecessary regions without broccoli 
heads but also eliminated the effects of soil and weeds in 
some contents.

For the second point, interactive annotation (also referred 
to as active learning-inspired annotation [43]) was applied 
to decrease the workload of label annotation (Fig. 3B5). Consi-
dering the promptness of the interactive annotation, BiSeNet 
v2 [47] was used as the segmentation model. BiSeNet v2 is a 
network structure that employs multiple branches to process 
inputs of different sizes to strike a balance between the efficiency 
and computational cost (Fig. 1 of [47]). The BiSeNetV2 network 
used in the present study was based on the https://github.com/
CoinCheung/BiSeNet GitHub project. Initially, a small number 

A B

Fig. 3. Workflow of broccoli (A) seedling detection and (B) head segmentation.
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of startup training data (approximately 5 to 10 broccoli heads 
per flight) were manually marked using LabelMe; then, the 
segmentation model was trained using the startup data. Next, 
images were randomly selected and applied to the segmenta-
tion results. These results were transformed into LabelMe 
JSON formats using Python scripts. Subsequently, manual 
adjustment produced annotations as new training data in 
LabelMe. The previous steps were iteratively repeated until 
no substantial adjustment was required for the newly applied 
results.

For the third point, the official pretrained model (https://
github.com/CoinCheung/BiSeNet/releases/download/0.0.0/
backbone_v2.pth) provided by BiSeNet was used for the transfer 
learning of broccoli head. Our data augmentation strategy 
used both geometric (G) and photometric (P) transformations, 
similar to [6]. The G strategy consisted of ShiftScaleRotate (shift 
limit = 0.5, scale limit = 0.2, rotate limit = 90) and VerticalFlip, 
which were used to solve the problem caused by our point-
based or position-guided segmentation workflow. Ideally, 
the input images had only one broccoli in the middle of the 
input image, but in actual practice, the broccoli head position 
appeared randomly caused by bud-head growth shifting, or even 
with the probability of multiple or no broccoli heads in the 
input images. The P strategy simulated “cloudy, sunny” and “day, 
night” transitions using RGB shift (r shift limit = 25, g shift limit = 25, 
b shift limit = 25) and RandomBrightnessContrast (brightness 
limit = 0.3, contrast limit = 0.3) to address the effects of 
different weather and light conditions due to different flight 
investigations.

The verification dataset for the model performance evalu-
ation was also prepared using the previous workflow. The 
modified intersection of union (IoU) was used as the evalu-
ation metric. In this case, only the segmentation results inside 
the grid region (Fig. 3B, red polygon inside the yellow square) 
were chosen as the final results. The segmentation results 
attached to the grid bottom and right edge were also removed 
because of duplication with the neighboring grids. Here, we 
named this modified IoU inside the grid region as middle IoU, 
shortened to “Mid IoU”.

The segmentation model was first trained using only the 
2020 dataset for several iterations until a good performance 
was achieved. The model was then applied to the 2021 dataset 
over several iterations. When the model performed well in both 
years, it was applied to all dataset images, and the segmentation 
results after the grid boundary filter were saved for the next 
procedure.

HD calculation
All the previous segmentation results (unit in pixels) were 
transformed back into the geographical coordinates for actual 
size (unit in centimeters), using the projective transformation 
function provided by scikit-image (https://scikit-image.org). 
For each polygon of the segmented broccoli head, the max-
imum side length of the minimum area bounding box was 
used as the HD.

To test the correlation between field-measured length (depen-
dent variable) and aerial measured length (independent vari-
able), the coefficient of determination (r2) using simple linear 
regression was used as the evaluator. To assess the trends in 
differences in broccoli size in detail, locally weighted scatterplot 
smoothing (LOWESS) regression and distribution comparison 
were also used.

Optimal harvest time prediction pipeline
Prediction model for head size
The simple nonlinear regression model inspired by Grevsen 
[48] was used to predict the HD with time:

where T is the sum of the daily average temperatures, with a 
lower limit of 0 ∘C and an upper limit of 20 ∘C [9,49]. a, b, and 
c are the parameters to be determined.

First, the field-measured HD was used to build a model for 
drone initialization. The time-series nondestructive measured 
HDs (360 in 2020, and 2,000 in 2021) were selected. For each 
selected broccoli, based on a previous study [49], the starting date 
(i.e., the hypothetical date on which the broccoli head became 
manually detectable) was set, and its HD was approximately 3 to 
3.5 cm. The sum of the daily average temperatures (T) was nor-
malized based on the starting date as 0 (Fig. 4A and B). The model 
parameters were then regressed and calculated (Fig. 4C).

The drone-based measurements also started when the HD 
was approximately 3 to 3.5 cm. To obtain the proper normalized 
T0 for the first flight (HD around 9.5 cm), the previous model 
was inverted to calculate T0 from the HD (Fig. 4D). Then, the 
sum of the daily temperature (Ti) of later days (i) was calculated 
(Fig. 4D). That model was then regressed and calculated in a 
similar manner as the prediction model (Fig. 4E). Based on this 
model, we calculated the head size using the time-variable T 
for all flights after the first aerial survey.

To verify the accuracy of the prediction, the model gener-
ated for one of the study years was used to predict the head size 
for the other year. The results were compared between the pre-
dicted head size and that estimated using drone-based meas-
urements. The r2 obtained using simple linear regression was 
used as the evaluator.

Market price survey
In the Japanese market, broccoli head sizes are usually divided 
into 3 levels (M: 11 to 12 cm, L: 12 to 13 cm, and 2L: 13 to 
15 cm), with L usually having the highest shipping price. To 
set the shipping price for each grade, we interviewed several 
local officers of the Japan Agricultural Cooperatives (i.e., the 
largest cooperative organization in Japan). Because the price 
of each grade varies depending on the season and location, we 
used 2 types of shipping prices for the experiment: one where 
the price difference between each grade was the largest (case 
1), and one where the difference was the smallest (case 2).

Income estimation for hypothetical harvesting
It was assumed that all individuals were harvested at the same 
time each day from 2020 May 18 to 28 and 2021 May 12 to 26. 
The drone-predicted HD was used to calculate income (from 
the first day of the aerial survey to 10 days later in 2020 and 
14 days later in 2021). The number of individuals of each size 
standard (M, L, and 2L) was counted for each date. The ship-
ping price of size L was assumed to be $1.00, and the prices of 
other sizes were calculated from market survey interviews. 
Nonstandard-size broccoli (<11 cm and >14 cm) could not be 
sold, and the income was set to zero. Finally, the total income 
on each harvest date was calculated by multiplying the number 
and shipping price of each size grade (for both cases with a 
shipping price difference). The date with the highest income 
was selected as the optimal harvest date.

ln (HD) = a − b ⋅ e
−c⋅T
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Results

Drone-based pipeline
Broccoli position detection
To provide a general understanding of this procedure, Fig. 5A 
to F shows some intermediate results during broccoli posi-
tion detection. For training data preparation, considering 
the clear differences between the broccoli plant and brown 
soil, only 2 representative sectors were chosen as training 
images. All broccoli were labeled using bounding box (rec-
tangle) anno tation in LabelMe (Fig. 5A, example sector). 
The detection model performed as expected in the other 
sectors (Fig. 5B: one example sector). The green mask in 
Fig. 5B shows the buffer zone that overlapped with neigh-
boring sectors, with the aim of avoiding incomplete broccoli 
detection on the sector boundary. When merging the detec-
tion results for all sectors, duplicate detections were removed 
by the NMS algorithm (black rectangles in Fig. 5C). When 
adjusting the zoom to the full map view, the removed black 
duplicates were clearly distributed on the sector boundaries 
(grid lines). In Fig. 5D, the green dots show the misdetection 
results, and the red dots indicate the final positions used by 
manual adjustment. Figure 5E shows the results of ridge-line 
detection, and Fig. 5F shows some results of the automatic 
broccoli ID assignment. In general, broccoli position detec-
tion functioned as expected with only labeling 2 sectors as 
training data in a few minutes; afterward, around a half-hour 
manual postprocessing for fixing the misdetection and posi-
tion devitation is required.

Broccoli head segmentation
To demonstrate the interactive annotation procedure, Fig. 5G 
to I and Table 2 provide example images and a simple summary 
from the first to the last iteration. As startup training data, one 
image was randomly selected from each aerial survey in 2020 
(6 in total), and only around 5 broccoli heads were annotated 
as simply as possible (Fig. 5G). The BiSeNet model (v0) was 
then trained using this annotation. Afterward, the v0 model 
was applied on a few randomly selected images for each aerial 
survey (Fig. 5H, red mask). These results were manually adjusted 
and saved as new training data of v1 model (Fig. 5H, blue 
boundary). The previous steps were iteratively repeated until 
the model achieved good segmentation results. A total of 30 
validation sectors were also randomly selected, and the v2 
model results with manual adjustment were applied similarly 
to get the validation data with low labor costs.

The detailed model performance for each iteration version 
is presented in Table 2. With our proposed labor-saving strageies 
for DL, even a startup with only 30 head annotations achieved 
a Mid IoU of 78.15%. The model performance improved con-
siderably after 4 iterations and achieved a Mid IoU of 88.33% 
after the 4th iteration (Fig. 5I). Then, when the v4 model trained 
by 2020 data was applied to the 2021 data, the performance 
decreased to 79.16%. It is reasonable because we just quickly 
trained an “overfitting” segmentation model with a few training 
data from 2020. The model performance improved to 91.70% 
after one additional iteration with 6 training data points added 
from 2021. Meanwhile, broccoli head segmentation was more 
challenging at an early stage (2020 May 18 and 2021 May 12, 

A

D E

B C

Fig. 4. Data processing illustration for head size prediction model. All the numbers were just examples, not the actual results. (A) Field-measured diameter on different dates; 
the light color was used as the starting date with broccoli head size of approximately 3 to 3.5 cm. T is the sum of daily average temperature. ΔTi is the temperature sum 
deviation. (B) Reshaping of the previous table to a 2-column table for the regression analysis shown in (C). (D) The previous regressed model was used to initialize T from the 
HD. T on later days was added by the deviation ΔTi. (E) The previous data were used to regress the prediction model from T to HD.
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with the lowest Mid IoU) when the head size was small. In 
general, we obtained an “overfitting” broccoli segmentation 
model by only labeling 53 sectors (images), and 47 of them 
were manually adjusting model-produced segmentation results. 
Compared to other DL segmentation studies, Zhou et al. [38] 
trained the broccoli head segmentation and grading model 
(IoU = 84.8%) with 506 images under a controlled greenhouse 
environment, Tassis et al. [50] trained the segmentation models 
(UNet IoU = 94.25% and PSPNet IoU = 93.54%) for diseases and 
pests of coffee leaves with 800 images, and Osorio et al. [51] trained 

the weed segmentation model (accuracy = 89.0%) with 913 sam-
ples. Our proposed labor-saving approach achieved a similar model 
performance with only 20% workload in data annotation.

HD calculation and validation
The individual broccoli HDs during the growing season were 
successfully calculated through our proposed drone-based phe-
notyping workflow. The full map of all broccoli HDs is shown 
in Fig. 6. The gradually missing parts in the picture are due to 
destructive sampling. In 2020, all broccolis were transplanted 

A B C

D E F

G H I

Fig. 5. Examples of 2020 broccoli seedling position detection (A to F) and head segmentation by interactive annotation (G to I). (A) One annotated training data by LabelMe. 
(B) YOLO v5 detected results; the green part is the buffer zone to avoid the broken broccoli at the edge. (C) Duplicate detection in buffer zone removed by the nonmaximum 
suppression (NMS) algorithm. Black shows removed duplicate detection, green shows those that were retained, and green dots are the center points as the broccoli position. 
(D) Red dots show the manually adjusted positions by QGIS. (E) Ridge detection by identifying the peak of point distribution. (F) Automatic placing of plant ID along the ridge. 
(G) Startup training data annotation made by LabelMe; only a few annotations were required. (H) After the first iteration. The red polygons are the segmentation results (as 
auxiliary annotations) trained by the startup data, and the blue polygons are manually adjusted according to the previous results. (I) After the fourth iteration, almost no 
manual adjustment was required in this case.
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at the same time (March 13, Fig. 2), resulting in a synchronized 
growth pattern. However, in 2021, the transplanting time for 
broccolis in the eastern and western areas differed by 8 days 
(March 11th for the western area and March 19th for the east-
ern area, as shown in Fig. 2), leading to noticeable differences 
in growth rates (2021 May 12 to 15 in Fig. 6). Nevertheless, 
since the growth rate of broccoli plants slows down as they 
reach a certain size, toward the end of the growth period (as 
indicated by the last 2 columns in Fig. 6), most broccoli plants 
tend to have similar sizes. At the same time, individual size 
differences mentioned by Lindemann-Zutz et al. [13] and Booij 
[14] can also be observed in Fig. 6, namely, those points with 

sudden changes in local color. When not taking the individual 
sizes into consideration, based on the general size colors in Fig. 
6 and the shipping sizes for the Japanese market (11 to 15 cm), 
the optimal harvest dates should be between 2020 May 22 to 
25 and 2021 May 15 to 19.

To validate the accuracy of these drone-measured diameters, 
we compared the results with field-measured diameters. We 
found a good correlation (R2 ≥ 0.57) between the maximum 
diameters of the drone-measured broccoli head and those 
measured manually in the field (Fig. 7). The aerial survey 
tended to underestimate broccoli growth (trend line above the 
reference line). It is reasonable due to the leaf occlusion. However, 

Table 2. Middle intersection of union (Mid IoU) changes around each iteration in weakly supervised learning. Four iterations were first con-
ducted on the 2020 dataset only and then applied to the 2021 dataset.

Training 
data file 
number

Model 
ver-
sion

Train-
ing 

time 
(s)

Mid IoU in 2020 (%) Mid IoU in 2021 (%)

May 
18

May 
20

May 
22

May 
25

May 
26

May 
28

Mean
May 
12

May 
14

May 
15

May 
19

May 
20

May 
26

Mean

Startup 
2020x6

v0 100.8 69.82 82.08 84.49 77.82 68.09 86.60 78.15 - - - - - - -

v0 add 
2020x6

v1 166.1 76.28 87.60 88.60 84.16 81.75 89.02 84.57 - - - - - - -

v1 add 
2020x9

v2 420.4 84.44 89.35 89.07 85.94 88.17 89.76 87.79 - - - - - - -

v2 add 
2020x14

v3 649.2 84.91 89.77 89.30 86.56 90.12 90.03 88.45 - - - - - - -

v3 add 
2020x12

v4 1,085.2 83.37 90.04 89.57 86.49 90.15 90.35 88.33 47.09 79.98 80.29 91.77 91.26 84.56 79.16

v4 add 
2021x6

v5 1,267.5 85.04 90.20 90.35 86.13 90.63 90.49 88.81 85.07 88.84 91.24 94.59 94.55 95.88 91.70

Fig. 6. Maximum diameter of all broccoli heads by drone-based phenotyping.
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the overall distribution of the estimated head size was almost 
the same between the 2 groups (drone versus manual, Fig. 7C 
and D). It can be explained that, overall, the methods of drones 
can accurately represent the broccoli HD distribution of the 
entire field. We also calculated the root mean square errors 
(RMSEs), which were 9.730, 11.02, and 12.51 mm for 2020, and 
7.01, 9.58, 11.06, 9.15, and 8.97 mm for 2021. This error is 
acceptable, since Blok et al. [39] reported a total RMSE = 9.7 mm 
on their close-range approach, which mounted the camera on 
the tractor frame with only around 1 m between the sensor to 
the broccoli head. Our aerial survey at 15 m flight height (flight 

speed 5 m∙s−1, 30 min for the entire field with 3,000+ broccolis) 
has much higher survey efficiency than the ground survey (trac-
tor speed 0.14 m∙s−1, around 16 min with 2 rows and 122 broc-
colis) made by Blok et al. [39]. Both approaches obtained similar 
accuracies with the field measurements.

Optimal harvest time simulation
Prediction model for head size and swap validation
The initialized models using field measurements in 2020 and 
2021 are shown in Fig. 8A and E, respectively. The parameters 
were a = 5.53, b = 2.05, and c = 0.00546 for 2020, and a = 5.57, 

A C

B D

Fig. 7. Comparison of broccoli HD measured from drone images and obtained using manual field measurements. Different colors represent different investigation dates. In (A) 
and (C), the curved solid lines represent the trends by locally weighted scatterplot smoothing (LOWESS) regression. In (B) and (D), the violin plots show comparisons of the value 
distribution; darker colors (left part) show manual field measurements, brighter colors (right part) show drone measurements, and the values below show the broccoli count.
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b = 2.11, and c = 0.00558 for 2021. These initialized models 
were used to calculate T0 of the first flight (Fig. 4D). T values 
on other dates were calculated using meteorological data. 
Comparing those parameters and the trends in Fig. 8A and E 
in 2 years, the initialized models for the same broccoli and 
field treatment did not have significant differences. However, 
this does not mean that the model can be directly applied to 
other varieties of broccoli and farmland without modifica-
tion. We did not establish a general growth model for all broc-
coli varieties. On the contrary, we prefer customizing unique 
initialized models for each farmland with low labor costs. This 
has more practical significance compared to a general growth 
model.

After getting the initialized models by field measurements, 
all the drone-measured HDs (date as x, HD as y) were con-
verted to temperature-based model format (temperate sum as 
x, Ln(HD) as y), by using the meteorological data (daily tem-
perature delta, ΔTi) and the initialized model (calculate the 
starter T0), as shown in Fig. 4D. The converted results for 
all aerial survey dates in 2020 and 2021 were those scatter 
points in Fig. 8B and F, respectively. The regression models 
(ln(HD) = a − b · e−c · T) for these converted results were then 
generated and used as the broccoli HD prediction models (Fig. 
8B for 2020; Fig. 8F for 2021). The parameters were a = 5.75, 
b = 2.33, and c = 0.00475 for 2020 and a = 5.58, b = 1.94, and 
c = 0.00616 for 2021. Although the difference between the 2 
years may not seem significant from the parameters, when 
reflected in the trend of regression models (Fig. 8B and F) after 
accumulated temperature conversion, it can be noticed that the 
growth curves of the 2 years are not the same. According to the 

meteorological data (Table 1), although the Mays in 2020 and 
2021 have close mean temperatures (19.6 and 19.7 ∘C), the year 
2021 has 29 h of sunshine duration and 30 mm of mean pre-
cipitation shorter than those in 2020. When these factors are 
applied to the growth of broccoli, the climate variations in 2 
years result in different growth curves in the model. That is why 
we encourage not to rely on general models and instead estab-
lish independent models for each year.

Although it is ideal to establish an independent model based 
on each year as described above, in cases where there is a lack 
of data for the current year, the model from the previous year 
can also be used to obtain approximate results. To validate this 
point, the initializing model and the prediction model for 1 
year (e.g., 2020 models in Fig. 8A and B) were used to predict 
the broccoli HD in the other year (e.g., 2021). The cross-year 
predicted values were compared by the actual drone-measured 
HD (Fig. 8C and G). The predicted sizes and drone measured 
were highly correlated with the acceptable r2 > 0.57 at the early 
stage (2020 May 20 to 26; 2021 May 14 to 20), while the last 
day (late stage) showed bad correlations (r2 = 0.519 in 2020; 
r2 = 0.225 in 2021). However, according to the size distribution 
maps (Fig. 6), the broccoli sizes at the late stage were far beyond 
the market standard. In actual production activities, it will not 
happen. Therefore, the poor results in later predictions will not 
have a considerable impact on guiding the actual production. 
At the same time, it can be found that although there is a large 
gap in one-on-one comparison (Fig. 8C and G), the overall 
distribution is still relatively close (Fig. 8D and H). This indi-
cated that previously collected data can be used to predict 
growth before the harvesting period.

A B C

E F G

D

H

Fig.  8.  HD prediction models and validation for 2020 and 2021. (A and E) Initialization models for drone data regressed by the field-measured data for 2020 and 2021, 
respectively. (B and F) Final prediction models by the drone-measured data for 2020 and 2021, respectively. (C) Comparison between the 2020 drone-measured HD and the 
HD predicted by the 2021 model (swapping validation). (G) Comparison between the 2021 drone-measured HD and the HD predicted by the 2020 prediction model. (D and 
H) Distribution of the previous comparison.
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Income estimation and optimal harvest date
Based on the initialization and prediction models, we calcu-
lated the size distribution of all broccoli during the harvest 
period (Fig. 9A and B). The proportion of nonstandard-size 
broccoli and the total income for each date were then calculated 
(Fig. 9C and D). In the 2020 trial, May 23 was the optimal 
harvest date, i.e., the date on which the proportion of nonstandard- 
size broccoli was minimized and total income was maximized. 
In the 2021 trial, May 17 was determined as the optimal harvest 
date. In both cases, we found that a 1-d shift in harvest from 
the optimal date could lead to considerable income loss (3.7% 
to 20.4% reduction). The price differences among size grades 
did not affect the estimation of the optimal harvest date (cases 1 
and 2 in Fig. 9C and D).

Discussion
Reducing on-farm food loss (e.g., nonstandard-size vegetables) 
is one of the prominent goals of sustainable development in 
agricultural production. The main aim of this work is to test 
the use of drone-based digital measurements of broccoli head 
size, their usage in monitoring broccoli growth, and prediction 
of optimal harvest time in terms of economic returns for dif-
ferent sellable size classes. In this study, we created a harvest 
date prediction system based on aerial survey, ML/DL, and a 
growth model by predicting the short-term change in the head 
size of all individuals (>3,000) in the entire broccoli field. Our 
experiments demonstrated that (a) the head sizes estimated 
by aerial survey were highly correlated with the field measure-
ments, (b) the proportion of nonstandard-size and the total 

income calculated by the hypothetical harvesting changed dra-
matically between harvest days, (c) predictions for the few days 
following a particular date of aerial survey were highly corre-
lated with those estimated by aerial survey taken on that date, 
and (d) the optimal harvest date (i.e., the date for the minimum 
proportion of nonstandard-size broccoli and maximum income) 
could be predicted with high accuracy. These results suggested 
that our prediction system for the optimal harvest date of broc-
coli will benefit farmers by reducing food loss and increasing 
their income. Although the current study focused on broccoli 
as a model system, this framework could be readily applied to 
other similar vegetables such as cauliflower, artichoke, and cab-
bage. Thus, our case study shows that smart farming techniques 
have great potential to contribute to the sustainable develop-
ment of vegetable production.

This study showed that the proportion of nonstandard-size 
broccoli and the total income changed rapidly depending on 
the harvest date. For example, 1 day later or earlier than the 
optimal harvest date increased the number of nonstandard-size 
broccoli by approximately 5% and decreased the total income 
by approximately 20%, and 2 days later than the optimal harvest 
date increased the number of nonstandard-size broccoli by 
approximately 15% and decreased the total profit by approx-
imately 40%. To the best of our knowledge, such temporal 
changes in the number of nonstandard-size vegetables and the 
total profit for different harvest dates have not previously been 
calculated because no technique was available to measure 
thousands of individual vegetables multiple times with high 
accuracy. Interestingly, the optimal harvest date was largely 
unaffected by differences in the shipping price for each grade 
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Fig. 9. Distribution of predicted HD in (A) 2020 and (B) 2021 trials. The M, L, and 2L sizes meet the shipping standard in the Japanese market (M: 11 to 12 cm, L: 12 to 13 cm, 
and 2L: 13 to 15 cm). The proportion of nonstandard-size broccoli and total income assuming that all individuals were harvested for each date in the (C) 2020 and (D) 2021 
trials. Yellow pillars indicated the optimal harvest date generating the highest income and lowest wasted broccoli. Case 1 is the largest price difference between each grade 
(indicates highest profit), and case 2 is the smallest difference (indicates lowest profit).
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(Fig. 9C and D). The optimal harvest date was determined by 
the spatial variation in broccoli growth, regardless of the ship-
ping price of each grade. The difficulty in setting the harvest 
date for mechanical harvesting owing to large spatial variation 
is a common issue in broccoli and other vegetable farms. Thus, 
predicting the optimal harvest date using our system (or similar 
systems) has the potential to reduce on-farm food loss and 
increase the income of vegetable farmers worldwide.

In addition to estimating temporal variations in head size 
distribution, our pipeline could visualize spatial variations in 
individual head size (Fig. 6). In the 2021 trial, spatial variation 
in broccoli size was intentionally created by planting seedlings 
on 2 different dates in the eastern and western areas of the field 
(8-day intervals). When we visualized the individual head sizes, 
the difference between the eastern and western fields was evi-
dent. However, it was difficult to visually observe the differences 
on the ground. For example, the difference in average head size 
between the east and west on 2021 March 12 was only 3 cm. 
Although the uneven growth between the west and east fields 
in this trial was intentional, such spatial variation can occur 
unintentionally and is a major challenge, especially in large-
scale agriculture [52]. In such a large-scale uneven field, farm-
ers can divide their field into several areas and harvest broccoli 
multiple times. Using our framework, farmers may be able to 
visualize the spatial variation of their fields, predict their short-
term growth, and determine the optimal spatial and temporal 
harvest strategy.

Although the pipeline we developed highlights the benefits 
and importance of aerial survey powered by ML/DL for sus-
tainable agricultural development, there are some limitations 
to its use. First, our system is neither fully automated nor 
app-based; therefore, farmers without computer science back-
grounds cannot use this system directly in their own fields. 
However, because the source code is open to the public (https://
github.com/UTokyo-FieldPhenomics-Lab/UAVbroccoli), local 
agricultural institutes and agricultural companies are able to 
modify and use the system according to their target. This study 
is definitely not a one-stop solution, but is a pioneer in real 
agriculture applications. Second, unlike traditional manual meth-
ods with limited throughput, the proposed method can sample 
every plant in the field at much higher frequency, leading to 
higher temporal and spatial resolution. The large amount of 
data generated by this method is therefore appropriate for data-
driven modeling, which could lead to breakthroughs in smart 
farming. Third, manual inspection of the seedling position 
detection is required; this step cannot be omitted because 
this result is the basis for subsequent broccoli segmentation. 
Detection omissions, duplications, and drifts need to be checked 
manually on a case-by-case basis. Although it saves consider-
able effort compared to adding them manually one by one, this 
inspection still requires several hours to complete in large-scale 
fields. Additionally, if a broccoli plant dies before the flowering 
stage, there is a risk of wrong head segmentation generating 
incorrect results (but in some cases that we observed, it gave an 
empty segmentation result and was easily discarded). Fourth, 
the problem of leaf occlusion has not been solved, which 
remains a challenging problem for plant phenotyping [29]. As 
broccoli heads are essentially round, one approach is to restore 
the roundness of the stubs. The circularity and eccentricity of 
the broccoli head may be used to describe the severity of occlu-
sion. The least squares for round fitting can be used, or the 
DL framework “occlusion-aware region-based convolutional 

neural network” (ORCNN) can be applied to obtain improved 
recovery results [39]. However, it requires a depth camera and 
image pairs before and after occlusion as training data are col-
lected on the ground, which is inconvenient for current aerial 
survey but warrants further study. For example, multispectral 
and even LiDAR sensors are becoming increasingly cheap, 
combined with the rapid development of AI algorithms, sug-
gesting that this problem could be resolved without unafforda-
ble cost increases. Also, integration of the method with other 
common management practices such as mulching films with 
bioplastics could assist in the identification of plants and broc-
coli heads, particularly when used in conjunction with a mul-
tispectral sensor. Finally, hardware and software instrument 
costs should not be omitted. The drone with RTK ($6,500), 
3D reconstruction software ($3,499), and a high-performance 
computer ($6,000) for computation used in this chapter would 
limit the pipeline’s widespread use. However, even for a small 
farm (0.2 ha) with 7,000 broccoli plants, only 2 days difference 
from the optimal harvest date can result in an income loss of 
almost $2,000. The feasibility of our pipeline on larger farms is 
also worth being tested in the future. For companies that pro-
vide this type of agricultural consulting service, this one-off 
investment can be offset by the increased profit of many pro-
ducers. For those economically and socially disadvantaged 
rural regions, the RTK or the expense of a base station should 
not be mandatory. It can be replaced by setting more GCP 
boards and measuring distances among them as scalebar cor-
rectors, to get similar results with relative geographical coor-
dinates. It was suggested that cooperating with local broccoli 
farmers to test the proposed system without RTK dependences 
and keeping improving the algorithm performance on the 
occlusion area will be needed in futher work. The head quality 
and transport costs were also suggested to be integrated into 
the system to refine its applicability.

Conclusion
This is a demonstrable application of aerial phenotyping tech-
nology to assist farmers in optimizing financial returns and 
minimizing food waste rather than the majority of digital agri-
culture studies that are aspirations and lack the pipeline to 
actually help farmers in an applied context. In this study, using 
aerial survey and ML/DL, we developed a system for estimating 
and predicting the head size of whole broccoli with high accu-
racy and showed that the system can predict the optimal har-
vest date. This drone-based prediction system is based on 
several technical improvements and requires minimal labor 
and computational costs. Therefore, it could be applied to sup-
port broccoli farming and, with modifications, to a variety of 
similar vegetables (i.e., cabbage, cauliflower, artichoke, and 
lettuce). Because our developed pipeline uses a simple sensor, 
not a complex integration of multiple sensors, it would be more 
applicable and user-friendly for economically and socially dis-
advantaged rural regions, and it has the potential to be widely 
adopted by vegetable farmers worldwide.
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