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Abstract: Calculating the complex 3D traits of trees such as branch structure using drones/un-
manned aerial vehicles (UAVs) with onboard RGB cameras is challenging because extracting branch 
skeletons from such image-generated sparse point clouds remains difficult. This paper proposes a 
skeleton extraction algorithm for the sparse point cloud generated by UAV RGB images with pho-
togrammetry. We conducted a comparison experiment by flying a UAV from two altitudes (50 m 
and 20 m) above a university orchard with several fruit tree species and developed three metrics, 
namely the F1-score of bifurcation point (FBP), the F1-score of end point (FEP), and the Hausdorff 
distance (HD) to evaluate the performance of the proposed algorithm. The results show that the 
average values of FBP, FEP, and HD for the point cloud of fruit tree branches collected at 50 m 
altitude were 64.15%, 69.94%, and 0.0699, respectively, and those at 20 m were 83.24%, 84.66%, and 
0.0474, respectively. This paper provides a branch skeleton extraction method for low-cost 3D digi-
tal management of orchards, which can effectively extract the main skeleton from the sparse fruit 
tree branch point cloud, can assist in analyzing the growth state of different types of fruit trees, and 
has certain practical application value in the management of orchards. 
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1. Introduction 
Point cloud data are commonly used to describe the 3D structure of objects and have 

important applications in 3D reconstruction, engineering measurement, and morpholog-
ical analysis, among other applications. With the widespread use of agricultural automa-
tion technology, the demands for point cloud analysis for high-throughput orchard phe-
notyping and growth modeling, such as plant shape, canopy structure, organ morphol-
ogy, and stress response, are gradually increasing. Skeletonization is one of the essential 
steps in point cloud analysis in which a three-dimensional skeleton of a tree point cloud 
is obtained. This step makes it easier to calculate tree height, branch length, and angle, 
which comprise useful information for precise fruit tree growth management. 

In the existing research on tree skeleton extraction, algorithms usually consist of two 
stages: firstly, skeleton points from the tree point cloud are extracted, and then skeleton 
topology connections are formed from the skeleton points. The skeleton points extraction 
is the fundamental step of the whole process. Current research approaches to skeleton 
point extraction can be broadly divided into three categories: 

Graph structure-based [1–4]: a graph structure is a discrete structure consisting of 
vertices and edges connecting the vertices. The skeleton of a tree-like point cloud can be 
regarded as a combination of vertices and edges in a graph structure. The point cloud is 
converted into a graph structure, the shortest distance from the root node to each point in 
the point cloud is calculated to determine the skeleton points, and adjacent skeleton points 
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are connected to form the branch skeleton. This method designs a skeleton point extrac-
tion algorithm for point clouds with a tree-like structure, which conforms to the structure 
of tree branches and has a good skeleton extraction effect. However, this method needs to 
calculate the shortest path on the finely constructed graph structure, which causes high 
computational costs. 

Generic point cloud skeleton extraction algorithms-based [5–14]: generic point cloud 
skeleton extraction algorithms mainly include generalized rotationally symmetric axis 
(ROSA), L1-median and Laplace-based contraction (LBC). Many researchers have used 
this class of algorithms for tree branch skeleton extraction. Since these algorithms have no 
specific requirements on the structure of point cloud objects, they are adapted to a wider 
range of point cloud skeleton extraction tasks and can be easily used for skeleton extrac-
tion of point clouds of many types of tree branches. However, such methods were not 
designed for tree point clouds, such algorithms may extract structures such as annular or 
detached skeletons from point clouds, but these structures do not exist in natural tree 
branches, which may not guarantee the accuracy of tree skeleton extraction. 

Other point cloud skeleton extraction algorithms [15,16]: other tree skeleton extrac-
tion methods are based on nearest neighbor shrinkage or clustering to extract the skeleton, 
and the skeleton points are obtained by the result of nearest neighbor shrinkage or clus-
tering and connected to form the dendritic skeleton, and this kind of methods get better 
skeleton extraction results on the point cloud model with regular shape. However, these 
methods require high quality of point clouds, and the algorithms are sensitive to param-
eters, which need to be finely set to obtain better skeleton extraction results. 

In general, point cloud acquisition for branch skeleton extraction uses laser scanning, 
multi-view reconstruction, and virtual model construction. Tree point clouds acquired us-
ing terrestrial laser scanning (TLS) or scanners have high accuracy [1–4,7–14], but this ap-
proach is expensive for large scale data acquisition for scenarios such as orchards and is 
not suitable for actual orchard production. Although the use of unmanned aerial vehicle 
(UAV) laser scanning (ULS) to acquire point cloud has the advantages of large acquisition 
range and high speed, the acquisition process is affected by airframe shaking, which 
makes it difficult to align into higher quality point cloud, and if the same quality of point 
cloud as TLS is to be acquired, the cost of the acquisition equipment will increase signifi-
cantly. Although the point cloud acquisition using photogrammetry [15,16] reduces the 
cost of laser scanning, the spatial information of tree objects needs to be strictly calibrated 
when acquiring tree point cloud, and the process requires a relatively stable data acquisi-
tion environment, which limits its application in complex environmental scenarios such 
as orchards. The construction of point cloud from virtual 3D models [14,17,18] is not af-
fected by the actual acquisition environment, but the virtual point cloud often does not 
represent the real 3D spatial structure of a fruit tree. In recent years, with the development 
of UAV aerial photography technology, the use of UAV equipped with RGB cameras to 
generate point clouds has been widely used, which combines the advantages of ULS while 
significantly reducing the equipment cost [19–21]. However, due to the limitation of the 
resolution of RGB cameras, the point clouds collected by this method are sparse and ir-
regularly distributed in space, which makes fruit tree skeleton extraction challenging. 
Therefore, an extraction algorithm for sparse RGB point cloud is needed to complete the 
fruit tree skeleton extraction task. 

Meanwhile, reasonable evaluation metrics are important for verifying the perfor-
mance of the tree point cloud skeleton extraction algorithms. In fruit tree growth manage-
ment, parameters such as tree height, branch length, and branch angle need to be accu-
rately calculated, and the fruit tree branch skeleton is an important basis for calculating 
these parameters. Therefore, setting reasonable metrics to evaluate the performance of the 
skeleton extraction algorithm is of great significance for the extension of the tree skeleton 
extraction algorithm for use in scenarios such as orchards. In the evaluation work on tree 
point cloud skeleton extraction, Bucksch et al. [4] graded the branches of tree branches by 
length, counted the number of extracted tree branch skeletons and real branch skeletons 
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under different length gradations, and evaluated the effectiveness of the skeleton extrac-
tion algorithm by calculating the correlation coefficient R2 between the two. This approach 
evaluates the performance of skeleton extraction only in terms of quantity, ignoring the 
spatial information of branches. Li et al. [14] manually measured the real parameters of 
tree branches and calculated the F1 value (F1-Score), correlation coefficient (R2), and root 
mean square error (RMSE) between the extracted tree branch skeleton parameters and the 
real measured parameters to evaluate the branch skeleton structure parameters for accu-
racy. Fu et al. [18] proposed a quantitative evaluation of the skeleton extraction effect, 
where the point cloud was generated from a virtual branch skeleton and the evaluation of 
the skeleton extraction effect relied on the pre-existing virtual tree skeleton. However, the 
tree branch skeleton is a combination of a series of spatial curves, and drawing the curves 
in 3D space by hand is often inaccurate and subjective, which affects the reliability of the 
evaluation results. Therefore, this evaluation method is not applicable to the skeleton ex-
traction evaluation task of a real tree point cloud. We observed that there is no unified 
standard for the evaluation of skeleton extraction algorithms at this stage, and there is a 
need for evaluation metrics to verify the performance of actual tree point cloud skeleton 
extraction algorithms. 

In summary, in this paper, we propose a branch skeleton extraction algorithm for 
UAV and photogrammetry-generated sparse RGB fruit tree point cloud and suggest eval-
uation metrics for tree branch point cloud to verify the performance of the algorithm pro-
posed in this paper. The overall aims of the research were as follows. 
(1) To address the problem of low accuracy of existing algorithms in skeleton extraction 

for sparse point cloud data. In this paper, a spatial density-based regional point cloud 
aggregation algorithm is designed to aggregate sparse tree point cloud before skele-
ton point extraction, and the aggregated point cloud can describe the 3D skeleton 
morphology of branches, which can effectively improve the accuracy of subsequent 
skeleton point extraction. 

(2) To address the problem that the generic point cloud skeleton extraction algorithm is 
prone to broken branches and self-loops when the skeleton topology is connected, 
which leads to unrealistic tree point cloud skeleton extraction results. In this paper, 
we propose a skeleton topology connection method with spherical shrinkage from 
the outside to the root node, which can better adapt to the bifurcated tree structure, 
effectively avoiding the appearance of non-tree branch structure, and can effectively 
extract the initial skeleton of tree branches. 

(3) To objectively evaluate the skeleton extraction algorithm and thus verify the perfor-
mance of the skeleton extraction algorithm on real tree branch point cloud. In this 
paper, based on the consideration of the characteristics of tree branch structure mor-
phology, the metrics for evaluating the accuracy of skeleton morphology: FBP (F1-
score of bifurcation point), FEP (F1-score of end point) and the metric for evaluating 
the accuracy of skeleton topology: HD (Hausdorff distance) were designed, which 
can reasonably evaluate the skeleton extraction performance of the algorithm. 

(4) To release an easy-to-use software application that helps the community to test the 
proposed algorithm and use it for other related applications. 

2. Materials and Methods 
2.1. Data Acquisition 

The data set used in this experiment were acquired by an onboard RGB camera (1 
inch CMOS, lens FOV 84 degrees, focus length 8.8 mm, Max image size 5472 × 3648 pixels) 
mounted on a low-cost industrial level UAV (DJI Phantom 4 RTK, DJI, Shenzhen, China). 
The flight altitude was set to 50 m and 20 m, and both the front and side overlap in be-
tween photos were set to 80%. Synthesis of RGB point cloud was performed using DJI 
Terra. All the flights were conducted at an orchard of the Institute for Sustainable Agro-
ecosystem Services (ISAS), University of Tokyo Orchard (Tokyo, Japan) (35°44′16.0″ N, 
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139°32′20.9″ E) on the following dates: 13 January 2022, 14 February 2022, and 4 March 
2022 (as shown in Figure 1a). There are multiple types of fruit trees growing in the or-
chard. In this paper, peach trees, persimmon trees, chestnut trees, and plum trees were 
selected as experimental objects, and five fruit trees were randomly selected from each 
type of fruit tree to tag and conduct comparative experiments (as shown in the white 
dashed box in Figure 1b). More details of the orchard are provided in Table 1.  

Table 1. Orchard point cloud containing tree species and number of individuals. 

Tree Type Number of Individuals 
Apple 17 
Cherry 2 

Chestnut 86 
Citrus 25 

Kiwifruit 15 
Loquat 5 
Peach 51 

Persimmon 95 
Plum 46 

 

 
Figure 1. Data acquisition location and orchard point cloud. (a) Point cloud collection location 
(35°44′16.0″ N, 139°32′20.9″ E). (b) DOM (Digital Orthophoto Map) generated from UAV images, 
different color points in the map indicate the planting points of different species of fruit trees, and 
white dashed boxes and symbols in the map indicate the fruit tree objects selected for the experi-
ment. (c) Three-dimensional view of the point cloud of the orchard. (d) Close-up view of the point 
cloud of the branches of the fruit trees. 
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2.2. General Architecture of the Algorithm 
This section describes the general architecture of the algorithm in this paper, and 

Figure 2 shows the structure of the algorithm. The algorithm consists of the following 
components. 

1. Point cloud pre-processing module: this module first denoises the original branch 
point cloud data, and then aggregates the sparse branch point clouds using the regional 
point cloud aggregation method proposed in this study, which can form a dense point 
cloud that roughly describes the morphology of the branch skeleton and prepares for the 
subsequent skeleton point extraction.  

2. Skeleton point extraction module: this module is based on the octree algorithm to 
spatially divide the clustered point cloud and extract the branch skeleton points in the 
divided subspace. 

3. Skeleton construction module: this module uses the spherical shrinkage based skel-
eton topology connection method proposed in this paper to form the thick skeleton of the 
branch. 

4. Branch skeleton morphology optimization module: this module fine-tunes the po-
sitioning of key points in the coarse skeleton first, and then smooths the branch coarse 
skeleton to output the final fine skeleton.  

 
Figure 2. Functional structure of point cloud skeleton extraction algorithm for fruit tree branches. 

2.3. Point Cloud Pre-Processing Module 
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To better extract the skeleton points from the original fruit tree branch point cloud, 
this section first denoises the original branch point cloud and then aggregates the de-
noised branch point cloud using a regional point cloud aggregation algorithm.  

(1) Point cloud denoising processing 
In this study, we used the density-based spatial clustering of applications with noise 

(DBSCAN) algorithm [22] to remove the anomalous points in the original point cloud. The 
clustering approach is used to remove not only the anomalous outliers generated during 
the synthesis of point cloud data but also the anomalous point cloud patches (classes of 
reduced samples within clusters) generated during the reconstruction of point cloud data. 

(2) Branch point cloud density enhancement 
The branch skeleton is a series of curve combinations describing the centers of fruit 

tree branches, and the skeleton points are the spatial points constituting these curves [23]. 
These spatial points are the centers of branch point cloud in a certain segment. Determin-
ing the centers of fruit tree branch point cloud in a certain segment of space is the focus of 
skeleton point extraction. Since the branch point clouds generated by the RGB camera are 
sparse and not uniform, extracting the skeleton points directly from the denoised point 
cloud will produce the problem of inaccurate positioning.  

If the tree point cloud branches can be aggregated to the centerline region of the 
branch skeleton (as shown in Figure 3a) in some way to form a higher density point cloud 
that can describe the 3D curve shape of the skeleton, and then the skeleton points are 
extracted from it, this can effectively improve the accuracy of skeleton point extraction. 
Therefore, an algorithm for regional point cloud aggregation is proposed in this paper. 

(1) Let the denoised tree branch point cloud be 𝐶௦ = ሼ𝑥ଵ, 𝑥ଶ … 𝑥௜ … 𝑥௡ | 𝑥 ∈ 𝑅ଷ}, and 
set the regional aggregation radius 𝑟, as shown in Equation (1):  𝑟 = ∑ 𝑑𝑖𝑠𝑡(𝑥௜ , 𝑘௜)௡௜ 𝑛 , 𝑖 ∈ [1,𝑛] (1)

where 𝑘௜ is the 𝑘 nearest neighbor point of 𝑥௜ (𝑘 is determined according to the empir-
ical value of the preparatory experiment and adjusted according to different tree species). 

(2) Traverse each point 𝑥௜ in the point cloud, set a search region of radius 𝑟 around 𝑥௜, set the set of points contained in this search region as 𝑂௜ = ൛𝑥ଵ, 𝑥ଶ … 𝑥௝ … 𝑥௠ ห 𝑥 ∈ 𝑅ଷ}, 
take the shape center 𝑐௜ of the point set 𝑂௜, as shown in Equation (2): 𝑐௜ = ∑ 𝑥௝௠௝𝑚 , 𝑗 ∈ [1,𝑚] (2)

As the target location for 𝑥௜  to move, the new point cloud set 𝐶௔ =൛𝑐ଵ, 𝑐ଶ … 𝑐௝ … 𝑐௡ ห 𝑐 ∈ 𝑅ଷ} obtained after the point cloud traversal is completed, and  
Figure 3b shows the process of point cloud aggregation in the region. 

(3) Keeping the search radius 𝑟 constant, 𝑛 iterations of step (2) are carried out to 
finally obtain the aggregated branch point cloud 𝐶௧. 
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Figure 3. Schematic diagram of regional point cloud aggregation. (a) Branch point cloud aggrega-
tion toward the skeleton centerline: the black point is the branch point cloud to be aggregated, the 
blue dashed line is the assumed skeleton centerline, and the gray arrow is the direction of movement 
of the point in the aggregation process. (b) Regional point cloud aggregation algorithm: red, orange, 
and green dashed lines with different colors indicate the search area of 𝑥௜, blue dot 𝑐௜ is the target 
location of 𝑥௜ movement. 

Figure 4 shows the process of branch point cloud aggregation after n iterations (𝑛 =8). With increasing n, the distribution of the fruit tree branch point cloud gradually ag-
gregates toward the center line of the skeleton, and since the number of points of the 
branch point cloud does not change in the process, the density of the branch point cloud 
gradually increases in the process of aggregation. After n iterations of iterative aggrega-
tion, the spatial distribution of branch point cloud is dense and concentrated near the cen-
ter line of the branch skeleton, which can already show the three-dimensional morphol-
ogy of the fruit tree branch skeleton. Extracting the skeleton points subsequently on this 
basis can effectively improve the accuracy of skeleton point positioning. 

 



Drones 2023, 7, 65 8 of 34 
 

Figure 4. Schematic diagram of point cloud iterative aggregation process: (a) Point cloud of fruit 
tree branches after denoising. (b) Point cloud of fruit tree branches after three iterations of regional 
point cloud aggregation. (c) Point cloud of fruit tree branches after five iterations of regional point 
cloud aggregation. (d) Point cloud of fruit tree branches after eight iterations of regional point cloud 
aggregation. 

2.4. Skeleton Point Extraction Module 
Skeleton point extraction involves finding spatial points that can describe the branch 

skeleton from the branch trunk point cloud. Since the spatial distribution of the aggre-
gated fruit tree branch trunk point cloud can already describe the three-dimensional form 
of the branch skeleton, the skeleton points can be considered as the concentrated expres-
sion of the fruit tree branch trunk point cloud after aggregation in a subdivision space. 
Therefore, this paper proposes a skeleton point extraction method based on subdivision 
space point cloud shape center calculation, which first divides the aggregated fruit tree 
branch trunk point cloud spatially, and then calculates the shape center of the point cloud 
in the subdivision space as the skeleton point (as the previous preparation for the con-
struction of 2.5 section branch trunk skeleton). The specific implementation steps are as 
follows. 

(1) The octree based spatial partitioning 
The octree algorithm [24], as one of the commonly used data structures for 3D spatial 

partitioning, can accelerate spatial queries and efficiently manage 3D space. In this paper, 
we first use the spatial octree structure to subspace the aggregated fruit tree branch trunk 
point cloud, as shown in Figure 5. 

 
Figure 5. Partitioning of the aggregated branch and stem point cloud using spatial octree. 𝑆௜ : smallest subspace divided using octree, 𝑂௜ : geometric center of subspace, 𝑐௜௝ : 
branch point cloud location in subspace, 𝑘௜: skeleton points in subspace. 

(2) Calculation of skeleton points in subspace 
The skeleton point of the branch can be regarded as the center of the point cloud 

geometry of the branch in a certain region. Considering that the center point O௜ of the 
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subspace may have a large offset compared with the distribution of the point cloud in the 
space, it could not represent the distribution of the point cloud in the subspace. Therefore, 
to better reflect the representativeness of the skeleton point to the point cloud in the sub-
space, this paper adopts the shape center of the point cloud in the subspace as the skeleton 
point k௜ , which is defined as shown in Equation (3): 𝑘௜ = ∑ 𝑐௜௝௡௝𝑛 , 𝑗 ∈ [1,𝑛] (3)

where 𝑘௜ denotes the skeleton points calculated in each subspace, 𝑛 is the number of 
point clouds contained in each subspace, and 𝒄𝒊𝒋 is the location of the branch point cloud 
in each subspace. 

Calculating the point cloud shape centers as skeleton points in the subspace of the 
octree subdivision can ensure that the spatial distribution of its skeleton points can better 
reflect the fruit tree branch trunk morphology, which is ready for the skeleton construc-
tion in Section 2.5. Figure 6a shows the effect of spatial partitioning of the aggregated 
whole branch trunk point cloud using the octree algorithm; Figure 6b shows the extracted 
fruit tree branch trunk skeleton points, and the extracted skeleton point distribution can 
still better reflect the fruit tree skeleton morphology. 

 
Figure 6. Schematic diagram of extraction of skeleton points from a spatial octree. (a) Spatial octree 
partitioning of the point cloud. The black grid in the figure indicates the subspace where the 
branch point cloud is located. (b) Skeleton points extracted using the spatial octree. 

2.5. Skeleton Building Module 
After extracting the skeleton points of fruit tree branches, the skeleton points need to 

be topologically connected to form the tree branch skeleton. In previous work, the skele-
ton of the tree point cloud was usually obtained based on the nearest neighbor or bottom-
up topology connection [25], and the number of sub-branches at the bifurcation was not 
well determined in the case of uneven distribution of skeleton points due to the need to 
set a reasonable number of nearest neighbor skeleton points, which affects the correctness 
of the extracted skeleton topology. Since the point cloud data in this paper are obtained 
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from the reconstruction of RGB images collected by an overhead UAV, the point cloud 
data are sparse and contain less details of branches, which mainly reflect the main branch 
structure of the fruit trees (e.g., main branches, submain branches, etc.). Therefore, to 
quickly construct the skeleton topology of the main branches of fruit trees, we designed a 
spherical shrinkage skeleton topology connection method from the outside to the root 
node, which can effectively adapt to the bifurcated structure of fruit tree branches, and 
can extract the key points (end points, bifurcation points) and skeleton segments (end 
point-bifurcation point, bifurcation point-bifurcation point) of the skeleton while obtain-
ing the main skeleton of fruit tree branches.  

Figure 7 shows the spherical contraction topology connection process of the local 
branch skeleton, and the specific process of the algorithm is as follows. 

(1) Firstly, starting from the farthest skeleton point 𝑝ଵ, make a ball with the radius of 
this point and the root node, connect this point with the nearest skeleton point 𝑝ଷ which 
is located inside the sphere shell. Following this, select the next far point 𝑝ଶ as the starting 
point, make a ball with the radius of this point and the root node, select the nearest skele-
ton point 𝑝ହ which is located inside the sphere shell to connect, and iterate the above 
process to traverse all skeleton points. 

(2) After all skeleton points are traversed, the 𝑑𝑖𝑣 of each skeleton point is calculated 
(𝑑𝑖𝑣 : the number of connections between a skeleton point and other skeleton points 
around it. In this paper, we define 𝑑𝑖𝑣 = 1 for end points, 𝑑𝑖𝑣 = 2 for ordinary branch 
skeleton points, and 𝑑𝑖𝑣 >= 3 for bifurcation points) to extract the end points and bifur-
cation points in the skeleton points, and calculate each skeleton segment of the branch 
according to the connection status between the skeleton points. 

(3) Due to the possible redundancy of the extracted skeleton points, there may be 
shorter burr branches (skeleton segments containing fewer skeleton points) in the topo-
logically connected skeleton. Set the threshold value 𝑙. If the skeleton segment contains 
skeleton points greater than 𝑙, the skeleton segment is retained, otherwise the skeleton 
segment is removed. 

 
Figure 7. Schematic diagram of spherical contraction for skeleton topology connection. (a) Sche-
matic diagram of the local skeleton of fruit tree branches. (b) Schematic diagram of spherical con-
traction for topological connection of local skeleton. Red dots are branch end points, green dots are 
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branch bifurcation points, gray arc-shaped dashed lines indicate the spherical shells where the skel-
eton points are located, and different colored connecting segments indicate each skeleton segment. 𝑝ଵ-𝑝ଵଵ are the skeleton points on each skeleton segment. 

After the skeleton topology connection, the algorithm obtains the endpoints, bifurca-
tion points, and the set of skeleton segments of the fruit tree branches along with the whole 
skeleton. Figure 8 shows the coarse skeleton of a tree formed after the spherical shrinkage 
topology connection, where red dots indicate the fruit tree branch skeleton end points, 
green dots indicate the fruit tree branch skeleton bifurcation points, and different color 
connection segments in the figure represent different segments of the fruit tree branch 
skeleton. 

 
Figure 8. The coarse skeleton formed after topological connection.  

Red dots indicate fruit tree branch skeleton endpoints, green dots indicate fruit tree 
branch skeleton bifurcation points, and the connected segments of different colors in the 
figure represent different segments of the fruit tree branch skeleton. 

2.6. Skeleton Morphology Optimization Module 
In 3D space, the real tree branch skeleton can be considered as a combination of mul-

tiple smooth spatial curves, and the two endpoints of the curves are always at the end-
points and bifurcation points of the branch skeleton. Therefore, the positions of the skele-
ton endpoints and bifurcation points need to be kept from moving during the smoothing 
process of the skeleton. However, the algorithms commonly used for skeleton smoothing 
(e.g., polynomial smoothing, B spline fitting smoothing, etc.) are not adapted to the pre-
requisite of fixed skeleton curve endpoints and bifurcation points. Therefore, to solve this 
problem, the spatial Bezier curve [26] is chosen in this paper to perform spatial curve 
smoothing on the extracted skeleton. To ensure the correctness of the optimized skeleton 
morphology, the key points in the thick skeleton of the branches were first fine-tuned in 
this paper before the pre-processing of the skeleton smoothing using Bezier curves (see 
Appendix A: branch skeleton key point adjustment strategy).  

In the extracted fruit tree branch skeleton, let a skeleton segment be 𝐵𝐻 = [𝑃଴,𝑃ଵ,𝑃ଶ, … ,𝑃௡], (𝑛 is the number of skeleton points contained in the skeleton segment), 
where 𝑃଴ is the end point (or bifurcation point) of the skeleton segment, 𝑃௡ is the bifur-
cation point of the skeleton segment, and 𝑃଴ and 𝑃௡ are used as the starting point and 
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end points, and 𝑃ଵ,𝑃ଶ, … ,𝑃௡ିଵ as the control points of the Bezier curve, and the smooth-
ing of this skeleton segment using an 𝑚(𝑚 = 𝑛 − 1)  order spatial Bezier curve, the 
smoothed curve 𝐵(𝑡) of this skeleton segment can be obtained, and the definition of 𝐵(𝑡) 
is shown in Equation (4): 

𝐵(𝑡) = ෍𝐶௠௜ (1 − 𝑡)௠ି௜𝑡௜𝑃௜௠
௜ୀ଴  , 𝑡 ∈ [0, 1]  (4)

In the equation: 𝐶௠௜ = 𝑚!𝑖! ∗ (𝑚 − 𝑖)! 
As shown in Figure 9b, after the smoothing process of the spatial Bezier curve, the 

segments of the skeleton are smoother and more natural, which can better reflect the three-
dimensional spatial shape of the real fruit tree branches. 

 
Figure 9. Comparison of branch skeleton before and after smoothing. (a) Effect of fruit tree branch 
skeleton before smoothing. (b) Effect of fruit tree branch skeleton after smoothing. 

3. Results 
In this section, the proposed tree point cloud skeleton extraction algorithm is evalu-

ated. First, evaluation metrics are designed to verify the effectiveness of the tree point 
cloud skeleton extraction algorithm, and based on the evaluation metrics, the proposed 
algorithm in this paper is compared with the L1-medial and the Laplacian based contrac-
tion (LBC) algorithm [6,11] for experiments. Section 3.1 introduces the metrics proposed 
in this paper to evaluate the effectiveness of skeleton extraction, F1-score of bifurcation 
Point (FBP), F1-score of end Point (FEP), and Hausdorff distance (HD). In Section 3.2, the 
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environment of the comparison experiments and the specific comparison experimental 
data and results are presented in this paper. 

3.1. Evaluation Metrics 
We propose FBP and FEP to evaluate the accuracy of skeleton topological connection 

and HD to evaluate the accuracy of skeleton morphology. Note that the generated branch 
point cloud and its extracted skeleton of different tree species are normalized in the spatial 
range prior to evaluation by Equation (5):  𝑃୬୭୰୫ୟ୪୧୸ୟ୲୧୭୬ = ൬ 𝑥 − 𝑥௠௜௡𝑥௠௔௫ − 𝑥௠௜௡ , 𝑦 − 𝑦௠௜௡𝑦௠௔௫ − 𝑦௠௜௡ , 𝑧 − 𝑧௠௜௡𝑧௠௔௫ − 𝑧௠௜௡൰ (5)

where [𝑥௠௜௡, 𝑥௠௔௫,𝑦௠௜௡,𝑦௠௔௫ ,  𝑧௠௜௡, 𝑧௠௔௫] indicates the spatial range of the real fruit tree 
point cloud.  

The original fruit tree branch point cloud and the extracted branch skeleton are trans-
formed into the normalized 3D space, and the evaluation of skeleton extraction in this 
paper is carried out in the normalized 3D space.  

3.1.1. Skeleton Topology Accuracy Metrics FBP and FEP 
Branching angles are usually obtained by calculating the angles between branch bi-

furcation points and endpoints, while the accuracy of bifurcation point and endpoint po-
sitioning affects the topological accuracy of the fruit tree branch skeleton. Therefore, a 
reasonable evaluation of the accuracy of bifurcation point and endpoint positioning is an 
important part of the skeleton evaluation work. Since it is simpler to obtain the bifurcation 
points and endpoints of branches from real branch point cloud and is not easily influenced 
by subjective judgment, the spatial coordinates of these points in real branch point cloud 
obtained by manual labeling are used as real values to evaluate the positioning effect of 
the points of the skeleton extracted by the algorithm. 

In this study, FBP is used to evaluate the extraction effect of bifurcation points of the 
skeleton, and the definition of FBP is shown in Equation (6): 𝐹𝐵𝑃 = 2 ∗ 𝑃𝐵𝑃 ∗ 𝑅𝐵𝑃𝑃𝐵𝑃 + 𝑅𝐵𝑃  (6)

In the equation: 𝑃𝐵𝑃(𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 𝑜𝑓 𝐵𝑖𝑓𝑢𝑟𝑐𝑎𝑡𝑖𝑜𝑛 𝑃𝑜𝑖𝑛𝑡) = 𝐵𝑃𝐵𝑁 

𝑅𝐵𝑃(𝑅𝑒𝑐𝑎𝑙𝑙 𝑜𝑓 𝐵𝑖𝑓𝑢𝑟𝑐𝑎𝑡𝑖𝑜𝑛 𝑃𝑜𝑖𝑛𝑡) = 𝐵𝑃𝐵𝑇 

where 𝐵𝑃 is the number of accurately located skeleton bifurcation points extracted by the 
algorithm (set the Euclidean distance 𝑑 between the skeleton bifurcation points extracted 
by the algorithm and their nearest true skeleton bifurcation points, and if 𝑑 is less than 
the set threshold 𝑡, the skeleton bifurcation points are considered to be accurately lo-
cated), 𝐵𝑁 is the total number of skeleton bifurcation points extracted by the algorithm, 
and 𝐵𝑇 is the total number of true branch skeleton bifurcation points. 

Similarly, FEP is set in this paper to evaluate the extraction effect of skeleton end 
points. FEP is defined as shown in Equation (7): 𝐹𝐸𝑃 = 2 ∗ 𝑃𝐸𝑃 ∗ 𝑅𝐸𝑃𝑃𝐸𝑃 + 𝑅𝐸𝑃  (7)

In the equation: 𝑃𝐸𝑃(𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 𝑜𝑓 𝐸𝑛𝑑 𝑃𝑜𝑖𝑛𝑡) = 𝐸𝑃𝐸𝑁 
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𝑅𝐸𝑃(𝑅𝑒𝑐𝑎𝑙𝑙 𝑜𝑓 𝐸𝑛𝑑 𝑃𝑜𝑖𝑛𝑡) = 𝐸𝑃𝐸𝑇 

where 𝐸𝑃 is the number of accurately located skeleton endpoints extracted by the algo-
rithm (set the Euclidean distance 𝑑 between the skeleton endpoints extracted by the al-
gorithm and their nearest real skeleton endpoints, and if 𝑑 is less than the set threshold 𝑡, the skeleton endpoints are considered to be accurately located), 𝐸𝑁 is the total number 
of skeleton endpoints extracted by the algorithm, and 𝐸𝑇  is the total number of real 
branch skeleton endpoints. 

3.1.2. Skeleton Morphological Accuracy Metric HD 
To evaluate the accuracy of the skeleton morphology extracted by the algorithm, it is 

necessary to evaluate the degree of fit between the extracted skeleton and the real fruit 
tree. However, it is difficult and subjective to annotate the 3D skeleton from the real fruit 
tree branch point cloud, which will affect the accuracy of the skeleton morphology evalu-
ation results. Therefore, in this paper, we generated a point cloud around the extracted 
skeleton and measured the morphological accuracy of the extracted skeleton by compar-
ing the similarity between the generated fruit tree branch point cloud and the real fruit 
tree branch point cloud. The HD is a measure to describe the degree of similarity between 
two point sets [27], and the smaller the HD, the greater is the degree of similarity between 
the two point sets; therefore, it can be used to measure the degree of similarity between 
two point clouds. 

To evaluate the morphological accuracy of the fruit tree branch skeleton, we set the 
real branch point cloud after denoising as 𝐶௦, generated the point cloud 𝐶௚ around the 
fruit tree branch skeleton by random sampling, and calculated the average of HD between 𝐶௦ and 𝐶௚ for 𝑛 times (𝑛 = 10 in this paper) as the final HD between 𝐶௦ and 𝐶௚, which 
can reduce the error caused by a single calculation. The HD between 𝐶௦ and 𝐶௚: H(𝐶௦, 𝐶௚) 
is calculated as shown in Equation (8): 𝐻൫𝐶௦,𝐶௚൯ = ∑ 𝑚𝑎𝑥ൣℎ൫𝐶௦,𝐶௚൯,ℎ൫𝐶௚,𝐶௦൯൧௡௜ 𝑛   (8)

In the equation: ℎ൫𝐶௦,𝐶௚൯ = 𝑚𝑎𝑥௉೔∈஼ೞ 𝑚𝑖𝑛௉ೕ∈஼೒ฮ𝑃௜ − 𝑃௝ฮ 

ℎ൫𝐶௚,𝐶௦൯ = 𝑚𝑎𝑥௉ೕ∈஼೒ 𝑚𝑖𝑛௉೔∈஼ೞฮ𝑃௝ − 𝑃௜ฮ 

Figure 10 shows the generated point cloud 𝐶௚ around the extracted skeleton and the 
overlap effect with the real point cloud 𝐶௦. 
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Figure 10. Point cloud generation effect diagram (take a peach tree as an example). (a) Generated 
point cloud around the fruit tree branch skeleton. (b) Overlap effect of generated point cloud and 
original point cloud. The blue curve is the fruit tree branch skeleton, the black point is the original 
branch point cloud 𝐶௦, and the red point is the generated branch point cloud 𝐶௚. 

3.2. Comparison Experiments 
In this section, based on the evaluation metrics proposed in Section 3.1, the algorithm 

proposed in this paper is compared with the L1-medial and the LBC. Section 3.2.1 intro-
duces the comparison experiment environment; Section 3.2.2 introduces the comparison 
experiment data and results, and the analysis and discussion of the results. 

3.2.1. Experimental Environment 
The algorithms used for the experiments in this paper are performed on the same 

computer, which is configured with an AMD Ryzen 7 4800U processor with 1.80 GHz and 
16 GB running memory, and the experimental environment is a Windows 10 operating 
system. This algorithm was run using python 3.7, and the GUI was developed using C++ 
and the Qt framework. 

3.2.2. Comparison Experiments 
Currently, the L1-medial and the LBC algorithm, as the most commonly used algo-

rithms in point cloud skeleton extraction work, have been largely applied in fruit tree 
skeleton extraction tasks [7–14]. Further, the existing tree point cloud skeleton extraction 
work is also usually carried out based on these two algorithms. In this section, on the point 
cloud of fruit tree branches generated by UAV images at 50 m and 20 m, the point cloud 
skeleton extraction algorithm of fruit tree branches proposed in this paper is compared 
with L1-medial and LBC, and the specific comparison experiments and experimental re-
sults are shown in Appendix B Exhibit 2-1. 

(1) 50 m altitude comparison experiment 
In this study, we first conducted comparative experiments on the point cloud of fruit 

tree branches collected by UAV at a 50 m altitude to qualitatively evaluate the skeleton 
extraction effect of fruit tree branches, and quantitatively evaluate the three algorithms in 
terms of skeleton connection accuracy and skeleton morphology accuracy by combining 
three metrics, FEP, FBP, and HD. 

Figure 11 shows the visualization of the fruit tree branch skeleton extracted by the 
three algorithms on the point cloud of fruit trees collected at a 50 m altitude (one tree of 
each fruit tree is selected for display). 
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Figure 11. The visualization of the fruit tree branch skeleton extracted by the three algorithms on 
the point cloud of fruit trees collected at a 50 m altitude. The black points are the original fruit tree 
branch point cloud, the blue curve is the skeleton extracted by the algorithm, the green points are 
the bifurcation points of the fruit tree branch skeleton, and the red points are the end points of the 
fruit tree branch skeleton. 

From the results of the skeleton extraction in the figure, although the L1-medial and 
the LBC extracted the skeleton of the fruit tree branches, the skeleton has different degrees 
of defects (as shown by the orange dashed circles in Figure 11. Using the L1-medial algo-
rithm, when processing the sparser RGB point cloud, the skeleton of some branches could 
not be connected well. Due to the irregular distribution of the point cloud generated by 
the RGB images, the LBC extracts a ring-like structure in the branch skeleton of fruit trees, 
which does not exist in real trees, and affects the realism of the algorithm skeleton extrac-
tion effect. In contrast, the proposed algorithm extracts a more complete branch skeleton 
and correct topological connections, and the final extracted branch skeleton has a 
smoother and more natural shape due to the smoothing process of the branch skeleton in 
the algorithm. 

From the average values of the metrics in Table 2, the point cloud skeleton extraction 
algorithm proposed in this paper has higher FBP and FEP than the other two algorithms, 
reaching 64.15% and 69.94% for the four fruit trees, respectively. Meanwhile, the HD of 
the extracted skeleton by the algorithm was 0.0699, which is also smaller than those of the 
other two compared algorithms. Furthermore, from Tables in the Appendix section, the 
algorithm proposed in this paper performed the best among 47 metrics out of the total 60 
metrics for 20 fruit trees. The experimental results show that the algorithm is more accu-
rate in locating the bifurcation points and end points of the skeleton on the point cloud of 
fruit tree branches collected at a 50 m altitude, and the point cloud generated from the 
skeleton extracted by the algorithm has higher similarity with the real fruit tree branch 
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point cloud. This suggests that the skeleton of fruit tree branches extracted by the pro-
posed algorithm has better skeleton topology and morphological accuracy, and better re-
flects the real morphology of fruit tree branches. 

Table 2. The average values and variation of metrics for the skeleton extraction results of the three 
algorithms on the branch point clouds of the four types of fruit trees generated from images col-
lected at a 50 m and 20 m altitude (t = 0.03). 

  50 m 20 m Variation 
Tree_Species_Number Metric L1-Medial LBC Proposed L1-Medial LBC Proposed L1-Medial LBC Proposed 

Average_Peach 
FBP 70.76% 57.60% 83.60% 60.26% 70.41% 86.30% −10.50% 13.81% 2.71% 
FEP 73.63% 75.02% 83.64% 64.50% 65.41% 83.35% −9.13% −9.61% −0.29% 
HD 0.0647 0.0574 0.0433 0.0762 0.0698 0.0546 0.0115 0.0124 0.0113 

Average_Persimmon 
FBP 58.04% 58.13% 74.76% 68.80% 70.82% 84.77% 10.76% 13.69% 10.01% 
FEP 61.60% 67.36% 85.45% 70.71% 61.49% 90.04% 9.11% −5.87% 4.59% 
HD 0.0878 0.063 0.0582 0.0996 0.0688 0.0527 0.0118 0.0058 −0.0055 

Average_Chestnuts 
FBP 33.74% 30.35% 45.92% 59.05% 56.01% 79.93% 25.31% 26.66% 34.01% 
FEP 42.48% 33.40% 48.54% 55.51% 44.86% 83.64% 13.03% 11.46% 35.10% 
HD 0.1094 0.1032 0.0909 0.0708 0.06 0.0393 −0.0386 −0.0432 −0.0516 

Average_Plum 
FBP 40.72% 32.43% 52.31% 65.38% 63.26% 81.98% 24.66% 31.83% 29.67% 
FEP 60.20% 36.41% 62.12% 77.85% 52.79% 81.59% 17.65% 16.38% 19.46% 
HD 0.1184 0.1068 0.0871 0.097 0.0736 0.0432 −0.0215 −0.0332 −0.0439 

Average_Total 
FBP 50.82% 44.63% 64.15% 63.37% 61.13% 83.24% 12.56% 21.50% 19.10% 
FEP 59.48% 53.05% 69.94% 67.14% 56.14% 84.66% 7.67% 3.09% 14.72% 
HD 0.0951 0.0826 0.0699 0.0859 0.0681 0.0474 −0.0092 −0.0146 −0.0224 

To verify the stability of the skeleton extraction algorithm under different acquisition 
times, acquisition light conditions, and other environments, we collected point clouds of 
fruit tree branches at a 50 m altitude on 13 January, 24 February, and 4 March 2022, and 
conducted comparative experiments, and the specific experimental results are shown in 
the Appendix section following the paper (Appendix C Exhibit 3-1, Exhibit 3-2,Exhibit 
3-3). Appendix C Exhibit 3-4 in the Appendix of the paper show the standard deviations 
of the different algorithms for each metric of the fruit trees in the three comparative ex-
periments mentioned above. Based on the information presented in Appendix C Exhibit 
3-4, we can see that the algorithm of this paper has a smaller standard deviation in the 
experimental metrics compared with the L1-medial and the LBC. This indicates that the 
data fluctuation of the three 50 m altitude comparison experiments of this paper’s algo-
rithm is lower. Therefore, the algorithm proposed in this paper can maintain a good skel-
eton extraction effect under different fruit tree branch point cloud acquisition environ-
ments. 

In summary, combining the effect of fruit tree skeleton extraction and experimental 
evaluation metrics, it can be seen that in the comparison experiments of RGB point cloud 
generated from images collected at a 50 m altitude, compared with the other two algo-
rithms, the skeleton of fruit tree branches extracted by the algorithm in this paper has a 
more realistic 3D structure and has a better performance of evaluation metrics on most of 
the fruit trees. Further, the proposed algorithm can more effectively and stably extract the 
point cloud of fruit tree branches from the point cloud of fruit tree branches, and ensure 
realism of the skeleton. However, we also observed that the experimental metrics of all 
three algorithms on chestnut and plum trees are poor compared to the results on peach 
and persimmon trees. To verify the effectiveness of our algorithm on the point cloud of 
chestnut and plum trees with higher quality of point cloud, we also reduced the altitude 
of image acquisition to 20 m to generate a higher quality RGB point cloud. 

(2) 20 m altitude comparison experiment 
Figure 12 shows the visualization of the fruit tree branch skeleton extracted by the 

three algorithms on the point cloud of fruit trees collected at 20 m altitude (one tree of 
each fruit tree is selected for display). 
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Figure 12. The visualization of the fruit tree branch skeleton extracted by the three algorithms on 
the point cloud of fruit trees collected at 20 m altitude. 

The black points are the original fruit tree branch point cloud, the blue curve is the 
skeleton extracted by the algorithm, the green points are the bifurcation points of the fruit 
tree branch skeleton, and the red points are the end points of the fruit tree branch skeleton 

As shown in the figure, compared with the point cloud of fruit tree branches collected 
at 50 m, the point cloud collected by the UAV at a flight altitude of 20 m is of higher 
quality, presenting a larger number of fruit tree branches and a more complex branching 
structure of fruit trees. The effect of skeleton extraction shows that although the skeletons 
extracted by the L1-medial and LBC can show the morphology of fruit tree branches, there 
are still different degrees of broken branches and self-loops (as shown by the orange 
dashed circles in Figure 12); especially in the peach and persimmon trees with more com-
plex branch structures, the two algorithms show more skeleton topology connection er-
rors, which affect the authenticity of the extracted fruit tree branch skeleton. Compared 
with the two comparative algorithms, the proposed algorithm extracted more complete 
branch skeletons and accurate topological connections in terms of the point cloud of fruit 
tree images captured at an altitude of 20 m with more complex structures, although the 
proposed algorithm also showed local skeleton linkage errors (as shown in the gray 
dashed circles in Figure 12). 

Based on information provided in Table 2, in the comparison experiments on four 
fruit trees at 20 m altitude, the average value of FBP for the proposed algorithm is 83.24%, 
which is 19.87% higher than that of L1-medial and 17.11% higher than that of LBC; the 
average value of FEP is 84.66%, which is 17.52% higher than that of L1-medial and 28.52% 
higher than that of LBC; the average value of HD is 0.0474, which is 0.0385 lower than that 
of L1-medial algorithm and 0.0207 lower than that of LBC, which shows that the proposed 
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model achieved the best values in all three metrics. Based on the information presented in 
Appendix C Exhibit 3-5 in the Appendix text, the algorithm proposed in this paper per-
forms best in 52 metrics among 60 metrics for 20 fruit trees. It can be seen that in the point 
cloud of fruit tree branches collected at a 20 m altitude, the skeleton of fruit tree branches 
extracted by the algorithm proposed in this paper can still maintain better topology and 
morphological accuracy compared with the L1-medial and LBC. In other words, the skel-
eton extracted by the proposed algorithm is more realistic in the point cloud of fruit tree 
branches collected at a 20 m altitude. 

(3) Analysis of experimental results at different altitudes 
Figure 13 shows the average values of the experiment metrics on all fruit tree branch 

point clouds generated from images collected at both altitudes, and Table 2 shows the 
amount of variation in the average values of the metrics for the three algorithms on the 
four types of fruit trees at both altitudes. 

  

 

 

Figure 13. The average values of metrics for the three algorithms on all fruit trees. (a) Average FBP 
(F1-score of bifurcation point) for the different algorithms at 50 m and 20 m. (b) Average FEP (F1-
score of end point) for the different algorithms at 50 m and 20 m. (c) Average HD (Hausdorff dis-
tance) for the different algorithms at 50 m and 20 m 

As shown in Figure 13, with a decrease in the fruit tree point cloud collection altitude, 
the average values of FBP and FEP of the three skeleton extraction algorithms on the four 
fruit trees showed an increasing trend, and the average values of HD showed a decreasing 
trend, which showed that the quality of the collected fruit tree branch point cloud was 
improved with a reduction in the data collection altitude. 

From the column of the amount of variation in Table 2, chestnut and plum trees 
whose metrics performed poorly in the comparison experiment at a 50 m altitude, showed 
significant improvement in the skeleton extraction results in the comparison experiment 
with images taken at a 20 m altitude. For chestnut and plum trees with sparse branches, 
the improvement of fruit tree branch point cloud quality can effectively improve the ac-
curacy of the algorithm in extracting skeleton topology and morphology. The proposed 
algorithm improved the average values of FBP, FEP, and HD metrics by 34.01%, 35.10%, 
and 0.0516, respectively, for the five chestnut trees, and improved the average value by 
29.67%, 19.46%, and 0.0439, respectively, for the five plum trees. This indicates that the 
proposed algorithm can improve the skeleton extraction effect to a greater extent with 
improvement in the quality of fruit tree branch point cloud. 

We also noted that the experimental metrics of peach and persimmon trees in the 
comparison experiment at a 20 m altitude did not improve significantly with the improve-
ment of point cloud quality compared with those of chestnut and plum trees, but deteri-
orated in some metrics (e.g., the average values of FEP and HD experimental metrics of 
peach trees). The reason for this is that although the fruit tree branch point clouds collected 
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by lowering the UAV flight altitude to 20 m are of higher quality, the fruit tree branch 
point cloud of peach and persimmon trees also present a more complex structure, and the 
fine branches of the fruit tree are more distinct (as shown in Figure 14). These fine 
branches can easily be ignored in the process of skeleton extraction, which makes the fruit 
tree branch skeleton extraction more difficult. 

  
Figure 14. Point cloud of branches of the same fruit tree collected at different altitudes. 
(Tree_Peach_02 is shown as an example). (a) Point cloud of branches collected at 50 m altitude. (b) 
Point cloud of branches collected at 20 m altitude. 

From Table 2, although the average value of FEP decreased by 0.29% and the average 
value of HD increased by 0.0113 for peach trees for the proposed algorithm, the metrics 
deteriorated less compared to that in the L1-medial and LBC algorithms. The L1-medial 
algorithm reduced the FBP metric of peach tree by 10.50%, the LBC reduced the FEP met-
ric of persimmon tree by 5.87%, and both algorithms increased the HD metric of persim-
mon tree by 0.0118 and 0.0058, respectively, which shows that the proposed algorithm can 
still maintain a better performance in the complex fruit tree branch point cloud skeleton 
extraction task compared with the two other algorithms.  

4. Discussion and Conclusions 
In this paper, a branch skeleton extraction algorithm is proposed for the sparse RGB 

fruit tree point cloud collected by UAV, which can effectively extract the skeleton from 
the sparse fruit tree branch point cloud, approximate the 3D structure of the original fruit 
tree, and more realistically reflect the branch morphology of the fruit tree. The algorithm 
proposed is based on point clouds generated from images captured by UAV RGB cameras. 
Compared with the method of extracting skeleton points using point cloud data collected 
by devices such as LiDAR [7,8,12–14], the algorithm proposed can effectively reduce the 
cost of point cloud data collection while maintaining the accuracy of skeleton point ex-
traction, such as evaluate the growth of orchard trees by analyzing the tree morphometry 
using UAVs [28,29]. 

Combining the comparison experiments at 50 m and 20 m altitudes, it can be found 
that the algorithm proposed in this paper has better performance in terms of FBP, FEP and 
HD metrics compared with L1-medial and LBC. At the same time, the results of compari-
son experiments at different altitudes show that for fruit trees with sparse branch struc-
ture (e.g., chestnut and plum trees), the reduction in UAV flight altitude can improve the 
quality of the collected fruit tree branch point cloud and improve the skeleton extraction 
effect of the algorithm. However, for the more complex branch structure (e.g., peach and 
persimmon trees), with a reduction in flight altitude, the UAV can collect a more complex 
fruit tree branch point cloud structure, which brings challenges to the skeleton extraction 
of the algorithm. Therefore, when a more complex fruit tree branch structure is dealt with, 
whether the skeleton can be effectively extracted from the branch point cloud is an im-
portant basis to test the adaptability of the fruit tree point cloud skeleton extraction algo-
rithm. Compared with the L1-medial and LBC, the algorithm proposed in this paper can 
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still maintain good experimental results on more complex fruit tree branch point cloud, 
indicating that the algorithm proposed in this paper can also adapt to the extraction task 
of the skeleton of more complex fruit tree branch point cloud (Figure 15). 

 
Figure 15. The effect of the algorithm in extracting the branch skeleton of fruit trees in an orchard 
plot (the different color curves in the figure indicate the branch skeleton of each fruit tree). 

As a conclusion, after the experiments and discussions in this paper, the proposed 
method can effectively extract the skeleton from the point cloud of fruit tree branches 
measured by UAV photogrammetry. It is undeniable that extracting the skeleton from a 
complex tree branch point cloud is still a challenging task. Unlike conventional objects 
with clear 3D structures, tree branches have open surfaces and complex branches, and the 
collected point cloud often fails to clearly represent the tree branch morphology, causing 
greater difficulties in the subsequent branch skeleton extraction. Therefore, the algorithm 
proposed in this paper still has areas for improvement: 

First, based on the experimental results, it can be found that the algorithm in this 
paper shows advantages in fruit tree branch point cloud skeleton extraction. However, 
there are still some problems, such as poor performance in FEP and FBP metrics of some 
fruit trees in the comparison experiments. The reason for this is that the algorithm in this 
paper aggregates the fruit tree branch point cloud, and the skeleton point extraction and 
subsequent skeleton topology connection are performed on the aggregated point cloud, 
and the deviation of skeleton key point positioning occurs. In future work, optimizing the 
positioning of skeleton end points by using the search method with direction and the po-
sitioning of skeleton bifurcation points by using the local density judgment can be consid-
ered. 

Second, at this stage, the parameters need to be set manually during skeleton extrac-
tion. For example, the number of points and iterations of regional point cloud aggregation 
will affect the point cloud aggregation and the recurrence depth of spatial octree, and 
subspace point threshold will affect the extracted skeleton points, among other such is-
sues. The parameters during skeleton extraction need to be adjusted according to the type 
and height of fruit trees and other attributes, which may require some experience. It is 
possible to conduct several experiments on branch point clouds of different tree species 
to acquire empirical values to apply to the needs of different types of fruit trees, and also 
to try to project reasonable parameter thresholds based on the projected area and space 
size of fruit trees in the vertical direction. 
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In the actual work of fruit tree morphological analysis, the extracted fruit tree skele-
ton can be used to calculate parameters such as branch length and branch angle (e.g., the 
angle between main and secondary branches, and other parameters, as shown in  
Figure 16) to achieve the task of automated fruit tree morphological analysis. On the basis 
of the extracted fruit tree branch skeleton, phenotypic information of fruit tree canopy can 
be calculated, which can be used in practical applications for tasks such as orchard canopy 
cover, biomass density and carbon sequestration estimation [30–32]. In addition, the real 
3D tree branch skeleton is the basis for modeling scenes of orchards and woodlands, and 
the algorithm proposed in this paper can extract a realistic fruit tree branch skeleton, and 
the reconstructed tree model on this basis can better restore the real 3D morphology of 
fruit trees. Therefore, the virtual 3D model of fruit trees can be formed based on the ex-
tracted skeleton by regularized programming and mapping in future work (as shown in 
Figure 17) to meet the demand for 3D visualization display of orchards and other scenes 
[33–36]. 

 
Figure 16. Automated calculation of fruit tree branch angles using the skeleton extraction software 
in this paper. 

 
Figure 17. Fruit tree branch reconstruction based on the skeleton extracted by the algorithm in this 
paper (persimmon tree is shown as an example). (a) Original fruit tree branch point cloud. (b) Fruit 
tree branch skeleton extracted by this algorithm. 
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Appendix A. Branch and Trunk Skeleton Key Point Adjustment Strategy 
Skeleton bifurcation point adjustment: as the point cloud at the bifurcation point of 

the fruit tree branches is dense, the extracted skeleton bifurcation points may deviate from 
the bifurcation center of the branch point cloud. As the subsequent optimization of the 
skeleton morphology needs to be based on the skeleton to accurately locate the bifurcation 
points of the skeleton and to better assist this process, the bifurcation points of the skeleton 
need to be adjusted toward the bifurcation center of the branch point cloud by moving the 
bifurcation points as far as possible toward the parent branch. Since the positioning of the 
bifurcation points of the skeleton in 3D space cannot be adjusted by simply fitting straight 
lines of the skeleton segments to find the intersection points (the intersection points of 
multiple non-coplanar lines cannot be determined in 3D space). Therefore, the following 
skeleton bifurcation point adjustment strategy is designed in this paper. 

As shown in Figure A1, let the initial extracted coarse skeleton bifurcation point be 𝑏𝑝, the sub-branch skeleton points neighboring 𝑏𝑝 be 𝑠𝑝_1, 𝑠𝑝_2, and the parent branch 
skeleton point be 𝑠𝑝_𝑓, let the line between 𝑠𝑝_1 and 𝑠𝑝_𝑓 be 𝐿ଵ, the line between 𝑠𝑝_2 
and 𝑠𝑝_𝑓 be 𝐿ଶ, and the line between 𝑏𝑝 and 𝑠𝑝_𝑓 be 𝐿௙. Calculate the projection points 𝑓ଵ and 𝑓ଶ of 𝑏𝑝 on 𝐿ଵ and 𝐿ଶ, and then calculate the midpoints of the projection points 𝑓ଵ and 𝑓ଶ on 𝐿௙ as the new skeleton bifurcation points 𝑏𝑝,, and update the skeleton seg-
ments where they are located, and the adjusted skeleton bifurcation points are more rea-
sonably located. 
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Figure A1. Schematic diagram of skeleton bifurcation point adjustment. (a) Positioning of skeleton 
bifurcation points before adjustment. (b) Positioning of skeleton bifurcation points after adjust-
ment. 

Skeleton end point adjustment: since the skeleton point extraction operation is built 
on top of the aggregated fruit tree branch point cloud, the extracted skeleton endpoints 
will naturally move towards the inside of the branch and cannot be positioned to the end 
of the fruit tree branch. To locate the skeleton endpoints accurately, it is necessary to ex-
tend the skeleton as far as possible to the endpoints of the fruit tree branch point cloud in 
the vicinity of the extracted skeleton endpoints. For this purpose, the following skeleton 
endpoint adjustment strategy is designed in this paper. 

As shown in Figure A2, a spherical region with radius 𝑟 (empirical value) is set at 
the end point 𝑒𝑝 as the center of the sphere 𝑂ா, and the point set 𝐶ா in which the point 
cloud 𝐶 is in this region after the denoising is searched. The line where the skeleton point 𝑠𝑝 connected with the end point 𝑒𝑝 is taken as the normal 𝑙, the plane 𝛼 perpendicular 
to 𝑙 and containing the end point 𝑒𝑝 is calculated, the plane 𝛼 is used to partition 𝐶ா, 
the set 𝐴ா of points in 𝐶ா that are on the opposite side from sp are separated and the 
point in 𝐴ா which is farthest from ep as the adjusted skeleton endpoint 𝑒𝑝, is selected, 
and ep is connected with 𝑒𝑝,, as the extension of this skeleton segment. 

 
Figure A2. Schematic diagram of skeleton endpoint adjustment. (a) Skeleton endpoint positioning 
before adjustment. (b) Skeleton endpoint positioning after adjustment. 
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Appendix B. Overview of experimental results 
Exhibit 2-1. Comparison experimental contents of fruit tree branch point cloud skel-

eton extraction. 
Comparison Experiments Experimental Content Figures and Tables 

(1) 50 m altitude comparison experi-
ment 

(1-1) Visual analysis of skeleton extraction effect at 50 m 
altitude Figure 11 

(1-2) Metric analysis of skeleton extraction effect at 50 m 
altitude 

Table 2 
Exhibit 1-1 

(1-3) Algorithm stability analysis (analysis of three 50 m 
altitude experimental metrics) 

Appendix C Exhibit 
3-1, 3-2, 3-3 Appen-

dix C Exhibit 3-4 

(2) 20 m altitude comparison experi-
ment 

(2-1) Visual analysis of skeleton extraction effect at 20 m 
altitude 

Figure 12 

(2-2) Metric analysis of skeleton extraction effect at 20 m 
altitude 

Table 2  
Exhibit 3-1 

(3) Analysis of experimental results at 
different altitudes 

Analysis of the change of metrics from 50 m to 20 m ex-
perimental results 

Table2 
Figure 13 
Figure 14 

Appendix C. The Detailed Comparative Experimental Results of This Article 
The arrows in the metrics column in the attached table represent the experimental 

metrics for which the algorithms in this paper performed poorly, and the bold font in each 
metric represents the value of the metric corresponding to the best algorithm under that 
metric. 

Exhibit 3-1: comparison experimental results of branch point cloud skeleton extrac-
tion for fruit trees collected at 50 m altitude (1). 

(Comparison experiment time: 13 January 2022.) 

Tree_Species_Number Metric L1-Medial LBC Proposed 

Tree_Peach_01 
FBP 66.67% 58.82% 85.71%  
FEP 42.11% 72.73% 82.35%  
HD 0.0790 0.0756 0.0631  

Tree_Peach_02 
FBP 81.82% 76.00% 85.71%  
FEP 87.50% 81.25% 89.66%  
HD 0.0897 0.0399 0.0353  

Tree_Peach_03 
FBP 66.67% 47.62% 76.19%  
FEP 86.96% 51.67% 69.57% ↓ 
HD 0.0495 0.0584 0.0432  

Tree_Peach_04 
FBP 72.00% 50.00% 81.48%  
FEP 82.35% 78.57% 89.66%  
HD 0.0502 0.0734 0.0394  

Tree_Peach_05 
FBP 66.67% 55.56% 88.89%  
FEP 69.23% 90.91% 86.96% ↓ 
HD 0.0410 0.0398 0.0354  

Average_Peach 
FBP 70.76% 57.60% 83.60%  
FEP 73.63% 75.02% 83.64%  
HD 0.0647 0.0574 0.0433  

Tree_Persimmon_01 
FBP 42.86% 62.50% 80.00%  
FEP 81.82% 92.31% 86.49% ↓ 
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HD 0.1043 0.0479 0.0412  

Tree_Persimmon_02 
FBP 58.52% 55.17% 68.97%  
FEP 62.50% 66.67% 87.50%  
HD 0.0851 0.0772 0.0750  

Tree_Persimmon_03 
FBP 58.82% 66.67% 85.71%  
FEP 53.33% 86.96% 86.96%  
HD 0.0963 0.0535 0.0461  

Tree_Persimmon_04 
FBP 80.00% 70.59% 78.26% ↓ 
FEP 34.48% 55.17% 77.42%  
HD 0.0809 0.0709 0.0739 ↑ 

Tree_Persimmon_05 
FBP 50.00% 35.71% 60.87%  
FEP 75.86% 35.71% 88.89%  
HD 0.0725 0.0658 0.0547  

Average_Persimmon 
FBP 58.04% 58.13% 74.76%  
FEP 61.60% 67.36% 85.45%  
HD 0.0878 0.0630 0.0582  

Tree_Chestnuts_01 
FBP 23.16% 31.58% 46.15%  
FEP 40.00% 22.22% 47.06%  
HD 0.0909 0.1132 0.0647  

Tree_Chestnuts_02 
FBP 22.22% 12.50% 33.33%  
FEP 47.06% 38.10% 40.67% ↓ 
HD 0.1582 0.1743 0.1406  

Tree_Chestnuts_03 
FBP 33.33% 55.17% 55.17%  
FEP 34.48% 47.62% 58.82%  
HD 0.0591 0.0605 0.0807 ↑ 

Tree_Chestnuts_04 
FBP 40.00% 12.50% 22.22% ↓ 
FEP 53.33% 19.05% 46.15%  
HD 0.1325 0.0953 0.1023 ↑ 

Tree_Chestnuts_05 
FBP 50.00% 40.00% 72.73%  
FEP 37.50% 40.00% 50.00%  
HD 0.1250 0.0728 0.0662  

Average_Chestnuts 
FBP 33.74% 30.35% 45.92%  
FEP 42.48% 33.40% 48.54%  
HD 0.1094 0.1032 0.0909  

Tree_Plum_01 
FBP 36.36% 28.57% 42.86%  
FEP 70.59% 52.17% 58.82% ↓ 
HD 0.0845 0.1023 0.0818  

Tree_Plum_02 
FBP 22.22% 54.55% 61.54%  
FEP 66.67% 26.67% 66.67%  
HD 0.1365 0.1036 0.0770  

Tree_Plum_03 
FBP 60.00% 26.67% 57.14% ↓ 
FEP 30.77% 11.11% 56.92%  
HD 0.1611 0.0773 0.0993 ↑ 

Tree_Plum_04 
FBP 25.00% 9.52% 40.00%  
FEP 71.43% 50.00% 66.67% ↓ 
HD 0.1154 0.1147 0.0683  

Tree_Plum_05 FBP 60.00% 42.86% 60.00%  
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FEP 61.54% 42.11% 61.54%  
HD 0.129 0.136 0.109  

Average_Plum 
FBP 40.72% 32.43% 52.31%  
FEP 60.20% 36.41% 62.12%  
HD 0.1184 0.1068 0.0871  

Average_Total 
FBP 50.82% 44.63% 64.15%  
FEP 59.48% 53.05% 69.94%  
HD 0.0951 0.0826 0.0699  

Exhibit 3-2: comparison experimental results of branch point cloud skeleton extrac-
tion for fruit trees collected at 50 m altitude (2). 

(Comparison experiment time: 14 February 2022). 

Tree_Species_Number Metric L1-Medial LBC Proposed 

Tree_Peach_01 
FBP 61.54% 58.82% 85.71%  
FEP 66.67% 72.73% 82.35%  
HD 0.0781 0.0716 0.0628  

Tree_Peach_02 
FBP 66.67% 76.00% 85.71%  
FEP 85.71% 81.25% 89.66%  
HD 0.0927 0.0417 0.0367  

Tree_Peach_03 
FBP 63.16% 42.11% 72.73%  
FEP 83.33% 51.67% 66.67% ↓ 
HD 0.0483 0.0563 0.0453  

Tree_Peach_04 
FBP 72.00% 59.26% 88.89%  
FEP 80.00% 81.48% 89.66%  
HD 0.0579 0.0397 0.0359  

Tree_Peach_05 
FBP 66.67% 52.63% 88.89%  
FEP 76.92% 90.91% 86.96% ↓ 
HD 0.0635 0.0372 0.0332  

Average_Peach 
FBP 66.01% 57.76% 84.39%  
FEP 78.53% 75.61% 83.06%  
HD 0.0698 0.0493 0.0428  

Tree_Persimmon_01 
FBP 60.00% 52.94% 80.00%  
FEP 95.00% 91.89% 89.47% ↓ 
HD 0.1129 0.0547 0.0450  

Tree_Persimmon_02 
FBP 60.00% 46.67% 69.57%  
FEP 68.57% 73.33% 76.47%  
HD 0.0805 0.0798 0.0703  

Tree_Persimmon_03 
FBP 53.33% 72.73% 66.67%  
FEP 54.55% 86.96% 86.96%  
HD 0.1277 0.0706 0.0504  

Tree_Persimmon_04 
FBP 78.79% 75.86% 75.86% ↓ 
FEP 66.67% 66.67% 90.91%  
HD 0.0784 0.0689 0.0694 ↑ 

Tree_Persimmon_05 
FBP 70.00% 34.48% 60.87%  
FEP 81.48% 35.71% 88.89%  
HD 0.0710 0.0646 0.0503  

Average_Persimmon FBP 64.42% 56.54% 70.59%  
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FEP 73.25% 70.91% 86.54%  
HD 0.0972 0.0677 0.0571  

Tree_Chestnuts_01 
FBP 23.16% 31.58% 46.15%  
FEP 40.00% 22.22% 47.06%  
HD 0.1017 0.1078 0.0650  

Tree_Chestnuts_02 
FBP 22.22% 11.77% 33.33%  
FEP 47.06% 42.11% 40.67% ↓ 
HD 0.1563 0.1708 0.1418  

Tree_Chestnuts_03 
FBP 33.33% 55.17% 55.17%  
FEP 34.48% 47.62% 58.82%  
HD 0.0573 0.0619 0.0791 ↑ 

Tree_Chestnuts_04 
FBP 40.00% 10.53% 22.22% ↓ 
FEP 53.33% 17.39% 46.15%  
HD 0.1265 0.0922 0.1086 ↑ 

Tree_Chestnuts_05 
FBP 50.00% 41.67% 50.00%  
FEP 37.50% 40.00% 50.00%  
HD 0.1293 0.0747 0.0658  

Average_Chestnuts 
FBP 33.74% 30.14% 41.38%  
FEP 42.48% 33.87% 48.54%  
HD 0.1121 0.1015 0.0921  

Tree_Plum_01 
FBP 36.36% 28.57% 42.86%  
FEP 70.59% 52.17% 58.82% ↓ 
HD 0.0864 0.0865 0.0793  

Tree_Plum_02 
FBP 22.22% 50.00% 76.92%  
FEP 70.59% 37.50% 66.67%  
HD 0.1018 0.0987 0.0750  

Tree_Plum_03 
FBP 60.00% 37.50% 57.14% ↓ 
FEP 30.77% 11.11% 56.92%  
HD 0.1736 0.0801 0.0984 ↑ 

Tree_Plum_04 
FBP 25.00% 9.52% 36.36%  
FEP 71.43% 50.00% 66.67% ↓ 
HD 0.1113 0.1320 0.0656  

Tree_Plum_05 
FBP 60.00% 42.86% 60.00%  
FEP 66.67% 42.11% 72.34%  
HD 0.1701 0.1382 0.1186  

Average_Plum 
FBP 40.72% 33.69% 54.66%  
FEP 62.01% 38.58% 64.28%  
HD 0.1216 0.1071 0.0874  

Average_Total 
FBP 51.22% 44.53% 62.75%  
FEP 64.07% 54.74% 70.61%  
HD 0.1002 0.0814 0.0698  

Exhibit 3-3: comparison experimental results of branch point cloud skeleton extrac-
tion for fruit trees collected at 50 m altitude (3). 

(Comparison experiment time: 4 March 2022). 
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Tree_Species_Number Metric L1-Medial LBC Proposed 

Tree_Peach_01 
FBP 76.92% 58.82% 85.71%  
FEP 66.67% 63.64% 82.35%  
HD 0.0786 0.0692 0.0651  

Tree_Peach_02 
FBP 83.33% 76.00% 88.00%  
FEP 85.71% 81.25% 89.66%  
HD 0.0880 0.0407 0.0390  

Tree_Peach_03 
FBP 63.16% 38.10% 76.19%  
FEP 76.92% 51.67% 69.57% ↓ 
HD 0.0490 0.0521 0.0456  

Tree_Peach_04 
FBP 69.57% 46.15% 81.48%  
FEP 78.57% 85.71% 89.66%  
HD 0.0557 0.0650 0.0343  

Tree_Peach_05 
FBP 80.00% 44.44% 88.89%  
FEP 80.00% 90.91% 86.96% ↓ 
HD 0.0512 0.0392 0.0333  

Average_Peach 
FBP 74.60% 52.70% 84.05%  
FEP 77.58% 74.64% 83.64%  
HD 0.0669 0.0532 0.0435  

Tree_Persimmon_01 
FBP 53.85% 56.25% 80.00%  
FEP 81.82% 91.89% 89.47% ↓ 
HD 0.0505 0.0533 0.0489  

Tree_Persimmon_02 
FBP 60.00% 57.14% 69.57%  
FEP 62.07% 75.00% 76.47%  
HD 0.0817 0.0797 0.0723  

Tree_Persimmon_03 
FBP 57.14% 66.67% 66.67%  
FEP 60.87% 86.96% 86.96%  
HD 0.1213 0.0739 0.0557  

Tree_Persimmon_04 
FBP 78.79% 68.97% 75.86% ↓ 
FEP 90.91% 60.00% 90.91%  
HD 0.0977 0.0681 0.0685 ↑ 

Tree_Persimmon_05 
FBP 55.56% 31.25% 60.87%  
FEP 62.86% 35.71% 88.89%  
HD 0.0800 0.0688 0.0422  

Average_Persimmon 
FBP 61.07% 56.06% 70.59%  
FEP 0.7170 0.6991 0.8654  
HD 0.0862 0.0687 0.0575  

Tree_Chestnuts_01 
FBP 16.67% 40.00% 42.86%  
FEP 33.33% 21.05% 66.67%  
HD 0.0921 0.0904 0.0625  

Tree_Chestnuts_02 
FBP 22.22% 11.77% 33.33%  
FEP 47.06% 40.00% 40.67% ↓ 
HD 0.1513 0.1542 0.1458  

Tree_Chestnuts_03 
FBP 33.33% 55.17% 55.17%  
FEP 34.48% 47.62% 58.82%  
HD 0.0656 0.0685 0.0776 ↑ 

Tree_Chestnuts_04 
FBP 40.00% 9.52% 22.22% ↓ 
FEP 53.33% 17.39% 46.15%  
HD 0.1189 0.0790 0.0977 ↑ 

Tree_Chestnuts_05 
FBP 66.67% 41.67% 66.67%  
FEP 50.00% 42.86% 50.00%  
HD 0.1036 0.0870 0.0669  



Drones 2023, 7, 65 30 of 34 
 

Average_Chestnuts 
FBP 35.78% 31.63% 44.05%  
FEP 43.64% 33.78% 52.46%  
HD 0.1039 0.0958 0.0901  

Tree_Plum_01 
FBP 36.36% 26.09% 42.86%  
FEP 68.52% 50.00% 58.82% ↓ 
HD 0.0867 0.0973 0.0810  

Tree_Plum_02 
FBP 22.22% 50.00% 76.92%  
FEP 66.67% 25.00% 72.34%  
HD 0.1060 0.1252 0.0609  

Tree_Plum_03 
FBP 60.00% 31.53% 57.14% ↓ 
FEP 30.77% 11.11% 47.09%  
HD 0.1412 0.0793 0.0870 ↑ 

Tree_Plum_04 
FBP 25.00% 9.52% 36.36%  
FEP 71.43% 50.00% 66.67% ↓ 
HD 0.1341 0.1242 0.0976  

Tree_Plum_05 
FBP 44.44% 28.57% 57.14%  
FEP 66.67% 42.11% 66.67%  
HD 0.1794 0.1518 0.1018  

Average_Plum 
FBP 37.61% 29.14% 54.09%  
FEP 60.81% 35.64% 62.32%  
HD 0.1295 0.1155 0.0857  

Average_Total 
FBP 52.26% 42.38% 63.20%  
FEP 63.43% 53.49% 71.24%  
HD 0.0966 0.0833 0.0692  

Exhibit 3-4: standard deviation of the comparison experimental results of branch 
point cloud skeleton extraction for fruit trees collected at 50 m altitude. 

(Comparison experiment time: 4 March 2022). 

Tree_Species_Number Metric L1-Medial LBC Proposed 

Tree_Peach_01 
FBP 0.0783 0.0000 0.0000 
FEP 0.1418 0.0525 0.0000 
HD 0.0004 0.0032 0.0013 

Tree_Peach_02 
FBP 0.0922 0.0000 0.0132 
FEP 0.0103 0.0000 0.0000 
HD 0.0024 0.0009 0.0019 

Tree_Peach_03 
FBP 0.0203 0.0478 0.0200 
FEP 0.0508 0.0000 0.0167 
HD 0.0006 0.0032 0.0013 

Tree_Peach_04 
FBP 0.0141 0.0674 0.0428 
FEP 0.0191 0.0359 0.0000 
HD 0.0040 0.0175 0.0026 

Tree_Peach_05 
FBP 0.0770 0.0576 0.0000 
FEP 0.0555 0.0000 0.0000 
HD 0.0112 0.0014 0.0012 

Average_Peach 
FBP 0.0430 0.0288 0.0040 
FEP 0.0260 0.0049 0.0033 
HD 0.0025 0.0041 0.0004 

Tree_Persimmon_01 
FBP 0.0868 0.0485 0.0000 
FEP 0.0761 0.0024 0.0173 
HD 0.0338 0.0036 0.0039 

Tree_Persimmon_02 
FBP 0.0085 0.0557 0.0035 
FEP 0.0364 0.0441 0.0637 
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HD 0.0024 0.0015 0.0024 

Tree_Persimmon_03 
FBP 0.0281 0.0350 0.1100 
FEP 0.0405 0.0000 0.0000 
HD 0.0166 0.0110 0.0048 

Tree_Persimmon_04 
FBP 0.0070 0.0361 0.0139 
FEP 0.2831 0.0577 0.0779 
HD 0.0105 0.0015 0.0029 

Tree_Persimmon_05 
FBP 0.1032 0.0231 0.0000 
FEP 0.0955 0.0000 0.0000 
HD 0.0048 0.0022 0.0063 

Average_Persimmon 
FBP 0.0319 0.0109 0.0241 
FEP 0.0633 0.0183 0.0063 
HD 0.0059 0.0030 0.0006 

Tree_Chestnuts_01 
FBP 0.0375 0.0486 0.0190 
FEP 0.0385 0.0067 0.1132 
HD 0.0059 0.0119 0.0014 

Tree_Chestnuts_02 
FBP 0.0000 0.0042 0.0000 
FEP 0.0000 0.0201 0.0000 
HD 0.0035 0.0108 0.0027 

Tree_Chestnuts_03 
FBP 0.0000 0.0000 0.0000 
FEP 0.0000 0.0000 0.0000 
HD 0.0044 0.0043 0.0015 

Tree_Chestnuts_04 
FBP 0.0000 0.0151 0.0000 
FEP 0.0000 0.0096 0.0000 
HD 0.0068 0.0087 0.0055 

Tree_Chestnuts_05 
FBP 0.0962 0.0096 0.1177 
FEP 0.0722 0.0165 0.0000 
HD 0.0138 0.0077 0.0005 

Average_Chestnuts 
FBP 0.0118 0.0080 0.0228 
FEP 0.0067 0.0025 0.0226 
HD 0.0042 0.0039 0.0010 

Tree_Plum_01 
FBP 0.0000 0.0143 0.0000 
FEP 0.0119 0.0126 0.0000 
HD 0.0012 0.0081 0.0013 

Tree_Plum_02 
FBP 0.0000 0.0262 0.0888 
FEP 0.0226 0.0679 0.0328 
HD 0.0189 0.0141 0.0088 

Tree_Plum_03 
FBP 0.0000 0.0543 0.0000 
FEP 0.0000 0.0000 0.0568 
HD 0.0163 0.0015 0.0068 

Tree_Plum_04 
FBP 0.0000 0.0000 0.0210 
FEP 0.0000 0.0000 0.0000 
HD 0.0122 0.0086 0.0178 

Tree_Plum_05 
FBP 0.0898 0.0825 0.0165 
FEP 0.0296 0.0000 0.0540 
HD 0.0270 0.0086 0.0084 

Average_Plum 
FBP 0.0180 0.0235 0.0123 
FEP 0.0092 0.0152 0.0120 
HD 0.0057 0.0050 0.0009 

Average_Total 
FBP 0.0075 0.0127 0.0071 
FEP 0.0249 0.0088 0.0065 
HD 0.0026 0.0010 0.0004 



Drones 2023, 7, 65 32 of 34 
 

Exhibit 3-5: comparison experimental results of branch point cloud skeleton extrac-
tion for fruit trees collected at 20 m altitude. 

(Comparison experiment time: 4 March 2022). 

Tree_Species_Number Metric L1-Medial LBC Proposed 

Tree_Peach_01 
FBP 55.56% 59.38% 82.35%  
FEP 62.30% 62.30% 81.69%  
HD 0.0741 0.0751 0.0651  

Tree_Peach_02 
FBP 65.71% 73.56% 81.25%  
FEP 63.93% 65.00% 79.25%  
HD 0.1025 0.0862 0.1002 ↑ 

Tree_Peach_03 
FBP 60.61% 72.73% 83.72%  
FEP 71.11% 71.80% 71.11% ↓ 
HD 0.0503 0.0557 0.0387  

Tree_Peach_04 
FBP 51.52% 70.73% 92.31%  
FEP 61.54% 62.34% 89.58%  
HD 0.0909 0.0547 0.0339  

Tree_Peach_05 
FBP 67.93% 80.65% 91.89%  
FEP 63.64% 65.63% 95.12%  
HD 0.0656 0.0775 0.0350  

Average_Peach 
FBP 60.26% 71.41% 86.30%  
FEP 64.50% 65.41% 83.35%  
HD 0.0762 0.0698 0.0546  

Tree_Persimmon_01 
FBP 75.00% 83.08% 82.35%  
FEP 75.00% 68.85% 88.57%  
HD 0.0855 0.0612 0.0675 ↑ 

Tree_Persimmon_02 
FBP 61.22% 70.18% 87.50%  
FEP 55.74% 59.26% 89.55%  
HD 0.1263 0.0713 0.0589  

Tree_Persimmon_03 
FBP 80.00% 65.39% 79.25% ↓ 
FEP 81.36% 46.81% 93.55%  
HD 0.0860 0.0713 0.0424  

Tree_Persimmon_04 
FBP 63.16% 60.47% 80.77%  
FEP 83.64% 47.83% 89.66%  
HD 0.0937 0.0836 0.0394  

Tree_Persimmon_05 
FBP 64.62% 80.00% 93.98%  
FEP 57.83% 84.71% 88.89%  
HD 0.1205 0.0567 0.0554  

Average_Persimmon 
FBP 68.80% 71.82% 84.77%  
FEP 70.71% 61.49% 90.04%  
HD 0.0996  0.0688  0.0527  

Tree_Chestnuts_01 
FBP 28.57% 66.67% 60.00% ↓ 
FEP 38.46% 31.58% 69.57%  
HD 0.0659 0.0686 0.0532  

Tree_Chestnuts_02 
FBP 66.67% 62.50% 66.67%  
FEP 34.78% 57.14% 81.67%  
HD 0.1004 0.0701 0.0321  

Tree_Chestnuts_03 
FBP 53.33% 70.59% 84.12%  
FEP 66.67% 42.11% 91.74%  
HD 0.0554 0.0532 0.0336  

Tree_Chestnuts_04 
FBP 66.67% 50.00% 94.74%  
FEP 47.62% 43.48% 85.24%  
HD 0.0967 0.0560 0.0291  
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Tree_Chestnuts_05 
FBP 80.00% 35.29% 94.12%  
FEP 90.00% 50.00% 90.00%  
HD 0.0405 0.0521 0.0483 ↑ 

Average_Chestnuts 
FBP 59.05% 57.01% 79.93%  
FEP 55.51% 44.86% 83.64%  
HD 0.0708  0.0600  0.0393  

Tree_Plum_01 
FBP 66.67% 32.00% 69.57%  
FEP 92.31% 57.14% 88.89% ↓ 
HD 0.1284 0.0604 0.0575  

Tree_Plum_02 
FBP 57.14% 71.43% 82.35%  
FEP 75.00% 53.33% 77.78%  
HD 0.0415 0.0544 0.0285  

Tree_Plum_03 
FBP 58.82% 84.21% 72.73% ↓ 
FEP 75.00% 60.00% 75.00%  
HD 0.1100 0.1007 0.0441  

Tree_Plum_04 
FBP 70.59% 73.68% 95.24%  
FEP 70.00% 50.00% 78.26%  
HD 0.1113 0.0630 0.0407  

Tree_Plum_05 
FBP 73.68% 60.00% 90.00%  
FEP 76.92% 43.48% 88.00%  
HD 0.0621 0.0893 0.0454  

Average_Plum 
FBP 65.38% 64.26% 81.98%  
FEP 77.85% 52.79% 81.59%  
HD 0.0970  0.0736  0.0432  

Average_Total 
FBP 63.37% 66.13% 83.24%  
FEP 67.14% 56.14% 84.66%  
HD 0.0859 0.0681 0.0474  
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