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ESTIMATING INDIVIDUAL TREE HEIGHTS AND DBHS FROM
VERTICALLY DISPLACED SPHERICAL IMAGE PAIRS

H. Wang , T.R. Yang , J. Waldy , J A Kershaw, Jr.

University of New Brunswick, The Faculty of Forestry and Environmental Management, Fredericton, NB, Canada

Abstract. Individual tree parameters, such as diameter at breast height (DBH) and tree height, are
fundamental measurements in forest inventory, and often labour intensive and require significant financial
expenditures. Applying digital imaging in forest inventory is an efficient way to decrease the workload. In
this study, spherical images taken using a novel commercial 360◦ camera (Ricoh Theta S) and stereographic
geometry were applied to obtain these parameters directly without stitching multiple images from common
cameras. This technology was validated in both a sparse urban forest (pairwise comparison) and denser
real forest (distributional comparison) in Atlantic Canada. The DBH (r2 > 0.76) and height (Dmax
< 0.25, K-S test) showed high correspondence with field measures. The spherical camera represents a
low-cost option to terrestrial laser scanning and has potential to produce more accurate forest-level es-
timates with quicker field and office processing time than current under-canopy remote sensing technologies.

Keywords: panorama images; digital camera; forest inventory; remote sensing; horizontal point
sampling

1 Introduction

Forests are the dominant terrestrial ecosystems and
account for over three quarters of gross primary pro-
ductivity and plant biomass on the Earth (Pan et al.,
2013). They provide many ecosystem services including
watershed protection, soil structure maintenance, and
global carbon storage. Individual tree stem attributes,
such as diameters, heights and spatial locations, are crit-
ical measurements in most forest inventories (Kershaw
et al., 2016), and are the fundamental variables used in
allometric equations to estimate biomass, volume, and
carbon (Blake et al., 1991; Hayashi et al., 2015; Lambert
et al., 2005; Smith and Brand, 1983; Xing et al., 2005;
Zianis et al., 2005). How to measure these parameters
across extensive forest areas with high efficiency and low
costs is a continuing challenge for all forest inventory
specialists (Gadow et al., 2009; Husch, 1980).

For under canopy tree measurements, traditional tools
such as diameter tapes and clinometers are widely used.
These basic tools have been modified and digitized to
make field data collection more efficient, including opti-
cal callipers, rangefinder dendrometers, and optical forks
(Clark et al., 2000a). Although several of these instru-
ments have high accuracy and precision, the high costs
and the continued focus on individual trees limit wide-

spread use. Hence, many instruments have disappeared
from the market (Clark et al., 2000a; Perng et al., 2018;
Shimizu et al., 2014). Laser and sonic instruments for
measuring tree heights have had greater success than
digital instruments for diameter measurement (Clark et
al., 2000a). The success of these instruments over sim-
ilar ones for DBH measurement is probably due to the
difficulty and time-consuming nature of height measure-
ment using traditional tools. More repeatable measure-
ments and reduced field time has contributed to these
instruments being widely adopted in forest inventory op-
erations.

Photogrammetry has a long history of use in forestry.
Reineke (1940) was among the first to develop the idea
of using terrestrial photos in forest inventory. However,
use of photos requires establishing scale. Field measured
distances were commonly used in early studies (Clark et
al., 2000a,b). Another popular method to establish scale
was the use of reference targets with known lengths or
sizes (poles, tags, or laser facula). These methods have
been widely applied in photogrammetry studies (Celes
et al., 2019; Dean, 2003; Pengle et al., 2013; Shimizu
et al., 2014; Varjo et al., 2006). Multiple photos with
known shifts in position also can be used to establish
scale stereographically (Clark et al., 1998).
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Many studies focus only on single tree images and in-
dividual tree measurements. However, for inventory ef-
ficiency, methods to extract estimates for multiple trees
without the need to shift the camera for each tree of in-
terest are required (Perng et al., 2018; Stewart, 2004).
DeCourt (1956) demonstrated how printed photos and
manual processing could be used to estimate basal area
per ha using angle count sampling methods (Bitterlich,
1984). With the advent of affordable digital cameras,
Stewart (2004) revived this idea and took a series of 8
photographs to represent the plot, while Fastie (2010)
used ultra-high resolution panoramas stitched from 504
photos to estimate stand basal area. In both studies,
the angle gauge was expressed in terms of pixel widths
and trees with pixel widths greater than the angle gauge
pixel width were counted as ”in”. Dick et al. (2010) used
a single row of 24 horizontal photos to map tree locations
from stitched panoramas.

Lu et al. (2019) recently expanded this idea to measure
tree diameters at different heights. However, for param-
eters other than stand basal area based on angle count
sampling, all of these studies required scale tags (Dick et
al., 2010; Lu et al., 2019) on each tree or measured field
distances and slopes (Lu et al., 2019). Measuring or tag-
ging individual trees is time consuming and costly, and,
other than providing a permanent record of field con-
ditions, the photos have no benefit for improving field
inventory efficiency. In addition, errors resulting from
the stitching of several digital image cannot be avoided
(Dick et al., 2010; Fastie, 2010; Lu et al., 2019; Perng et
al., 2018).

Using wide-angle hemispherical lenses has potential
to eliminate errors caused by stitching images and could
potentially simplify calculations. Paired fisheye cameras
have been used to obtain stem diameter, basal area, lo-
cation mapping and volume without dependence on field
measurements (Rodŕıguez-Garćıa et al., 2014; Sánchez-
González et al., 2016; Wang et al., 2020). Berveglieri et
al. (2017) developed an automated algorithm by match-
ing hemispherical images at different heights to estimate
stem diameters. More recently, the development of af-
fordable 360◦ spherical cameras offer new opportunities
for obtaining optical tree measurements (Perng et al.,
2018). Spherical cameras, like the Ricoh Theta S (Ri-
coh Imaging Company, LTD., 2016), offer an inexpensive
option for obtaining spherical inventory images directly.
The compact size of a spherical camera makes it an easy-
to-use tool in the forest and can be moved through the
canopy using a height pole to obtain structural estimates
more easily than traditional fisheye cameras and other
digital cameras.

Structure from motion (SfM) technology enables
three-dimensional (3D) reconstruction from image series
without actual measurements (Fang and Strimbu, 2017;

Sanvely et al., 2008). This technique has been applied to
3D reconstruction of individual stems (Larsen, 2006a,b;
Miller et al., 2015; Mokroš et al., 2018; Surový et al.,
2016), and to stand level forest point cloud development
(Forsman et al., 2016; Liang et al., 2014, 2015; Liu et
al., 2018). The mapping accuracy from SfM is similar to
TLS (Liang et al., 2014). However, SfM technologies of-
ten require walking through sample plots and obtaining
a large number of photos (Berveglieri et al., 2017; Liu et
al., 2018). Mulverhill et al. (2019) integrated SfM with
a spherical camera to generate 3D plot point clouds and
significantly decreased the number of photos required for
accurate point cloud rendering. The results showed high
correspondence with field measured data (Mulverhill et
al., 2019). Although the procedures are mostly auto-
matic, the point cloud generation and analyses requires
a high performance computer and complex algorithms
(Belton et al., 2013; Liang et al., 2015; Mulverhill et al.,
2019). It also might be questioned as to the need to gen-
erate a 3D point cloud and then do measurements, when
those basic measurements often can be done directly on
the images. Based on this, we identified a need for a sim-
plified system for obtaining spherical photos in stereo.

The goal of this study was to develop an approach
to obtain such spherical image pairs and apply stereo-
scopic geometry to estimate diameter and height of in-
dividual trees directly without any field measurement
dependency. The specific objectives were to: 1) derive
the geometry for two vertically displaced spherical im-
age pairs to estimate desired tree attributes; 2) validate
the technique in a sparse urban forest setting; and 3)
perform a preliminary field assessment in a real forest
situation.

2 Methods

2.1 Study sites

Urban Site – The University of New Brunswick cam-
pus located in Fredericton, New Brunswick, Canada
(Fig. 1) was used for validating the approach in an open
situation where visibility was not a substantial issue.
Two ditial sampling points were selected for this phase
of the study. The criteria for sample point selection
included: 1) Open forest conditions with a moderate
number of trees (7-12 trees) with each tree’s tip and base
clearly visible; 2) Individual trees have varying distances
from the image sampling points; and 3) Individual trees
have varying diameters and heights.
Forest Site – An early spacing trial located on the

western side of Newfoundland (NL) Island, near Rod-
dickton, Newfoundland and Labrador, Canada (Fig. 1)
was used for testing the approach in a real forest con-
dition. The spacing trial, with different densities and
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Figure 1: The study sites locations (and associated topography) used in this study. (a) a map of Atlantic Canada
showing the urban and forest site locations, (b) and (c) are photos of the two urban sites, and (d) is a cylindrical
projection of one of the forest sites in Roddickton, NL.

different resulting tree sizes, was an ideal field setting
for this test. The site was dominated by balsam fir
(Abies balsamea) with minor components of black spruce
(Picea mariana) and other boreal species. The trial was
established in the early 1980’s (Donnelly et al., 1986).
Five spacing treatments were applied: Control (no spac-
ing), 1.2m, 1.8m, 2.4m, and 3.0m average spacing. Plot
radii varied by spacing treatment (Control (5.2m);1.2m
(7.2m); 1.8m (10.4m); 2.4m (15.0m); 3.0m (18.0m)) with
the aim of having about 100 trees per plot at the time of
treatment establishment (Donnelly et al., 1986). At the
time of the initial treatments, the site was a naturally
regenerating even-aged stand. The spacing treatments
produced plots that were single strata with relatively
uniform stand structures within spacing treatments.

2.2 Data collection

2.2.1 Digital image pairs

A Ricoh Theta S (Ricoh Imaging Company, LTD.,
2016) spherical camera was used to capture spherical
images. Two single spherical images were captured at
1.6m and 2.6m above ground (camera was mounted on
a height pole stabilized by a tripod (Fig. 2.a) for each
digital sampling point in both study sites. A bubble
level attached to the tripod was used to ensure relative
level of two images captured at different heights.

On the Urban Site, two independent single digital
sampling points were located strategically among the
trees of interest (Fig. 2.b) to ensure visibility and a va-
riety of camera to tree distances. On the forest site,
three digital sample points per replicate plot were used
(Fig. 2.b). Multiple digital sample points were used to
minimize tree occlusion and facilitate measurement of as
many plot trees as possible. Digital sample points were
located at half the plot radii at azimuths of 0◦, 120◦,
and 240◦. On the forest site, three digital sample points
per replicate plot were used (Fig. 2.b). Multiple digital
sample points were used to minimize tree occlusion and
facilitate measurement of as many plot trees as possible.
Digital sample points were located at half the plot radii
at azimuths of 0◦, 120◦, and 240◦.

Although the spherical camera recorded 360◦ spheri-
cal images, the images were stored like a common digital
camera pixel matrix using cylindrical equidistant pro-
jections generated automatically by the Ricoh Theta S
onboard software. The resolution of the projected cylin-
drical images was 5367 pixels in width and 2688 pixels
in height.

2.2.2 Urban site data

The urban site was used to validate the algorithm and
method. The sampling points were located where all
trees’ bases and tops were clearly visible. For each se-
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Figure 2: Digital data collection methods. (a) tripod,
height pole and spherical camera set up for spherical im-
age acquisition at two different heights (1.6m and 2.6m).
(b) Digital sample location designs for the urban area
validation study and the real forest application. For the
urban site, only one location was set. For the forest site,
three locations were established at the midpoint of plot
radius along azimuths of 0◦, 120◦, and 240◦.

lected tree, flagging tape was wrapped around the tree
circumference at breast height (1.3m) to facilitate visi-
bility and a numbered target placed on each tree to facili-
tate matching field and image measurements. The radial
distance from sampling points to each tree (FieldR) was
measured with a TruPulse laser hypsometer. Generally,
the cross-sections of tree trunks are not perfect circles
and are often elliptical (Kershaw et al., 2016). The di-
ameter projected onto an image may vary substantially
depending on projection azimuth and tree eccentricity,
therefore, the DBH of each tree was measured using cal-
lipers along the tree axis perpendicular to the projection
azimuth (ProjectedDBH) and measured with a diame-
ter tape (FieldDBH). Tree height (HT) was measured in
the field from 2 different perspectives using a TruPulse
laser hypsometer: 1) the height measured at the image
sampling point (ProjectedHT); and 2) from a convenient
and reasonable location from which to clearly see tree tip
and base (FieldHT).

2.2.3 Forest site data

As with the urban site data, DBH (nearest 0.1cm) and
HT (nearest 0.1m) of each individual tree in one repli-
cate from the Roddickton spacing trial were measured
using a diameter tape and laser hypsometer. However,
the spherical images were acquired for a different study
other than individual tree measurement, and field trees
were not individually identified and tagged in the field
such that they could not be easily aligned on the spher-
ical images. Therefore, comparisons between field mea-
surements and spherical measurements were limited to
plot level distributions rather than individual tree level
pairs.

2.2.4 Image processing geometry

The general workflow included: 1) determining the
projection algorithm to exchange pixel coordinates in
the cylindrical images to latitude and longitude in spher-
ical coordinates; 2) marking the bases and tips of indi-
vidual trees on the cylindrical images, applying spherical
geometry to estimate the distances from digital sampling
points, slope deviations and tree heights; and 3) deter-
mining the vertical pixel coordinate (y) for breast height
(1.3m) in the cylindrical images, marking the left and
right tree trunk edges (horizontal angles) at 1.3m, de-
termining the intersection angles to camera center, and
estimating DBHs using spherical geometry.

1) Cylindrical images were converted to spherical im-
ages using the methods proposed by Aghayari et al.
(2017). For a given point in cylindrical coordinates
(xi, yi), the transformed spherical angles (longitude and
latitude) were given by:

loni = (X − xi) ·
2π

X

lati = (yi −
Y

2
) · π

2Y

(1)

where X was the cylindrical image width in pixels (5367
pixels for the images used in this study); Y was the cylin-
drical image height in pixels (2688 pixels for the images
used in this study); xi was the horizontal pixel coordi-
nate; and yi was the vertical pixel coordinate. Latitude

angles (lati) ranged from −π
2

(−90◦) to
π

2
(90◦) while

Longitude angles (loni) ranged from 0 (0◦) to 2π (360◦).
2) As shown in Figure 3.a, after marking the tree tip

and base (the bole at ground level) in both cylindri-
cal images manually, 4 latitudinal angles were calculated
from Equation 1. The elevation difference between sam-
pling point and tree base (∆h) was:

∆h =
Z2 · tan(β1) − Z1 · tan(β2)

tan(β1) − tan(β2)
(2)

and radial distance (R) was then obtained using:

R1 =
Z1 − ∆h

tan(β1)

R2 =
Z2 − ∆h

tan(β2)

(3)

where Z1 = 1.6m and Z2 = 2.6m (the camera heights in
this study). R was estimated as the average of R1 and
R2.

From Figure 3.b, tree HT was derived using:

HT1 = Z1 − ∆h+R · tan(τ1)

HT2 = Z2 − ∆h+R · tan(τ2)
(4)
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Figure 3: The distance, slope deviation, and tree height calculation from the vertical projection of the spherical
geometry: (a) derived distance (R) and slope deviation (∆h) caused by terrain variation derived from the key points
for tree bases. (b) height calculation based on several key points for tree tips and along on the bole.

Tree HT, as defined by these relationships is the per-
pendicular distance from ground to tree tip, as is typ-
ically measured in most forest inventories (Kershaw et
al., 2016), rather than stem length. HT was estimated
as the average of HT1 and HT2.

3) For DBH estimation, it was necessary to locate the
1.3m height on each image. The angle from horizontal
to 1.3m was estimated for each image (Fig. 4.a) using:

γ1 = tan−1

(
1.3m− (Z1 − ∆h)

R

)
γ2 = tan−1

(
1.3m− (Z2 − ∆h)

R

) (5)

As with the other parameters, γ was estimated as the
average between gamma1 and γ2. DBH was then esti-
mated from the tree projection angles for each tree on
each image (Fig. 4.b). Tree projection angles (ω) were
estimated by marking the left (Bl) and right (Br) tree
edges:

ω1 = 360◦ ·
(
xr,1 − xl,1

X

)
ω2 = 360◦ ·

(
xr,2 − xl,2

X

) (6)

Then distance from camera to the tree center, as shown
in Figure 4.c, was the slope distance (L) shown in Fig-
ure 4.b:

Li =
R+ DBHi

2

cos(γi)
(7)

In Figure 4.c, DBH also was represented by the spher-
ical geometry based on the basal area factor derivation
(Kershaw et al., 2016):

DBHi = 200 · Li · sin(ωi) (8)

Solving Equation 7 and Equation 8, DBH was equal to:

DBHi =
200 ·R · sin(ωi

2 )

cos(γi) − sin(ωi

2 )
(9)

As with R and HT, DBH was estimated as the average
from the two images: DBH=(DBH1+DBH2)/2.

To facilitate extraction of the required image mea-
surements, a graphical interface (Fig. 5) was developed
in Python 3.6 (Guido, 2018) to mark key points for
trees and for calculating the required parameters as
illustrated in Figs. 3 and 4. The interface can be down-
loaded from https://github.com/HowcanoeWang/

Spherical2TreeAttributes/releases.

2.3 Data analysis

2.3.1 Urban data analysis

To validate the accuracy of our approach, a pairwise
linear regression was fitted to the field and image mea-
surements for R, DBH, and HT:

Field = b0 + b1 · Photo (10)
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Figure 4: DBH calculation using spherical geometry. (a) calculation of the 1.3m height on the images. (b) DBH
boundary marking and distance to tree center derived from stereo coordinates (based on the 1.6m height image as
an example); and (c) geometrically derived DBH.

Figure 5: The graphical user interface used to mark key
point coordinates for individual trees for parameter cal-
culation. The images shown in this figure are from urban
plot B with a steep slope. The yellow line indicates the
image horizon (image equator) of spherical image.

If image estimates were identical to field estimates, then
b0=0 and b1=1. The resulting parameter estimates
were tested for these values using t-tests and Bonferroni-
adjusted α levels (Zar, 2009).

The agreement between field and image measurements
were also evaluated by root mean square error (rMSE)
and root mean square error expressed as a percentage of
mean (%rMSE):

rMSE =

√∑n
i (Imagei − Fieldi)

2

n
(11)

%rMSE = 100 · rMSE

Fieldmean
(12)

2.3.2 Forest data analysis

The images from the Roddickton spacing trials were
originally taken for area-based estimation, not individ-
ual tree measurement, so the trees were not tagged.
Instead of using pairwise statistical tests, we focused
on distributional statistics at the plot level to compare
DBH and HT estimates. The two-sample Kolmogorov-
Smirnov (K-S) test (Hodges, 1958) which tests whether
two samples were drawn from the same continuous dis-
tribution, was used here. Our null hypothesis was that
the field measured samples and image measured sam-
ples were identically distributed. The alternative hy-
pothesis was that they were not identically distributed.
We assume that equal distributions convey a level of
confidence that our technique was measuring DBH and
HT correctly. This assumption ignores potential bias in
tree visiblity in the images and repeat observation of the
same trees across the three ditial sampling points.
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3 Results

3.1 Urban forest validation

Figure 6.a shows the relationships between field mea-
sured distance (FieldR) and image estimated distance
(ImageR). While the ImageR was slightly overestimated
compared with FieldR, the simple linear regression
(Tab. 1) showed no significant differences (p > 0.05)
from the hypothesized parameter estimates and had a
high r2 and low root mean square error (rMSE). Im-
ageHT was not significantly different (p > 0.05) from
ProjectedHT (Fig. 6.b), which is the field measured
height at the digital sample points; however, ImageHT
was significantly different (p < 0.05) from FieldHT,
which is the field measured height from a point where
tree tips can be clearly observed. As FieldHT increased,
there was a trend of increasing overestimation associ-
ated with ImageHT (Fig. 6.c). The significance of these
trends was confirmed by the linear regressions (Tab. 1.).
For DBH estimation (Fig. 6.d-e), the b0s and b1s were
not significantly different from 0 and 1, respectively,
(p > 0.05) for both ProjectedDBH (measured by calipers
along the tree axis perpendicular to the projection az-
imuth) and FieldDBH (measured by diameter tape).
The high r2s (0.96) and low rMSEs (around 2.4) con-
firmed strong linear relationships between image mea-
sured DBHs and field measured DBHs. The percentage
root mean square errors (%rMSE) without unit concern
in Table 1 demonstrated that the both DBH (Field-
DBH and ProjectedDBH) was estimated more consis-
tently than the FieldHT, but similar to ProjectedHT.

3.2 Field forest test

The distributional comparisons between field mea-
sured attributes and image estimated attributes for the

Roddickton, NL spacing trial are shown in Figure 6 and
the K-S test results are given in Table 2. With the ex-
ception of the 1.2m spacing treatment, the number of
measurable trees on the images were lower than the num-
ber of trees measured on the actual field plots (Tab. 2),
despite having 3 digital sample points per plot.

The results obtained in the forest situation were differ-
ent from what were observed in the urban setting. With
the exception of the Control spacing treatment (S00),
all image HT distributions were not significantly differ-
ent (p > 0.05) from field distributions (Fig. 7.f-j and
Tab. 2). On the other hand, only the 3.0m spacing (S30)
produced DBH distributions that were not significantly
different from field distributions (Fig. 7.e and Tab. 2).
These results are the opposite of what was observed in
the Urban situation where DBH was estimated consis-
tently more accurately than HT (Fig. 6.d-e and Tab. 1).

4 Discussion

The goal of this study was to examine the potential
of using spherical images to estimate individual tree di-
ameter and height. This method was applied in an open
urban setting and in a real forest situation. Our re-
sults observed a good correspondence with field mea-
sured data in the urban area, while the real forest results
were mixed.

Our urban site validation showed that correspondence
between image measured and field measured DBHs was
high for both ProjectedDBH (measured by caliper at
image view angle) and for FieldDBH (measured with
diameter tape) (Fig. 6.). However, for the real forest
test, the results were not as positive. Distributions of
image derived DBHs were consistently larger than dis-
tributions of field measured DBHs (Fig. 7.). For height
estimation, the urban forest study showed a high corre-

Table 1: Simple linear regression results between photo estimates and field measurements. The linear model is
Y = b0 + b1 ∗X, if Photo measured (X) is the same as Field measured (Y), then b0 = 0 and b1 = 1. In table header,
YRange is the range of Y values = (min, max); Param. = Parameter; Est. = Estimate; SE = Standard Error; rMSE
= root Mean Square Error; %rMSE = root mean square error expressed as a percentage of mean.

X Y YRange Param. Est. SE p-value r2 rMSE %rMSE

ImageR FieldR ( 2.7, 27.7) b0 -0.180 0.542 0.743 0.974 0.153 7.111

b1 1.058 0.039 0.153

ImageHT ProjectedHT ( 9.4, 25.6) b0 0.653 0.743 0.390 0.949 0.971 6.794

b1 0.990 0.052 0.851

ImageHT FieldHT ( 9.4, 23.1) b0 3.954 1.245 0.005 0.762 1.627 12.074

b1 0.692 0.087 0.002

ImageDBH ProjectedDBH (12.3, 69.6) b0 -1.246 1.546 0.430 0.966 2.398 7.167

b1 1.039 0.044 0.378

ImageDBH FieldDBH (12.8, 69.6) b0 0.116 1.578 0.942 0.962 2.448 7.321

b1 0.999 0.044 0.963
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Table 2: Summary of KS-Tests for real forest validation. Plot radii varied by spacing treatment (Control (S00,
5.2m);1.2m (S12, 7.2m); 1.8m (S18, 10.4m); 2.4m (S24, 15.0m); 3.0m (S30, 18.0m)).

Plot Field Tree # Image Tree # Factor KS Value p-value

S00 94 63 DBH 0.4262 <0.001

HT 0.2518 0.0134

S12 56 92 DBH 0.3602 <0.001

HT 0.2096 0.079

S18 103 60 DBH 0.2589 0.0097

HT 0.1126 0.6697

S24 137 96 DBH 0.2600 <0.001

HT 0.1393 0.1982

S30 122 59 DBH 0.1555 0.2573

HT 0.1188 0.5774

spondence with ProjectedHTs measured from the digi-
tal sampling point; however, correspondence was not as
high with heights measured from locations where tree
tips were clearly visible (FieldHT). However, surpris-
ingly, in the forest situation, image measured heights
(ImageHT) were distributed similarly (based on K-S test
Dmax values) to field measured heights (FieldHT) for all
spacings except S00 (the control plots).

There are several possible explanations for the re-
versed results observed between the two study areas.
First, the urban trees were substantially larger (bigger
DBHs and taller heights) than the forest trees. The ur-
ban tree HTs ranged from 10m to 25m (Fig. 6.b), and the
urban DBHs ranged from 15cm to 70cm (Fig. 6.d), while,
the forest trees had a DBH range from 5cm to 25cm with
large variation within and between the different spacing
treatments (Fig. 7.a-e). Only the 3.0m spacing treat-
ment had low variability within treatment, and this was
the treatment that had DBH distributions that were not
significantly different (p > 0.05) from the field DBH dis-
tributions. In contrast to the generally higher variability
in DBHs, the forest trees had much lower HT variability
within and between the spacing treatments with most
field and image-estimated HTs below 15m (Fig. 7.f-j).

Tree density probably played an important role for the
differing results observed between the urban and forest
study sites. In the urban setting, the trees were well
spaced and the boles clearly distinguishable against a
background of grass (visibility was further enhanced by
the use of flagging tape). In the forested situation, espe-
cially for plots with narrower spacings, the tree trunks
often overlapped in the background making it very dif-
ficult to clearly distinguish the tree edges. The smaller
trees were most likely easier to be missed when mark-
ing trees for measurement and single pixel width errors
had greater impacts. If the trunk edges were not clearly
distinguishable, those trees were not marked on the im-

ages. Given that we had three digital sampling points
per forest plot, larger trees were probably more visible
across multiple images as well, further contributing to
the bias toward larger trees. For example, consider S00
and S12 field distributions which showed an abundance
of very small trees (Fig. 7.a-b) - these two plots had
the worst performance for DBH estimation and had the
largest distributional differences in the upper DBH range
(Fig. 7.a-b). Because we did not attempt to eliminate
repeated measures of trees across the three digital sam-
pling points, this probably contributed significantly to
the overestimation problem observed in this study. Fur-
thermore, the problem with hidden trees, which exists
in all panoramic images (Dick et al., 2010) and affects
smaller trees more frequently, was an additional source
of bias in this study.

The uniformity in the field height distributions
(Fig. 7.) negated any visibility bias for the image height
distributions. In addition, the shorter conifer trees in
the forested situation, with their cone-shaped crowns,
made it easier to identify the real tree tip. As Kershaw
et al. (2016, p. 117) pointed out, there is a tendency to
overestimate the height of large, flat-crowned trees using
the tangent method.

The irregularity in tree cross-sectional shape did not
appear to be a problem in this study, at least in the
Urban setting (Fig. 6.). Stem irregularities can cause
errors in image derived DBH estimates (Perng et al.,
2018). Several studies have addressed this issue by ei-
ther taking photos at different angles around the stem,
or constructing 3D models (Larsen, 2006a) or even gen-
erating 3D point clouds to assess stem geometric struc-
ture (Liang et al., 2014; Mokroš et al., 2018; Ringdahl
et al., 2013; Surový et al., 2016). Though these meth-
ods produce small errors (2.2 ± 3.0cm; Ringdahl et al.
(2013)) and low rMSEs (2.39cm for Liang et al. (2014),
1.87cm for Surový et al. (2016), and 1.27cm for Mokroš
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Figure 6: Comparisons between field measurements
and image estimates: (a) radial distance (R); (b) dig-
ital image height (ImageHT) compared to field height
measured HT at the digital sampling points (Project-
edHT); (c) digital image height (ImageHT) compared
to field height measured from locations where tree tips
are clearly visible (FieldHT); (d) digital image DBH
(ImageDBH) compared to projected DBH measured by
calipers (ProjectedDBH); and (e) digital image DBH
(ImageDBH) compared to DBH measured by diameter
tape (FieldDBH).

et al. (2018)), the computation requirements limit their
wide-scale application in forest inventories. Our results
show, if accounting for optical fork effects (Grosenbaugh,
1963), the errors can be decreased to acceptable levels.
In our case, errors were 2.4 ± 1.6cm. Similarly, Celes
et al. (2019) reported an uncertainty of approximately
±1cm and Lu et al. (2019) had errors within ± 6cm with
the assistance of field reference targets, while Perng et al.
(2018), using similar geometry had a rMSE of 13.19cm.

Decreasing spatial grain with distance is a problem
associated with all remote sensing techniques (including
LiDAR). Remote sensing is driven by reflection point
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Figure 7: Field measured distributions versus image es-
timated distributions for DBH and HT by spacing treat-
ment: (a) and (f) Control; (b) and (g) 1.2m Spacing; (c)
and (h) 1.8m Spacing; (d) and (i) 2.4m spacing; and (e)
and (j) 3.0m Spacing.

values that are averaged over the photon footprint. One
point (or pixel) represents an increasing area with in-
creasing distance from digital sampling point. The ef-
fects of distance from digital cameras (Dick, 2012; Wang,
2017) and spherical cameras (Wang, 2019; Wang et al.,
2020) has been well analyzed. Decreasing accuracy with
increasing distance is a limitation of any light-based sen-
sor (Clark et al., 2000a). This issue is exacerbated if the
objects of interest are smaller (Reu et al., 2014).

The primary advantage of a spherical camera over a
common camera is that we obtain the whole 360◦ plot in
a single image from a single shutter trigger. The image
is derived from two fixed fisheye lenses and stitched us-
ing the camera’s onboard software. Obtaining the whole
plot in one image saves a lot of time acquiring images,
stitching them together and analyzing images. In or-
der to take a 360◦ plot using images from a common
camera, a heavier tripod with a stabilized rotary table
is required to be transported in the forest. At least 15
images are needed to ensure enough overlap between im-
ages (Dick, 2012) which requires more field time and of-
fice time stitching the photos together.If heights are re-
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quired then multiple rows of images must be acquired by
tilting the camera at increasing angles, increasing field
time, stitching time and analysis time; however, very
high resolution images are produced (Fastie, 2010). The
trade-offs between field time and increased image reso-
lution versus accuracy of resulting image measurements
needs more evaluation. Based on a preliminary study us-
ing a common digital camera to measure DBH (Wang,
2017), the higher resolution images showed improved ac-
curacy (42% of trees within ± 0.5cm and 25% within ±
0.5cm to 1.0cm), while the accuracy for this study was
2.4cm (based on rMSE, Table 1),

The advantages of a spherical camera over a laser
scanner include both the instrument costs and data ac-
quisition time. For spherical images, field time is around
5-10 minutes per plot, and around 4-5 minutes for pro-
cessing each image pair (about 1-2 mins to align the
paired images, and about 3 mins to click the key points
for all trees and processing the measurements. Adapting
an hierarchical subsampling scheme could significantly
reduce processing time without substantially reducing
accuracy (Dai, In review). TLS technology continues
to improve and both fixed-base and mobile scanners
are available, Using a FARO (FARO Technologies, Inc.
Florida, U.S.) X330 Scanner, three in-plot scans required
about 45 minutes, and 2-3 hours for software stitching
the three scans together. Point cloud processing can
take up to 5 hours depending upon which tree measures
are required and what algorithms used without any real
gains in accuracy over what we obtained here (Gollob
et al., 2019). As a benchmark comparison, field mea-
surement of plot trees can range from about 20 minutes
to 2-3 hours depending on plot size, plot type, and the
different tree measurements required.

The manual clicking of key points, as implemented
in this study, introduces the possibility of inter-observer
errors and biases. Based on our previous application of
spherical images implementing angle count sampling on
spherical images (Wang, 2019; Wang et al., 2020), inter-
observed differences were affected by the complexity of
spherical images. For images obtained in sparse forests
with bigger trees and clear trunk boundaries, the consis-
tency was higher than dense forest images. This is likely
to be an issue with the clicking for DBH and HT mea-
surements developed here. Automatic detection algo-
rithms may help decrease the subjectivity, but, as figure
1.d shows, this is a complicated common computer vi-
sion task requiring thousands of annotated training im-
ages for deep learning based algorithms to be effective,
and is far beyond the scope of this study.

One of the biggest limitations for applying spherical
images to whole plot measurement is tree visibility, not
only for small trees far away from plot center with very
narrow view angles, but also for trees occluded by larger

trees near plot center. Non-detection bias is a significant
concern with any remote sensing technology, Multiple
scans from different locations within plots can reduce
occlusion (Ritter et al., 2013). Instead of basing area-
based estimates on fixed area sampling methods, angle
count sampling (Wang et al., 2020) is a powerful sam-
pling technique that could eliminate or minimize non-
detection biases. By controlling the basal area factor,
the visibility issue can be controlled (Dick, 2012; Wang
et al., 2020). Multiple digital sampling points, as imple-
mented in this study, can reduce the number of hidden
trees, though this introduces the unavoidable duplicate
marking of some trees with potential bias toward larger
trees (Figure 7).

The projection distortion produced by the cylindri-
cal projection of the spherical images is another factor
limiting the current method. Trees very close to camera
location become very distorted making the tree tips very
difficult to determine. This issue limits the applicabil-
ity of subsampling schemes like big-BAF sampling (Iles,
2012) because this method inherently selects trees that
are closer to the digital sampling point. Finally, we only
tested and validated our approach in a conifer dominant
forest with tree heights around 15m. It may difficult to
apply in forests with taller trees or composed of dense
broad leaved species. Conditions which are likely to re-
sult in increased distortion issues.

One of the key next steps is to replicate the mea-
surement protocols used in the urban setting in a
forested situation where field and image measurements
are matched. This will help eliminate some of the un-
certainty we obtained in our forested test. Time-motion
studies comparing field measurement times with image
measurement times would also provide additional insight
into gains in measurement efficiency and accuracy asso-
ciated with this technique.

5 Conclusion

Though using camera photos in forest inventory has a
long history and earlier studies have tried diverse meth-
ods to estimate typical forest attributes, the use of verti-
cal paired spherical cameras (Ricoh Theta S) and stereo-
scopic geometry to calculate attributes directly has not
been explored. Our results show this novel technol-
ogy can achieve good correspondence with field mea-
sured tree metrics in simple urban conditions (sparse
and big trees). For complex and dense forest conditions,
it achieved moderate correspondence, as measured by
the K-S two-sample distribution test for DBH and HT
estimation. The spherical camera represents a low cost
alternative to terrestrial laser scanning for the estima-
tion of DBHs, heights, and possibly stem form. Field
work is greatly reduced and data processing is much sim-
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pler. Integration into a hierarchical subsampling design
is likely to be the most efficient use of the methods de-
veloped in this study
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Surový, P., Yoshimoto, A., Panagiotidis, D., 2016. Ac-
curacy of Reconstruction of the Tree Stem Surface
Using Terrestrial Close-Range Photogrammetry. Re-
mote Sensing 8, 123. at: https://doi.org/10.3390/
rs8020123

Varjo, J., Henttonen, H., Lappi, J., Heikkonen, J.,
Juujärvi, J., 2006. Digital horizontal tree measure-
ments for forest inventory. Working papers of the
Finnish Forest Research Institute 23.

Wang, H., 2017. Extracting DBH measurements from
RGB photo images. Unpub. BScF Honors. The

mailto://hwang21@unb.ca
http://mcfns.com
 https://doi.org/10.1139/cjfr-2018-0430
 https://doi.org/10.1139/cjfr-2018-0430
https://doi.org/10.1139/x03-240
https://doi.org/10.1139/x03-240
https://doi.org/10.1016/j.ufug.2015.09.001
 https://doi.org/10.3390/f9110696
https://doi.org/10.1007/s13595-019-0852-9
https://doi.org/10.1007/s13595-019-0852-9
 https://doi.org/10.1146/annurev-ecolsys-110512-135914
 https://doi.org/10.1146/annurev-ecolsys-110512-135914
 https://doi.org/10.1093/forestry/cpy028
 https://doi.org/10.1093/forestry/cpy028
http://www.ricoh-imaging.co.jp/english/products/theta_s
http://www.ricoh-imaging.co.jp/english/products/theta_s
https://doi.org/10.1139/cjfr-2012-0408
 https://doi.org/10.3390/rs5104839
 https://doi.org/10.3390/rs5104839
 https://doi.org/10.1007/s10342-014-0806-6
 https://doi.org/10.1007/s10342-014-0806-6
https://doi.org/10.14358/PERS.82.8.605
https://doi.org/10.14358/PERS.82.8.605
 https://doi.org/10.4236/ojf.2014.44038
 https://doi.org/10.4236/ojf.2014.44038
https://doi.org/10.1007/s11263-007-0107-3
https://doi.org/10.1007/s11263-007-0107-3
https://doi.org/10.3390/rs8020123
https://doi.org/10.3390/rs8020123


Wang et al. (2021)/Math.Comput. For.Nat.-Res. Sci. Vol. 13, Issue 1, pp. 1–14/http://mcfns.com 14

University of New Brunswick, Fredericton, NB,
Canada. at: http://rgdoi.net/10.13140/RG.2.2.

30588.77440

Wang, H., 2019. Estimating Forest Attributes from
Spherical Images. MSc Forestry thesis. The University
of New Brunswick, Fredericton, NB, Canada. at:
https://www.doi.org/10.13140/RG.2.2.35680.

64004

Wang, H., Kershaw, J.A., Yang, T.R., Hsu, Y.H.,
Ma, X., Chen, Y., 2020. An Integrated System for
Estimating Forest Basal Area from Spherical Im-
ages. Mathematical and Computational Forestry &
Natural-Resource Sciences. at: http://mcfns.net/

index.php/Journal/article/view/12.1

Xing, Z., Bourque, C.P.A., Swift, D.E., Clowater,
C.W., Krasowski, M., Meng, F.R., 2005. Carbon and
biomass partitioning in balsam fir (Abies balsamea).
Tree Physiol 25, 1207–1217.

Yang, T.R., Hsu, Y.H., Kershaw, J.A., McGarrigle, E.,
Kilham, D., 2017. Big BAF sampling in mixed species
forest structures of northeastern North America: in-
fluence of count and measure BAF under cost con-
straints. Forestry (Lond) 90, 649–660. at: https:

//doi.org/10.1093/forestry/cpx020

Zar, J.H., 2009. Biostatistical analysis, 5th ed. Pearson,
New York.

Zianis, D., Muukkonen, P., Mäkipää, R., Mencuccini,
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