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Abstract: Unmanned aerial vehicle (UAV) and structure from motion (SfM) photogrammetry tech-
niques are widely used for field-based, high-throughput plant phenotyping nowadays, but some
of the intermediate processes throughout the workflow remain manual. For example, geographic
information system (GIS) software is used to manually assess the 2D/3D field reconstruction quality
and cropping region of interests (ROIs) from the whole field. In addition, extracting phenotypic traits
from raw UAV images is more competitive than directly from the digital orthomosaic (DOM). Cur-
rently, no easy-to-use tools are available to implement previous tasks for commonly used commercial
SfM software, such as Pix4D and Agisoft Metashape. Hence, an open source software package called
easy intermediate data processor (EasyIDP; MIT license) was developed to decrease the workload
in intermediate data processing mentioned above. The functions of the proposed package include
(1) an ROI cropping module, assisting in reconstruction quality assessment and cropping ROIs
from the whole field, and (2) an ROI reversing module, projecting ROIs to relative raw images.
The result showed that both cropping and reversing modules work as expected. Moreover, the
effects of ROI height selection and reversed ROI position on raw images to reverse calculation were
discussed. This tool shows great potential for decreasing workload in data annotation for machine
learning applications.

Keywords: orthomosaic; photogrammetry; phenotyping; reverse calculation; Pix4D; Agisoft Metashape;
Agisoft PhotoScan

1. Introduction

Compared with traditional manual field mensuration, which is time consuming, labor
intensive, and subjective, the recently emerged 3D reconstruction technologies provide a
non-destructive and high-throughput solution for plant phenotyping [1–3]. As one branch
of 3D reconstruction, photogrammetry (structure from motion and multi-view stereo (SfM-
MVS)) technology, which requires only a standard digital camera, has been widely used on
both ground [4–6] and unmanned aerial vehicle (UAV) platforms [7,8] in the open field. As
the ground platform is often constrained by field conditions and vehicle in-field movement,
the UAV platform opens the door for large-scale experimental fields with higher flexibility,
efficiency, and throughput [9].

The general workflow of UAV-based plant phenotyping by photogrammetry is demon-
strated in Figure 1 with four main parts:
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The general workflow of UAV-based plant phenotyping by photogrammetry is 
demonstrated in Figure 1 with four main parts:  

(1) The flight design stage. Setting ground control points (GCPs) appropriately [10] 
and designing an appropriate flight route with enough overlap between images are criti-
cal before flight tasks.  

(2) The UAV imaging stage. Fly the UAVs with a predefined plan and collect and 
organize images to the computer. Most researchers remain manually operating at this 
stage. However, some fully automated UAV systems have started showing up recently, 
such as Scout (https://www.american-robotics.com, accessed on 1 June 2021), sunflower 
(https://www.sunflower-labs.com, accessed on 1 June 2021), and Airobotics 
(https://www.airoboticsdrones.com, accessed on 1 June 2021), which can be expected to 
make this stage fully automated in the near future.  

(3) The 3D reconstruction procedure. Commercial software, such as Pix4Dmapper 
(Pix4D, Lausanne, Switzerland) or Agisoft Metashape (Agisoft LLC, St. Petersburg, Rus-
sia), significantly decreases the workload of obtaining whole-field reconstruction in the 
format of the point cloud (PCD), digital surface model (DSM), and digital orthomosaic 
(DOM). Most of the steps at this stage can be processed by photogrammetry software once 
proper parameters are set. Although human intervention is required for those raw images 
for which GCPs cannot be precisely and automatically detected, some pipelines have been 
proposed to make this step automated [11–13].  

4) The plant phenotyping stage. Intermediate data processing is used to prepare the 
proper quality and size of plant data for later trait calculation. However, in the interme-
diate data processing steps, some challenges still exist. 

 
Figure 1. General workflow of UAV-based field plant phenotyping in agriculture. The developed 
tool focused on decreasing the workload of the intermediate data processing steps (green parts in 
IV). “Int. param” represents internal parameters (e.g., focal length), and “Ext. param” represents 
external parameters (e.g., camera position, rotation.). DSM represents the digital surface model, 
and DOM represents the digital orthomosaic. 

First, the reconstruction quality is fundamental for all follow-up steps. However, the 
current quality assessment is still operated manually. When it comes to high-throughput 
phenotyping (HTP) applications in large-scale fields, this tedious manual step remains an 
ongoing challenge. One possible semi-automated solution is cropping each plot over time 
and detecting sudden changes [14]. The detected sudden change points may meet bad 
reconstruction quality (e.g., Column C in Figure A1, Appendix A). This idea relies on a 

Figure 1. General workflow of UAV-based field plant phenotyping in agriculture. The developed tool focused on decreasing
the workload of the intermediate data processing steps (green parts in IV). “Int. param” represents internal parameters
(e.g., focal length), and “Ext. param” represents external parameters (e.g., camera position, rotation.). DSM represents the
digital surface model, and DOM represents the digital orthomosaic.

(1) The flight design stage. Setting ground control points (GCPs) appropriately [10]
and designing an appropriate flight route with enough overlap between images are critical
before flight tasks.

(2) The UAV imaging stage. Fly the UAVs with a predefined plan and collect and
organize images to the computer. Most researchers remain manually operating at this
stage. However, some fully automated UAV systems have started showing up recently,
such as Scout (https://www.american-robotics.com, accessed on 1 June 2021), sunflower
(https://www.sunflower-labs.com, accessed on 1 June 2021), and Airobotics (https://
www.airoboticsdrones.com, accessed on 1 June 2021), which can be expected to make this
stage fully automated in the near future.

(3) The 3D reconstruction procedure. Commercial software, such as Pix4Dmapper
(Pix4D, Lausanne, Switzerland) or Agisoft Metashape (Agisoft LLC, St. Petersburg, Russia),
significantly decreases the workload of obtaining whole-field reconstruction in the format
of the point cloud (PCD), digital surface model (DSM), and digital orthomosaic (DOM).
Most of the steps at this stage can be processed by photogrammetry software once proper
parameters are set. Although human intervention is required for those raw images for
which GCPs cannot be precisely and automatically detected, some pipelines have been
proposed to make this step automated [11–13].

(4) The plant phenotyping stage. Intermediate data processing is used to prepare the
proper quality and size of plant data for later trait calculation. However, in the intermediate
data processing steps, some challenges still exist.

First, the reconstruction quality is fundamental for all follow-up steps. However, the
current quality assessment is still operated manually. When it comes to high-throughput
phenotyping (HTP) applications in large-scale fields, this tedious manual step remains
an ongoing challenge. One possible semi-automated solution is cropping each plot over
time and detecting sudden changes [14]. The detected sudden change points may meet
bad reconstruction quality (e.g., Column C in Figure A1, Appendix A). This idea relies on

https://www.american-robotics.com
https://www.sunflower-labs.com
https://www.airoboticsdrones.com
https://www.airoboticsdrones.com
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a handy tool for batch-cropping time series point cloud data, but no such tool has been
developed yet.

Second, agronomists and breeders are often only interested in a specific area in the
entire field, called the region of interest (ROI) [13]. ROIs can be individual plots with
different treatments or production organs, such as lettuce leaves, broccoli flowers, sorghum,
and rice head. It is a standard operation to extract corresponding ROIs from the whole
field for better data management. Alternatively, the whole field is split into several small
parts, facilitating organ detection and segmentation. Currently, this cropping step is still
manually operated by geographic information system (GIS) software [15], for example,
ArcGIS (Esri, Redlands, CA, USA) and QGIS (www.qgis.org, accessed on 1 June 2021).
When it comes to HTP in the large field, although GIS-programmable APIs and the “drone-
dataflow” toolbox [13] in MATLAB (MathWorks Inc., Natick, MA, USA) are available for
batch processing, it requires professional programming and GIS operating skills. These
tools are still difficult to directly focus on agriculture-related output.

Third, limited by the complex field conditions, the concatenated DOM often has image
quality diminution compared to raw images [16]. A technique called reverse calculation,
which links the same place from DOM back to relative raw UAV images, has attracted
extensive interest [8,16–18], as it not only improves the ground cover estimation accuracy [8]
but also enables small-organ (e.g., sorghum head) detection tasks from UAV images [17,18].
However, previous studies have applied Pix4D, while Metashape is also used in many plant
phenotyping studies [19–22], but these techniques have not been examined and supported
yet. Furthermore, there are no handy tools available for agronomists and breeders without
professional programming skills.

The objective of the proposed software package (easy intermediate data processor
(EasyIDP), MIT license) is to address previously identified difficulties and decrease the
workload in intermediate data processing for agronomists and breeders, including (1) crop-
ping both large PCD and DOM to small parts by given ROIs; (2) reverse-calculating given
ROIs on the corresponding place on raw UAV images for both Pix4D and Metashape
projects; and (3) testing the accuracy and performance of the developed functions using six
different plots with various crops.

2. Materials and Methods
2.1. Study Sites and Image Acquisition

Six field datasets with different characteristics of crops were selected to develop and
test the performance of the proposed package (Table 1). For datasets 1–3 and 6, several
coded targets were set in the field before sowing crops as GCPs (Figure A2a in Appendix B).
For dataset 5, three distinguishable corners of the field were used as GCPs. For dataset 4, no
GCP was picked. All the GCPs were measured using Hemisphere RTK differential GNSS
devices (Hemisphere GNSS) to obtain the precise geographical position for producing the
georeferenced digital orthomosaic (DOM) and DSM in the later SfM-MVS procedure.

Table 1. Trial field and image acquisition information.

Dataset Crop Field
Location

Flight Date
(yy/mm/dd) UAV Model CameraModel Flight

Height (m)
Image
Num.

Size of Images
(px)

1 Soybean Tanashi 1 19/08/07 DJI Inspire 1 FC550 30 202 4608 × 3456

2 Sugar beet Memuro 2 18/06/26 DJI Phantom 4 v1 FC6310 30 120 5472 × 3648

3 Wheat Tanashi 19/03/14 DJI Inspire 1 FC550 30 138 4608 × 3456

4 Orchard Tanashi 20/08/06 DJI Phantom 4 v2 FC6310S 50 119 5472 × 3648

5 Lotus Tanashi 17/05/31 DJI Inspire 1 FC550 30 142 4608 × 3456

6 Maize Tanashi 19/07/29 DJI Inspire 1 FC550 30 138 4608 × 3456
1 Nishi-Tokyo, Japan; 2 Hokkaido, Japan.

www.qgis.org
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DJI Inspire 1 (Figure A2b in Appendix B) with an FC550 onboard camera (SZ DJI
Technology Co., Ltd., Shenzhen, China) and DJI Phantom 4 (Figure A2b in Appendix B)
with FC6310 and FC6310S onboard cameras (SZ DJI Technology Co., Ltd., Shenzhen, China)
were used to acquire images with a flight height of 30/50 m. The flight plan was designed
using a double-grid style with LitchAPP software (VC Technology Ltd., London, UK), with
>90% overlap of the pictures with the front and sides.

2.2. Three-Dimensional Reconstruction by SfM-MVS

Two commercial software programs, Pix4Dmapper Pro (Pix4D, S.A., Prilly, Switzer-
land) and Agisoft Metashape Pro (Agisoft LLC, St. Petersburg, Russia), were used to
process all six fields. Most of the parameters were used as software defaults. All the GCPs
and their geographical positions were detected by built-in software tools. For each GCP, its
related position in four UAV raw images was manually picked.

Agricultural fields are often flat and homogenous, and it is hard to provide enough
visual information for camera calibration optimization [23], which often causes curved
ground. To minimize this effect, for the initial processing procedure in Pix4D, the “calibra-
tion method” was set to “alternative” and “camera optimization” was set to “all prior” [23].
For the “align photos” procedure in Metashape, the “reference preselection” was selected
and “generic preselection” was deselected, as mentioned in its user manual [24] (p. 30).

Sometimes, the z-axis (height) scale was incorrect. After processing aligned photos,
the derived camera height was checked. If the derived height was not close to the actual
flight height, the image height was manually modified. In addition, z-axis accuracy was
set to 0.05 m to fix the flight height, helping correct the z-axis scaling issue.

The configuration of the computer used in this manuscript is as follows: Intel(R) Core
(TM) i9-7980XE CPU @2.60GHz, 64GB RAM, two NVIDIA GeForce GTX 1080Ti GPUs, and
Windows 10 Pro, 64-bit operating system.

2.3. ROI Making

The EasyIDP package has no graphical user interface (GUI) for manual ROI marking
of all kinds of outputs. Therefore, some external software to mark the ROI on different
outputs is required.

Standard GIS software, such as QGIS or ArcGIS, can be used to produce 2D XY
polygon shapefiles (*.shp) on the georeferenced GeoTiffs (DOM and DSM; please refer to
Guo et al. [25] and https://github.com/oceam/UAVPP/wiki, accessed on 1 June 2021 for
guidance on drawing shapes). The missing Z values (height) in the 2D ROI can be extracted
from the DSM by EasyIDP. The open source CloudCompare (http://cloudcompare.org,
accessed on 1 June 2021) can be used to produce 3D XYZ ROIs by picking several points
and exporting them to the .txt file. Please refer to the user manual (https://github.com/
HowcanoeWang/EasyIDP/wiki, accessed on 1 June 2021) for detailed tutorials.

2.4. ROI-Cropping Module

The function of this module is cropping ROIs from entire georeferenced GeoTIFF
data (DOM and DSM) or point clouds (PCDs). Several external Python packages were
used to implement this function, including “tifffile” (https://github.com/cgohlke/tifffile,
accessed on 1 June 2021), “pyshp” (https://github.com/GeospatialPython/pyshp, ac-
cessed on 1 June 2021), “pyproj” (https://github.com/pyproj4/pyproj, accessed on 1 June
2021), “plyfile” (https://github.com/dranjan/python-plyfile, accessed on 1 June 2021),
and “open3d” [26].

For GeoTIFF files, the “tifffile” package was used to read the geo-header data and
channel image data. The geo-header data contain the offset, resolution, and geographic
projection information. It was used for transforming pixel coordinates into channel images
and real-world geographic coordinates. Note that the channel image data were only
partially loaded, when necessary, to save the memory usage for large-size GeoTIFFs.

https://github.com/oceam/UAVPP/wiki
http://cloudcompare.org
https://github.com/HowcanoeWang/EasyIDP/wiki
https://github.com/HowcanoeWang/EasyIDP/wiki
https://github.com/cgohlke/tifffile
https://github.com/GeospatialPython/pyshp
https://github.com/pyproj4/pyproj
https://github.com/dranjan/python-plyfile
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For ROI shapefiles, the “pyshp” package was used to read polygon ROIs from the
*.shp files. Ideally, the ROI shapefile was the same geographic projection as the GeoTIFF
file. The “pyproj” package was used to deal with inconsistent geographic projections.
After properly loading ROIs and GeoTIFFs, the bounding box of ROIs was calculated and
transformed to a binary mask to crop the ROIs from the whole field. Finally, the clipped
ROIs were saved to the GeoTIFF file for later usage.

The whole GeoTIFF can also be split into regular grids with a given width and height.
The cropping module transformed each grid as one ROI and cropped them into small
GeoTIFF files without using any GIS software or APIs. This function may benefit data
batch preprocessing for deep learning applications, especially on the web server.

For point cloud files, the “open3d” package was used to read their data. The ”plyfile”
package was used to fix colors missing for some *.ply files. The point cloud crop function
in “open3d” was modified to crop ROIs and saved to a single point cloud file.

2.5. ROI-Reversing Module

The function of this module is projecting ROIs from world coordinates to relative
UAV raw images. In this section, the external and internal camera parameters generated
from SfM-MVS reconstruction projects were loaded by two internal Python packages,
“zipfile” and “xml.” Then, reverse calculation algorithms driven by a pinhole camera model
and camera distortion calibration were introduced. Some Python scientific computation
packages, such as “numpy” [27], “matplotlib” [28], and “pandas”(https://pandas.pydata.
org, accessed on 1 June 2021), were used in this calculation step.

2.5.1. Camera Parameter Loading

The relationship between field and UAV raw images was built after running SfM-
MVS software. It has two main parts, external and internal parameters. The external
parameters are different for each raw image, including the camera position (x, y, z) in the
real-world coordinate (Oworld, Figure 2a) and the camera rotation (yaw, pitch, roll). The
internal parameters describe the characteristics of the sensor and are the same of each raw
image, such as focal length, camera charge-coupled device (CCD) size, and lens distortion
calibration parameters.

For Metashape projects, all these parameters can be obtained either by calling APIs
(professional license required) or by reading zipped .xml files in the project file “project.files/
0/chunks.zip/doc.xml.” The EasyIDP package chose the zipped xml way without a pro-
fessional license. The “zipfile” and “xml” packages were used to unzip and parse these
parameters in .xml files.

For Pix4D projects, all these parameters are located in the “pix4d_project/1_initial/
params” folder, the “calibrated_internal_camera_parameters.cam,” “calibrated_camera_pa-
ramters.txt,” “pmatrix.txt” and “offset.xyz” are loaded as text directly and parsed in the
EasyIDP package without any external packages. For more details about these files, please
refer to the Pix4D official documentation [29].

https://pandas.pydata.org
https://pandas.pydata.org
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Figure 2. Example of reverse-calculating one point from the 3D world coordinates to the 2D pixel 
coordinates on raw UAV images by a pinhole camera model. (a) Relationship between world coor-
dinate (𝑂 ) and camera coordinate (𝑂 ), linked by camera external parameters (position and 
rotation). (b) Relationship between camera coordinate (𝑂 ) and image coordinate (𝑂 ). (c) 
Relationship between image coordinate (𝑂 ) and pixel coordinate (𝑂 ). (d) Camera distortion 
calibration between undistorted images and distorted images caused by the lens. 

2.5.2. Reverse Calculation 
The geometry from the real-world coordinate (𝑂 ) to image the pixel coordinate 

(𝑂 ) is shown in Figure 2a–c. There are four coordinate systems. The first is 𝑂 , 
whose unit is often meter (Figure 2a). The second is the camera coordinate (𝑂 , Figure 
2b), which makes the camera position to the origin (0,0,0) of coordinates, and the camera 
optical axis is used as the z-axis (commonly, the point 𝑂  is not the center point of 
plane). The third is the camera CCD coordinate (𝑂 , Figure 2c), whose unit is often mil-
limeter. The last one is the pixel coordinate (𝑂 ), whose origin is the top-left corner in 𝑂  and the unit is pixel. 

Let us assume a point 𝑃 (𝑥 , 𝑦 , 𝑧 )  in 𝑂 . To transform that point into 𝑃 (𝑥 , 𝑦 , 𝑧 ) in 𝑂  (Figure 2a), the 4 × 4 transform matrix 𝑇 could be derived from 
the camera position (𝑡, translational transformation) and camera rotation (𝑅, rotational 
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Figure 2. Example of reverse-calculating one point from the 3D world coordinates to the 2D pixel coordinates on raw UAV
images by a pinhole camera model. (a) Relationship between world coordinate (Oworld) and camera coordinate (Ocam),
linked by camera external parameters (position and rotation). (b) Relationship between camera coordinate (Ocam) and image
coordinate (Oimg). (c) Relationship between image coordinate (Oimg) and pixel coordinate (Opix). (d) Camera distortion
calibration between undistorted images and distorted images caused by the lens.

2.5.2. Reverse Calculation

The geometry from the real-world coordinate (Oworld) to image the pixel coordinate
(Opix) is shown in Figure 2a–c. There are four coordinate systems. The first is Oworld, whose
unit is often meter (Figure 2a). The second is the camera coordinate (Ocam, Figure 2b),
which makes the camera position to the origin (0,0,0) of coordinates, and the camera optical
axis is used as the z-axis (commonly, the point Oimg is not the center point of plane). The
third is the camera CCD coordinate (Oimg, Figure 2c), whose unit is often millimeter. The
last one is the pixel coordinate (Opix), whose origin is the top-left corner in Oimg and the
unit is pixel.

Let us assume a point Pworld(xw, yw, zw) in Oworld. To transform that point into
Pcam(xc, yc, zc) in Ocam (Figure 2a), the 4× 4 transform matrix T could be derived from the
camera position (t, translational transformation) and camera rotation (R, rotational trans-
formation):

Pcam = T · Pworld
xc
yc
zc
1

 =


R11 R12 R13 t1
R21 R22 R23 t2
R31 R32 R33 t3
0 0 0 1




xw
yw
zw
1

 (1)
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where t is the 3 × 1 position matrix and R is the 3 × 3 rotation matrix derived by
(ω, φ, κ) from camera rotation parameters (yaw, pitch, roll) [29,30]:

R = Rx(ω)Ry(φ)Rz(κ)

=

 1 0 0
0 cos(ω) − sin(ω)
0 sin(ω) cos(ω)

 cos(φ) 0 sin(φ)
0 1 0

− sin(φ) 0 cos(φ)

 cos(κ) − sin(κ) 0
sin(κ) cos(κ) 0

0 0 1


=

 cos κ cos φ − sin κ cos φ sin φ
cos κ sin ω sin φ + sin κ cos ω cos κ cos ω− sin κ sin ω sin φ − sin ω cos φ
sin κ sin ω− cos κ cos ω sin φ sin κ cos ω sin φ + cos κ sin ω cos ω cos φ


(2)

The distance from the normalized plane to the origin Ocam is 1 mm, while the distance
from the camera CCD plane to the origin Ocam is focal length f (Figure 2b) in millimeters.
The transformation from Pcam(xc, yc, zc) to normalized plane Pnorm(xn, yn) and camera
CCD plane Pimg(xi, yi) can be derived by triangle similarity:

[
xi
yi

]
= f

[
xn
yn

]
= f

[
xc
zcyc
zc

]
=

f
zc

 xc
yc
zc

 (3)

To transform Pimg(xi, yi) in millimeters to the image pixel coordinate position
Ppix

(
xp, yp

)
in pixels (Figure 2c), the following set of equations should be applied:[

xp
yp

]
=

[
α · xi + cx
β · yi + cy

]
=

[
f · α · xn + cx
f · β · yn + cy

]
 xp

yp
1

 =

 fα 0 cx
0 fβ cy
0 0 1

 xn
yn
1

 = K

 xn
yn
1

 (4)

where α and β are the pixel resolution whose unit is pixel/mm and often are the same in
pinhole camera models. fα and fβ is the focal length in pixels. Notably, Pix4D

(
cx, cy

)
can

be obtained directly, while for Metashape [24] (p. 176),
(
cx, cy

)
in the .xml file is not what is

defined here; it is the offset to the image center, which actually equals
(
0.5w + cx, 0.5h + cy

)
,

where w and h are the pixel width and height, respectively.
To sum up Equations (1) to (4), transform Pw(xw, yw, zw) directly to Ppix

(
xp, yp

)
,

which can be derived by: xp
yp
1

 =
1
zc

 fα 0 cx
0 fβ cy
0 0 1

 xc
yc
zc

 =
1
zc

K

 xc
yc
zc

 =
1
zc

K T


xw
yw
zw
1

 = Pmat


xw
yw
zw
1

 (5)

where the 3 × 4 matrix Pmat is often called the projection matrix, which can directly
transform points in 3D world coordinates to 2D pixel coordinates.

2.5.3. Camera Distortion Calibration

The Equation (5) transformation is idealized, and the distortion caused by the camera
lens is neglected (Figure 2d). Several camera calibration parameters are used to correct
this distortion, including three or four radial distortion coefficients (Ki in MetaShape and
Ri in Pix4D) and two tangential distortion coefficients (Pi in MetaShape and Ti in Pix4D).
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Metashape sometimes provides affinity (B1) and non-orthogonality (B2) coefficients in
pixels. The correction equations for the distorted pixel position

(
x′p, y′p

)
are as follows:

r=
√

x2
n + y2

n

x′= xn

(
1 + K1r2 + K2r4 + K3r6 + K4r8

)
+ P1

(
r2 + 2x2

n

)
+ 2P2xnyn

y′= yn

(
1 + K1r2 + K2r4 + K3r6 + K4r8

)
+ P2

(
r2 + 2y2

n

)
+ 2P1xnyn

x′p= cx + x′ f + x′B1 + y′B2

y′p= cy + y′ f

(6)

2.5.4. Performance Evaluation

To evaluate the performance of reverse calculation and identify the factors contributing
to the deviation, the lotus field (dataset 5) with a clear plot boundary (pond edges) was
used for evaluation. The expected reference results were made manually by LabelMe
annotation software (https://github.com/wkentaro/labelme, accessed on 1 June 2021)
and were used to compare with those calculated by the EasyIDP reversing module. Three
indicators, namely the intersection of union (IoU) performance criterion [31], precision,
and recall, were used to evaluate the similarities between the package output (program
area) and manual marking (manual area) and could be calculated by (refer to Figure 3 in
Tresch et al. [16] for the IoU diagram of each area)

IoU = intersection area
union area

precision = intersection area
program area

recall = intersection aera
manual area

(7)

Two kinds of comparisons were involved. For the first one, three plots with different
lotus densities (N3E6: sparsest; S2W4: medium sparse; N2W5: densest) were selected, and
all related raw images were marked manually. The pixel Euclidean distance from the IoU
center to the image center was also calculated, and the relationship between the indicator
values and Euclidean distance was simply discussed. Second, for each plot, the smallest
IoU Euclidean distance raw image was selected to mark the manual reference, and the
overall trend of the indicators was simply analyzed.

2.6. Implementation

The cropping and reversing modules mentioned above were implemented into a
Python package called EasyIDP using the MIT license. The source code can be downloaded
from https://github.com/HowcanoeWang/EasyIDP, accessed on 1 June 2021. For specific
package documentation, please refer to https://github.com/HowcanoeWang/EasyIDP/
wiki, accessed on 1 June 2021. Although the source codes were cross-platform owing to the
characteristics of the Python language, they were programmed and tested on a Windows
10 64-bit platform and an Intel CPU with a math kernel library (MKL). More than 8 GB
RAM and 3.0 GHz CPU are recommended for better performance.

3. Results

As mentioned in the introduction, intermediate data processing has three points that
need to be solved: (1) cropping the point cloud to small sectors of a given ROI; (2) cropping
the given ROI from GeoTiffs; and (3) reverse-calculating the ROI to the corresponding
position on raw UAV images. PCD and GeoTiff cropping was integrated into the cropping
module, while reverse-calculating was implemented by the reversing module. The accuracy
evaluation by manually marked references was also included.

https://github.com/wkentaro/labelme
https://github.com/HowcanoeWang/EasyIDP
https://github.com/HowcanoeWang/EasyIDP/wiki
https://github.com/HowcanoeWang/EasyIDP/wiki
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3.1. ROI Cropping

Some examples of the cropping function are shown in Figure 3. Three ROIs were
randomly chosen for each dataset with different cultivars or treatments. For each image
group (dataset), the left side with the plot name was the DOM generated by MetaShape.
The positions of randomly selected ROIs in the field are displayed on it. The first row of
each group is the cropped sector of the DOM, while the second row is the cropped point
cloud. According to this figure, similar patterns between PCD and DOM sectors were
observed, and the cropping module worked, as expected.
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Figure 3. Cropping results for three randomly chosen ROIs of six fields representing different cultivars or treatments. The
digital orthomosaic (DOM) and the point cloud (PCD) used in this figure are from the outputs of Metashape.

3.2. ROI Reversing
3.2.1. Reversing Results for Pix4D and Metashape

Some parts of the reverse calculation are shown in Figure 4. The first and second rows
are the ROIs clipped from the DOM generated by Pix4D and Metashape, respectively. Some
slight differences between the Pix4D- and Metashape-produced DOM were observed for the
Orchard field (Figure 4, columns 5 and 6). Pix4D was clearer for canopy details. The other
rows are relative positions on raw UAV images; broken red lines represent Pix4D results,
and blue ones represent MetaShape results. A slight deviation was observed on those fields
with GCPs (<5 pixels). The Orchard field without GCPs had bigger deviations, but the
target crown was still covered by reversed results correctly. In addition, the deviations
were variant to different view angles (raw image positions, different rows in Figure 4c–f).
Nevertheless, compared with the ROI size, these deviations should have no significant
impact on the obtained results.
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3.2.2. Reverse Accuracy Evaluation

To quantitatively evaluate the performance of reverse calculation, the dataset 5 Lotus
field with a clear plot boundary was used to examine the accuracy by manually drawn
references. There were two different comparisons involved. The first one was single plot
reversing on all raw images, while the second one was all plots reversing on only single
centered images.

The results of the performance evaluation for the first kind of comparison are shown
in Figure 5. For plots N2W5 and S2W4 with a complex canopy, most of the IoU values were
over 90%, and surprisingly, for the simplest and sparse-canopy plot N3E6, although the
IoU values were still greater than 75%, the performance was moderate. The reason may
be the automatic z value (height) calculation of ROIs. The z values used for ROIs were
the mean height of the ROI (ROI elevation, solid red lines), while for manually marked
references, it was the height of the plot edge. By manually picking some points of the edge
in QGIS, the height of the pond edge was represented in broken blue lines. The plot N3E6
had almost 25 cm differences between the auto mean ROI elevation and the referenced
pond elevation, mainly caused by the transparent water. The 3D reconstruction built the
bed mud rather than the water surface for this plot, showing that the ROI height selection
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is of great importance for the reverse calculation accuracy. Another trend in this figure is
that the IoU decreased with the distance increasing from the ROI center to the photo center.
This result means that the ROI position on raw UAV images (the view angle of raw UAV
images) also affects the reverse calculation accuracy.
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mean value of random 10 points picked from QGIS on the DSM.

The effects of ROI height selection and its position are shown in Figure 6. Three
different heights were used. The broken red lines “bottom height,” mean

(
Zp5
)
, were the

mean of all points <5th percentile within the ROI. The blue broken lines “mean height,”
mean(Z), were the mean of all points in the ROI. The black broken lines “top height,”
mean

(
Zp95

)
, were the mean of points >95th percentile within the ROI (Figure 6a). The

closer the reversed ROI to the raw image center, the fewer the deviations caused by different
ROI heights (Figure 6b,c). Figure 5 shows that once the pixel distance to the image center
was smaller than 800 (the size of the image was 4608× 3456 pixels), even the moderate-
performance plot N3E6 could achieve an IoU greater than 90%. Hence, to minimize the
unsuitable ROI elevation selection effects, ROI-centered raw images (like Figure 6c) are
recommended. This idea of choosing a centered raw image has also been applied by some
studies that used reverse calculation [16,17].
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Figure 6. Effects of the ROI position and ROI height on the transformation. (a) Three different height
choices of ROIs (5th percentile, mean, 95th percentile) by point cloud display, and (b,c) two different
ROI positions on the raw images and related ROI transformation results.

For the second kind of comparison of all 112 plots, only ROI-centered raw images
were selected, and the referenced results were marked manually. The distributions of the
accuracy assessment indicators are shown in Figure 7. The peaks were around 98%, while
the minimum value was still greater than 90%. Considering the difficulties in manual
marking in some plots where all corners were covered in leaves and were non-identical
(Figure A3 in Appendix C), the reverse transformation accuracy was determined to be
acceptable.
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4. Discussion
4.1. Reconstruction Quality Control and Assessment in Agriculture

Good reconstruction quality by photogrammetry is fundamental for plant phenotyp-
ing accuracy. Furthermore, it is challenging to ensure the quality of open-field agriculture.
The core algorithm SfM assumes the object is a rigid body with enough distinguishable
feature points. However, in open-field agriculture, complicated plant structures can be
deformed easily by wind, and continuous crop canopies with homogeneous surfaces make
processing difficult. For horizontal (xy plane) adjustment, one common solution is properly
setting GCPs in the field. The spatial distribution should be paid more attention to than the
number [10]. In most practices, four corners and one or two in the center could be the most
cost-effective way. For vertical (elevation or z-axis) adjustment, it is recommended to check
the estimated flight height in software. When a significant deviation to the actual flight
height is observed, manually specifying the flight height in software is a possible solution.
Some other methods, such as oblique photographs [32] and vertical scalebar setting, such
as GCP cube, e.g., magic cube [33], are also applicable.

It is still unavoidable to assess the reconstruction quality manually, even though
the above operations have been performed. Generally, the layering problem caused by
mismatching in the point cloud should be checked. Partially, the quality of each plant
in point clouds and the DOM should also be examined one by one. Hence, for HTP in
a large-scale open field, previous time-consuming manual assessment is now becoming
a bottleneck for practical applications. One possible semi-automated solution is that
cropped ROIs follow the time. Here, the data published in [14] were used as an example
to demonstrate this concept. In Figure A1 of Appendix A, a sudden global change in
column C (date) is observed as a system error. Moreover, for 52F, 52L, and 86E, sudden
individual changes are observed as random errors. These error points indicate the potential
imperfect reconstruction quality and need manual assessment, and other cases can be
omitted. The results in Figure 3 show that the developed EasyIDP has the ability to
crop ROIs correctly. In addition, it opens the door to decrease the workload in quality
assessment. Nevertheless, at the current stage, these sudden change detections have not
been implemented. An automatic sudden-change-detection pipeline based on the EasyIDP
cropping module should be developed in the future.

4.2. Whole DOM Cropping to Small Parts

Object detection and segmentation at different levels are also basic operations in plant
phenotyping. At the plot level, agricultural experiments often set different treatments by
plot. Hence, cropping the entire field by the plot range decreases the workload in both
phenotypic calculation and data management. In addition, at the individual or organ level,
this touches the key point in precision agriculture and makes monitoring and predicting
crop status and yield more accurate, for example, using computer vision or machine
learning algorithms to estimate the size of whole lettuce [34], broccoli flowers [35,36],
sorghum, and rice head [17,18,37]. Operating these algorithms directly on the whole-field
DOM is often impossible because the memory requirement for some algorithms increases
exponentially with the image size.

In both cases, splitting the whole DOM into small sectors, either by ROIs of the
plot boundary or by regular generated grids, is necessary for the data preprocessing step.
Currently, this step is manually operated by standard GIS software, such as ArcGIS or QGIS.
For HTP, the batch operation demand can also be satisfied by the GIS API or the “drone-
dataflow” toolbox of MATLAB [13]. However, using these tools requires professional GIS
or programming skills. Moreover, in our pre-experiment, their memory cost for a large
DOM is still numerous. It is still difficult for users to focus on agriculture-related outputs.

The developed EasyIDP tool showed acceptable cropping results (Figure 3). Using a
partial load technique supported by the “tifffile” package, the memory cost is acceptable
for large-field DOM data. For example, cropping a 10 GB DOM file to small grids only
costs a few lines of code, 0.5 GB memory, and 10 min.
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4.3. Reverse Calculation

Using previous quality control operations mentioned in Section 4.1, even though the
whole field looks good in general, the connection boundary between two raw images
projected on the DOM often has problems, which is caused by complex sunlight and
wind conditions. One idea is optimizing the DOM concatenation method, changing
those connection boundaries outside plots or ROIs [38]. An alternative idea is giving up
optimizing the DOM and finding the relative position on the raw image directly, named
reverse calculation [8,16,17]. Though these studies have shown its potential, the detailed
calculation algorithm and its accuracy have never been mentioned.

In our results, Figure 4 shows that reverse calculation works on both Pix4D and
MetaShape outputs. Only slight deviations are observed between the two software pro-
grams. The deviations become larger for the Orchard field without a GCP. Moreover,
these differences are acceptable compared to the size of the ROI. The accuracy of reverse
calculation on all available raw images was analyzed, and the results are shown in Figure 5.
Though generally, an acceptable result is observed on most raw images, the height of the
ROI and its positions on raw images significantly affect the accuracy. Their impacts are
visualized in Figure 6; the closer the reversed ROI to the raw image center, the smaller the
deviation caused by different heights. Once only those closest raw images are chosen, as
many studies have done [8,16,17], the accuracy indicators can reach 0.95 or more.

Reverse calculation can also be used to decrease the workload in training data an-
notation, especially for current popular deep learning applications in agricultural re-
search [36,37,39]. A massive amount of annotations on training images is required to avoid
overfitting and ensure the robustness of the deep learning model [18]. Unfortunately, it
is hard to use available computer vision annotation databases (e.g., ImageNet [40] and
COCO [41]) directly for specialized agricultural tasks. Data annotation is still unavoidable
for most plant phenotyping applications [42,43]. One solution is data augmentation. The
annotated data are applied by rotation, zooming, flipping, contrast-modifying, and other
computer vision algorithms as new annotation data [44], applied in some agricultural deep
learning studies [36,45]. However, this image-processing-based data augmentation has
failed in many cases and needs smart choices [46]. Another solution is collecting images
from the real world from different view angles. Hence, Beck et al. [47] proposed an auto-
matic indoor robotic annotation system to collect natural augmented crop training data in
agriculture systems. However, such a device is hard to apply under open-field conditions.

Reverse calculation builds a bridge between real-world and all raw UAV images,
which naturally contain abundant view angles (rotation in 3D) and environmental condi-
tions (sunlight, cloud shadow, soil color of different wetness). Figures 8 and 9 exemplify
how the idea works for decreasing the workload of data augmentation by reverse calcula-
tion at the individual and the organ level, respectively. In both cases, only six rectangle
annotations (12 clicks) are labeled by LabelMe on the DOM directly. Then, these annotated
rectangles are reversed to all available raw images. Moreover, they are sorted by the
distance to the image center. When the object is big enough (Figure 8), such as fruit trees,
the farthest is still acceptable for most cases, while it is another story at the organ level for
lotus flowers (Figure 9). In both cases, for each annotation on the DOM, at least 10 usable
annotations on raw images can be found with various view angles and light conditions.
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Figure 9. Potential usage of reverse calculation for organ-level training data annotation and augmentation in deep learning.
The DOM file of dataset 5 (lotus) was split into several 500 px× 500 px grids, and the grid “x6-y7” was marked with 6
annotation rectangles for flowers by LabelMe. Reverse calculation was performed on all annotation rectangles for all raw
images. “div” means the distance from the annotation center to the image center; smaller is closer.
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This data annotation by reverse calculation is not the across-the-board panacea and has
some potential limitations. The high quality of 3D reconstruction by SfM is fundamental.
Based on that, an object that has a large area (plot level), has a flat terrain or surface (fixed
object top height), and is solid (hard to shake by wind) should achieve acceptable results.
For example, as our pre-experiment showed, for the sorghum head, which is small and
easily affected by wind, the result is far beyond acceptable to use.

All the previously mentioned data augmentation methods share the same idea of
automatically enlarging labeled annotation data. Another concept to decrease the labeling
workload is to increase the quality and representativeness of each labeled data item, for
example, by weakly supervised learning [48], active learning [18,49], generative adversarial
networks (GANs) generate synthetic data [50].

4.4. Future Works

The EasyIDP package is currently still a pre-release and under construction for
more features. Many aspects could be further modified and developed. Currently, only
two commercial software programs, Pix4D and MetaShape, are supported. There are
still some other open source programs not supported yet; for instance, OpenDroneMap
(www.opendronemap.org, accessed on 1 June 2021) and VisualSfM (http://ccwu.me/vsfm,
accessed on 1 June 2021) have also been used in some agricultural phenotyping stud-
ies [5,51,52]. In addition, the EasyIDP package is Python script based, which requires
users to have some fundamental knowledge about Python programming. The GUI could
be developed for easier use. Further, as a tool only for intermediate data preprocessing,
this tool can be applied for more advanced open-field agriculture phenotyping, such as
decreasing the workload for deep learning training data annotation, predicting the best
harvest time, or assisting the cultivar selection for breeders.

5. Conclusions

EasyIDP, a Python package, was proposed to decrease the workload in several manual
operation tasks for HTP in large open fields, especially for assessing reconstruction quality
and cropping ROIs from the whole field by GIS software. Meanwhile, the reverse calcula-
tion used in many studies for both Pix4D and Metashape was also included. The results
showed that this tool works, as expected, on both cropping tasks and reversing tasks on
both software programs for a variety of crops. Manually marked references validated the
reverse calculation accuracy. The effects of ROI height selection and reversed ROI position
were discussed. This tool also shows great potential for decreasing the data annotation
workload in machine learning applications.
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