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A B S T R A C T

The change of fraction vegetation cover (FVC) is the key ecological index for vegetation dynamics of dryland
ecosystem. However, it is difficult to directly map woody vegetation and herbaceous vegetation in the dryland
from the satellite images due to the mixture of their distribution at small scale. Emerging UAV remote sensing
provides a good opportunity to capture and quantify the distribution of the sparse vegetation in the drylands
ecosystem. In this study, we proposed a new method to classify woody vegetation and herbaceous vegetation and
calculate their FVC based on the high-resolution orthomosaic generated from UAV images by the machine
learning algorithm of classification and regression tree (CART). This proposed method was validated and
evaluated by visual interpretation, the detailed ground measurement dataset of 4832 trees and 18,798 shrubs
and three popular machine learning algorithms of Support Vector Machine(SVM), Random Forest(RF), Gradient
Boosting Decision Tree(GBDT). The overall assessments showed good overall accuracy (0.78), average accuracy
(0.76), and the Kappa coefficient (0.64). The FVC of woody vegetation calculated from orthomosaic agreed well
with that estimated from ground measurements. Both group of FVC have a stable linear relationship over dif-
ferent spatial scales. The proposed method showed higher efficiency of 166%, 111% and 290% than SVM, RF,
GBDT respectively. A new optimized model was developed to reduce the workload of vegetation investigation
and to design more efficient sampling strategies. The proposed method was incorporated into an interactive web-
based software “UAV- High Resolution imagery Analysis Platform” (UAV-HiRAP, http://www.uav-hirap.org).
Our study demonstrates that UAV-HiRAP combined with UAV platform can be a powerful tool to classify woody
vegetation and herbaceous vegetation and calculate their FVC for sparse vegetation in the drylands. The new
optimization model will inspire researchers to design more effective sampling strategies for future field in-
vestigation.

1. Introduction

Dryland covers about 45% of Earth‘s land surface and dryland
ecosystem constitutes the largest biome on the planet (Schimel, 2010).
Yet vegetation dynamics studies are dominated by other ecosystems,
particularly the tropical forest with high biodiversity levels and high
productivity, and the boreal forest with huge stocks of carbon. Drylands
are less studied due to their low biodiversity level and sparse vegeta-
tion. Recent modeling studies have suggested that the trend and inter-

annual variability of the global carbon sink are driven by semi-arid
ecosystems (Poulter et al., 2014; Ahlström et al., 2015). Therefore,
long-term and continuous observations on semi-arid vegetation are
essential for explaining the carbon cycle process and ecological dy-
namics in dryland ecosystems. However, investigation frequency and
sample numbers based on field work are limited by available human
labor and field time.

Conventional remote sensing techniques, e.g. satellite and manned
aircraft, have been widely employed to monitor the dynamics of

https://doi.org/10.1016/j.agrformet.2019.107665
Received 19 October 2018; Received in revised form 17 July 2019; Accepted 17 July 2019

⁎ Corresponding author.
E-mail address: wangfeng@caf.ac.cn (F. Wang).

Agricultural and Forest Meteorology 278 (2019) 107665

0168-1923/ © 2019 Elsevier B.V. All rights reserved.

T

http://www.sciencedirect.com/science/journal/01681923
https://www.elsevier.com/locate/agrformet
https://doi.org/10.1016/j.agrformet.2019.107665
http://www.uav-hirap.org
https://doi.org/10.1016/j.agrformet.2019.107665
mailto:wangfeng@caf.ac.cn
https://doi.org/10.1016/j.agrformet.2019.107665
http://crossmark.crossref.org/dialog/?doi=10.1016/j.agrformet.2019.107665&domain=pdf


vegetation structure and function. e.g. coverage (Hansen et al., 2013),
phenology (Jeong et al., 2017) and species distribution (Asner and
Martin, 2009; Asner et al., 2017), over large extents for several decades.
However, it is not well-suited to obtain the distribution, structure and
function of sparse vegetation grown in dryland due to the low spatial
resolution of satellite images and the high cost of airborne images.
Besides, satellite and manned aircraft images are difficult to match with
the detailed ground data due to overpass time and cloud contamination.
Due to these limitations, a big challenge remains on how to collect a
large number of high spatial-temporal resolution images of sparse ve-
getation in dryland ecosystems in a timely manner.

Recently, unmanned aerial vehicle (UAV) remote sensing, as an
emerging tool, has provided a timely, high spatial resolution, and low-
cost way of monitoring vegetation at the landscape scale (Anderson and
Gaston, 2013). UAVs can assist researchers to generate ultra-fine grain
landscape scale aerial photography such as Digital Orthophoto Map
(DOM), Digital Elevation Model (DEM), Digital Terrain Model (DTM),
Canopy Height Model (CHM), based on computer vision principles in
hard-to-reach places (Leempoel et al., 2015; Cook, 2016; Malenovský
et al., 2017). High spatial resolution vegetation images at landscape
level are used to extract the structural and functional properties of
vegetation and to explore the maintenance mechanism of biodiversity
(Getzin et al., 2011; Hoffmann et al., 2016; McNeil et al., 2016; Zhang
et al., 2016). In other studies, three-dimensional structure of individual
plants can be obtained accurately by analyzing a large amount of digital
images combined with ground control points (Cunliffe et al., 2016), and
vegetation carbon storage were estimated based on allometry equations
linked plant structure with biomass (Dandois and Ellis, 2013). The UAV
is becoming an important tool in spatial ecology and environmental
monitoring to obtain large amounts of observation data (Faye et al.,
2016).

Image pattern recognition has been widely used in plant phenology
observation (Guo et al., 2015; Filippa et al., 2016), plant phenotyping
analysis (Duan et al., 2016), crop yield estimation (Yu et al., 2016),
biodiversity assessment (Getzin et al., 2011) and gravels morphological
characteristics determination (Mu et al., 2018). Some researchers ob-
tained the structural parameters of vegetation in small areas by using
single images from a common digital camera and fisheye camera
(Richardson et al., 2001; Lynch et al., 2015). However, the study of
sparse vegetation in arid areas often requires ultra-fine grain ortho-
mosaic images covering larger areas. The file sizes of these orthomosaic
images originating from hundreds to thousands of UAV photos can
amount to dozens of gigabytes (Wallace et al., 2016). Developing a
novel, automatic UAV image-based analysis method is a currently
challenging problem for field ecology, particularly precisely extracting
the properties of vegetation structure.

The elm (Ulmus pumila) sparse forest grassland is a transition zone
between forest and grassland in semi-arid sandy land in China, which is
widely distributed in Otingdag Sandy Land, Horqin Sandy land, and Mu
Us Sandy land of the Inner Mongolia, as shown in Fig. 1. The vegetation
community of this ecotone is a natural response to the hydrological and
meteorological processes in the ecosystem located in semi-arid sandy
land (Rodriguez‐Iturbe et al., 1999; D’Odorico et al., 2007). The vege-
tation type and spatial pattern play an important role in controlling the
spatial and temporal changes of hydrological processes in the region.
The change of vegetation structure, e.g. height, fraction vegetation
cover (FVC), are the key index for the dynamics of dryland ecosystem.
As well known, encroachment of shrub vegetation into grasslands is
widely considered to be a mechanism of grasslands degradation.
Therefore, monitoring of shrub and grass plants is also necessary for the
resilient management of dryland ecosystem. Currently, it is difficult to
directly capture the dynamics of woody vegetation and herbaceous
vegetation in the dryland from the satellite images respectively due to
the mixture of their distribution at small scale. Emerging UAV remote
sensing provides a good opportunity to obtain and quantify the dis-
tribution of the woody vegetation and herbaceous vegetation on the

sparse forest grassland at landscape scale. Developing a rapid and
precise method to extract the woody vegetation and herbaceous vege-
tation from the ultra-high-resolution UAV image will be greatly bene-
ficial to map vegetation pattern and to monitor vegetation dynamic in
dryland (Wang, 2017).

Therefore, our purpose in this study was to: 1) develop a high-re-
solution image-based method to classify woody vegetation and her-
baceous vegetation and estimate their FVC by UAV and machine
learning algorithm; 2) validate and evaluate the proposed method by
comparing with visual interpretation, the detailed ground-based mea-
surement dataset and three popular machine learning algorithms; 3)
develop a simple model for optimizing the workload of vegetation in-
vestigation.

2. Materials and methods

2.1. The study area overview

The study area is located in the north-east of Otingdag Sandland,
Inner Mongolia, northeastern China. The average elevation of this area
is 1300m. The annual average temperature of 1.8 ℃. the extreme
minimum temperature of -40 ℃, the extreme maximum temperature of
37 ℃. The average annual rainfall of 313.8mm and summer pre-
cipitation takes over 68.3%. The common wind direction is west and
northwest, and average annual wind speed is 4m·s−1. The soil is aeo-
lian sandy soil. The typical vegetation is natural sparse elm (Ulmus
pumila) forest, shrubs and grass (Fig. 1b and c). A long-term monitoring
plot (1 km×1 km, 42.96 N, 115.95E) in Elm Sparse FOrest Grassland
Ecosystem (ESFOGE-Plot) is established by Institute of Desertification
Studies, Chinese Academy of Forestry (CAF) and Institute of Botany,
Chinese Academy of Science in 2012 (Fig. 1a and d). All the aerial and
ground investigation were conducted in this ESFOGE-Plot in 2013.

This study area was divided into four hundred sample plots of
50m×50m by total station (Topcon GTS-336). The intersections of
the grid were marked with concrete piles as permanent ground control
points (GCP). All of them were marked with tag numbers according to
the horizontal and vertical coordinates.

2.2. Data sources

The aerial photograph was taken by the Canon EOS 5DMark II
camera via the Fixed-Wing UAV called “LTBT-Surveying Eagle” in June
2013. Color Digital Orthophoto Map (DOM) and DEM of ESFOGE-Plot
was produced by hundreds of original UAV aerial images according to
Structure-from-Motion (SfM) photogrammetry (Snavely et al., 2008).
Spatial resolution of the orthomosaic is 0.1 m / pixel (Fig. 2a).

The ground investigation was conducted by 49 volunteers from July
to August 2013. The crown diameter, plant height and diameter at
breast height (DBH) of each tree and each shrub in the ESFOGE-Plot
were measured by manual. At the same time, the location of each plant
in each sample plot was measured in the user-defined coordinate
system (the origin of the coordinate system is the lower left corner of
the ESFOGE-Plot, X-axis in the west-east direction, Y-axis in the south-
north direction, as shown in Fig. 1d). The accuracy of coordinate value
is 0.1 m. The location of each tree and each shrub was measured by
total station. There were 4832 elm trees and 18,798 shrubs of 14 dif-
ferent species in the ESFOGE-Plot.

A plant map was produced by using the trees’ locations, long and
short crown axis of tree crown. The shape of the tree crown is assumed
to be a standard ellipse. The center points were tree location, and
transverse/conjugate diameters were long/short crown diameters, re-
spectively. The color of trees and shrubs in the plant map were red and
blue, respectively. The plant map was implemented by Python PIL
(Pillow) package (Ver. 4.2.1).
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Fig. 1. Geographic location (a) and landscapes (b, c) of the long-term monitoring plot (42.96 N, 115.95E) in Elm (Ulmus pumila) Sparse FOrest Grassland Ecosystem
(ESFOGE-Plot). (d) Digital Elevation Model (DEM) derived from UAV images. There are 441 permanent ground control points in the plot. The size of ESFOGE-Plot is
1 km×1 km. The UAV images were taken on 9 June 2013. The ground investigation was carried out from July to August 2013.

Fig. 2. Schematic workflow of vegetation classification and FVC calculation by using classification and regression tree (CART) algorithm. (a) producing color Digital
Orthophoto Map (DOM) of the plot of Elm (Ulmus pumila) Sparse FOrest Grassland Ecosystem (ESFOGE-Plot) from UAV images; (b) expanding color space into HSV,
L*a*b*, and XYZ from RGB by using the color space transformation functions; (c) acquiring the pixels of tree & shrub, grass and bare sandy land as the training data
set in the orthomosaic (DOM) derived from UAV; (d) training the model to create a decision tree classifier using the training data set; (e). classifying trees, shrubs,
grass and bare sandy land using the classifier produced; (f) calculating the area and fractional vegetation cover (FVC) of woody vegetation, herbaceous vegetation
and bare sandy land.
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2.3. Woody vegetation and herbaceous vegetation classification and their
FVC calculation

The classified model proposed in this paper was originated from
Classification and Regression Tree (CART) algorithm (Breiman et al.,
1984). Vegetation types were detected on the high resolution UAV
images by coupling CART algorithm with the color spaces transforma-
tion function. The entire process of the proposed method includes the
following five steps, 1) preparing the high-resolution orthomosaic from
UAV; 2) expanding color spaces; 3) acquiring training dataset; 4)
training model and classifying the image; 5) calculating the area and
FVC of different vegetation (Fig. 2). The whole algorithm were im-
plemented in Python3.6 (Guido, 2018).

2.3.1. Expanding color spaces
Color space is an image description method using a set of values

(three components in common), such as RGB (Red, Green, and Blue),
HSV (Hue, Saturation, Value), XYZ (quantitative links between wave-
lengths distributions and physiologically perceived colors in human color
vision), and L*a*b* (L for Lightness, a and b for the color components
green–red and blue–yellow respectively). The first step in image pro-
cessing is color space conversion (Reinhard et al., 2001). We created 12-
dimensional color features by expanding color space into HSV, XYZ, and
L*a*b* from RGB information originated from DOM by using the color
space reverse functions. Compared to three-dimensional information
provided by RGB color spaces, twelve-dimensional information from four
kinds of color space can provide addition information for training deci-
sion tree model. The HSV, XYZ, and L*a*b* color spaces were trans-
formed from RGB information of original images.

The method of converting RGB to HSV was described in Eqs. (1) and
(2). Maximum, minimum, and chroma component values were defined
as max, min, and C, respectively (Hanbury and Serra, 2002).
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The method on conversing RGB to XYZ is described in Eq. (3)
(Fairman et al., 1997):
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The method on conversing RGB to L*a*b* is described in Eqs. (4) and
(5) (Schanda, 2007):
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where, Xn, Yn, and Zn are the values of specific white object points.

2.3.2. Acquiring training dataset
The representative training sets of trees, shrubs, grass and bare

sandy land were selected from the orthomosaic (DOM) by visual dis-
crimination using common image editing software (e.g. GIMP, ImageJ,
Photoshop etc.). The training dataset of different objects were shown in
Fig. 3. In order to distinguish the white training dataset and the
transparent background, the alpha layer of the PNG image was applied
to make the background transparent rather than white. The transparent
background was removed from the training dataset.

2.3.3. Training model and classifying the image
The CART algorithm was used to generate the decision tree model

based on the training dataset acquired in the previous step. The training
dataset of original RGB color information were expanded into 12 color
features (R, G, B; H, S, V; X, Y, Z; L*, *a, *b) which were derived from
the color space transformation functions described in Section 2.3.1. The
generated decision tree model was applied to the plot orthomosaic
(DOM). All the pixels in the orthomosaic were classified into three
categories, i.e. woody vegetation, herbaceous vegetation and bare
sandy land. Fractional cover (%) of each type vegetation were

Fig. 3. The training dataset acquired by manual selection of the Region of Interest (ROI) on the orthomosaic derived from UAV, including (a) tree and shrub, (b) grass
and (c) bare sandy land.
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calculated from the classified image by dividing the count of classified
pixels in each category by the count of total pixels.

2.4. Software implementation

The proposed approach was developed into an interactive web-
based software called “Unmanned Aerial Vehicles - High Resolution
Imagery Analysis Platform” (UAV-HiRAP). It is accessible through the
website http://www.uav-hirap.org. UAV-HiRAP was developed in
Python-Flask website framework (Ver3.5.2).

2.5. Accuracy evaluation

The accuracy of the proposed method was evaluated by comparing
with visual interpretation and ground measurement. Three common
assessment parameter, i.e. average accuracy, overall accuracy, and
Kappa coefficient were used to evaluate the accuracy of vegetation
classification. FVC calculated by the proposed method were also com-
pared against that calculated by ground measurement. Furthermore, we
evaluated the impact of the subplots’ size on FVC estimation.

2.5.1. Classification accuracy assessment by visual interpretation
A 100m×100m subplot including 1million pixels in the ESFOGE-

Plot was selected to assess the accuracy of the proposed methods by
comparing machine classification with visual interpretation. The loca-
tion of the sub-sample plot is shown in the black rectangle of Fig. 4. The
selected region includes the features of different vegetation and sandy
land in the study area. To be more specific: 1) The area of woody ve-
getation, herbaceous vegetation and sandy land are similar; 2) The
crown shape size of tree and shrub range from small to large gradually.
3) It included grass with different density; 4) It included different types
of bare sandy land. Tree, shrub and grass on the image were also
marked by visual interpretation. The agreement of the machine classi-
fication and visual interpretation was assessed by the average accuracy
(AA), overall accuracy (OA), and Kappa coefficient.

AA is the average of individual class accuracies. It is defined as
follows:

= =

k
AA i

k n
N0

i
c

i
(6)

Where k is the number of all categories, ni
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Where Np is the number of all pixels.
The Kappa coefficient is a measure of classification accuracy

(Congalton, 1991). It is defined as follows:
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Where, r is the number of rows in image matrix, xi j, is the pixel number
which is classified as class i in the UAV image but be marked as class j in
the reference image (i.e. image derived from virtual interpretation).

=+x xi j i j, means the pixel number which is classified as class i in
image classification, and =+x xj i i j, means the pixel number which is
marked as class j in reference image. N is the total number of pixels
(Bishop et al., 1975).

2.5.2. Evaluation between UAV-derived FVC and ground-derived FVC
To further evaluate the differences and accuracy between ground-

based FVC and UAV image-based FVC, the FVC calculated from both
methods were compared at different sampling spatial scales. ESFOGE-
Plot was divided into 100, 400, 800 and 1600 grids at subplots side-
lengths of 12.5 m, 25m, 50m, and 100m respectively, as shown in the
left corner of Fig. 6. The FVC values in each grid from both
methods were compared at four sampling spatial scales. The agree-
ment of both results was estimated based on the coefficients of de-
termination ( r2, calculated as the squared Pearson’s correlation
coefficient) and the root mean square error (RMSE), where
RMSE= FVC FVC( )n i

n
i i

1 UAV Field 2 .

2.6. An optimizing model for sampling design

In order to obtain the minimum number of sample plots while
meeting the requirements of required precision before ground in-
vestigation, an optimizing model for size and minimum number of
sample plots was developed based on the Monte-Carlo simulation
(Landau and Binder, 2014). We calculated the deviations between FVC0

(from the classified image of ESFOGE-Plot) and FVCs (averaged from
1000 times stochastic sampling for sample plots with different side-
length by Monte Carlo simulation) based on the classified images. The
side-lengths of sample plots were changed from 1m to 100m in the
simulation. The required minimum number of sample plots in ground

Fig. 4. The orthomosaic obtained from UAV, field measurements, and machine classification. (a) Digital Orthophoto Map (DOM) of the long-term monitoring plot of
Elm (Ulmus pumila) Sparse FOrest Grassland Ecosystem (ESFOGE-Plot), which was derived from the original UAV aerial images. Spatial resolution of the DOM image
is 0.1m/pixel, (b) woody vegetation map at individual scale shows the precise position and canopy diameter of each tree and each shrub (4832 elm trees and 18,798
shrubs), (c) woody vegetation and herbaceous vegetation image by machine classification. The area covered by a black box is the sample plot of 100m×100m for
validating the classification accuracy.
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investigation were estimated from the optimizing model when the de-
viation between FVC0 and FVCs met the accuracy of 95% and 90%
respectively.

The optimizing model represented the relationship between the
side-length l and the required minimum number n of sub-quadrats in
ground investigation, as shown in Eq. (9).

=
+

n a
l b( ) (9)

where a、b are coefficients, which are fitted from the group of the side-
length l and minimum number n of sample plots calculated by sto-
chastic simulation.

3. Results

3.1. Vegetation classification and FVC calculation

The orthomosaic image obtained from the UAV and the plant map
derived from the ground measurements for ESFOGE-Plot were shown in
Fig. 4a and b, respectively. The resolution of the color orthomosaic
image was 0.1m/pixel; it also has obvious color contrast among dark
green woody (tree & shrub), gray-green grass, and yellow bare sandy
land (Fig. 4a). The distribution of each tree and shrub are spatially
explicit at individual scale on the plant map (red for trees and blue for
shrubs, Fig. 4b).

The vegetation classification and FVC estimation were completed on
the interactive website “UAV-HiRAP”. Vegetation on the orthomosaic
were classified into woody vegetation(tree & shrub), herbaceous ve-
getation (grass), and bare sandy land, as shown in Fig. 4c. Fig. 4 showed
that vegetation distribution had a very good visual correspondence
between UAV orthomosaic image (Fig. 4a), ground-derived plant map
(Fig. 4b) and classified vegetation image (Fig. 4c).

The FVC of trees & shrub was estimated as 12.6%, which included
4.9% for trees and 7.7% for shrub based on the ground measurements
(Table 1). However, it was hard to directly measure the FVC for all
vegetation on the whole ESFOGE-Plot by the ground measurement,
especially for herbaceous vegetation. Through the UAV-derived ortho-
mosaic, the FVC of all vegetation was calculated as 80.3%, which in-
cludes trees & shrub of 14.1% and grass of 65.2%. Obviously, the FVC
calculated by orthomosaic was higher than that estimated by the
ground measurement.

3.2. Accuracy assessment and methods evaluation

3.2.1. Classification accuracy assessment
The accuracy of classification was assessed in the sub-plot of

100m×100m, which included 1million pixels (Fig. 5a). The vali-
dated result showed a good agreement between visual interpretation
(Fig. 5b) and machine classification (Fig. 5c). Moreover, the machine
learning algorithm captured the discrete pixels of the grass under the
gap of trees crown, as shown in the magnified part in Fig. 5. Table 2
showed that the overall accuracy, average accuracy and Kappa coeffi-
cients of the proposed method were 77.7%, 76.3%, and 0.64. The nu-
merical assessment demonstrated that the machine classification has
good average accuracy and overall accuracy. The producer’s accuracy
and user’s accuracy also demonstrated that the most of pixels are were

classified correctly. The errors between visual interpretation and ma-
chine classification were mainly caused by the mixing pixels of grass
and sandy land due to the low fraction grass cover. It is hard to dis-
tinguish the yellow-green grass pixels and yellow sand pixels in visual
interpretation.

3.2.2. UAV-derived FVC and ground-derived FVC evaluation
The proposed method was evaluated by the detailed ground mea-

surement dataset included 4832 trees and 18,798 shrubs. The FVC
values calculated from the orthomosaic by UAV-HiRAP were compared
with that derived from ground measurements at different sample plot
sizes. Fig. 6 shows that these UAV-derived FVCs were larger than those
ground-derived FVCs at different spatial level, and the variation be-
tween UAV-derived FVCs and ground-derived FVCs increased with the
decreasing of the side-length of sample plot (R2= 0.726, 0.682, 0.646
and 0.606, at 100m, 50m, 25m and 12.5m plot-levels, respectively;
P < 0.001). The reasons may be: 1) The crown area obtained by
ground measurements was not the real size of the canopy projection
area because crown shape was assumed as to be elliptical. 2) The ellipse
crown model assumed that the crown was closing, while real crown
always had air gaps. 3) It is difficult to guarantee no missing plants in a
large-scale ground measurement which may cause the ground-based
FVC to be smaller than “true value”.

Overall, the fractional woody vegetation cover calculated from or-
thomosaic and those estimated from ground measurements had a stable
linear relationship over different spatial scales, as shown in Fig. 6. The
slopes and interceptions of linear regressions were similar at the sample
plot with side-length of 100m, 50m, 25m and 12.5m, whose slopes
were 0.73, 0.76, 0.79 and 0.77, and interceptions were 4.9, 4.6, 4.2 and
4.5, respectively (Fig. 6). The stable linear relationships between UAV-
derived FVC and ground-based FVC at different spatial-levels show that
FVC obtained from both methods were reliable and the differences were
caused by different measuring methods. In general, UAV-derived FVCs
were calculated from the high resolution (0.1m/pixel) orthomosaic at
pixel scale. Compared with the ground measurement, UAV-derived
FVCs were more precise than ground-based FVCs.

3.3. An optimization model for sampling design

The differences between real FVC (FVC0) and measured FVC (FVCs)
in the study area were often caused by sampling number. This differ-
ence can be decreased through the increasing of sampling number. The
measured FVCs with the change of sampling number were simulated by
Monte Carlo stochastics sampling. There were 9 different sizes of
sample plots to be tested, whose side-length is 1m, 2m, 5m, 10m,
20m, 25m, 50m, 75m and 100m, respectively. As shown in Fig. 7, the
relationship between measured FVCs and sampling number (num) fol-
lowed the power function dev=a⋅numb (a, b is constant), which showed
a strong significance for all tested side-lengths (all: R2>0.99,
p < 0.001). When the side-length of the sample plot was fixed, the
differences (spacing between up/down FVCs and FVC0) was rapidly
reduced with the increase of the number of sample plots. The minimum
number of the sample plots became smaller with the increase of their
side-length. The simulation results showed that the sampling number
were 447, 382, 273, 194, 129, 110, 61, 38 and 26 for sample plots
whose side-length was 1m, 2m, 5m, 10m, 20m, 25m, 50m, 75m and
100m, respectively when deviation values< 5% (which is defined as
5% sampling error threshold value). When the allowed deviation in-
crease, the number of quadrats was reduced significantly. When the
deviation values< 10% (which is defined as 10% sampling error
threshold value), the sampling number was 109, 95, 69, 49, 33, 28,16,
10 and 7 for sample plots with 9 corresponding side-lengths. The
number of sample plots was reduced significantly, and the average
descent rate was 74% for all sample plots. These results demonstrated
that lower accuracy expectation of the measurement can effectively
reduce the field workload.

Table 1
Fractional vegetation cover (FVC) of tree, shrub, and grass by ground mea-
surement and machine classification.

Tree Shrub Grass

FVCfield
(Fig5.b)

4.9% 7.7% Null
12.6%

FVCUAV
(Fig5.c)

14.1% 65.2%
80.3%
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Fig. 5. Visual comparison of vegetation classification between visual interpretation (b) and machine learning (Classification and regression Tree (CART) algorithm)
classification (c) on a 100m×100m subplot (a) in the plot of Elm (Ulmus pumila) Sparse FOrest Grassland Ecosystem (ESFOGE-Plot).

Fig. 6. Comparison between fractional vegetation cover (FVC) derived from ground-derived and UAV-derived FVC calculated from machine classification at the
sample plots of four size levels: 100m×100m (a), 50m×50m (b), 25m×25m (c), and 12.5m×12.5m (d). The number of paired quadrat groups were 100,
400, 800, 1600 respectively.
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Derived from the simulated results described above, the relationship
between the side-length of quadrats and minimum sampling number at
the precision of 90% and 95% of sample estimates was shown in Fig. 8.
The side-length and minimum quadrats number follow a power func-
tion with a strong significant relationship (R2>0.99). This was con-
sistent with the experiences in the field work. The optimizing models
can be applied for designing sampling strategy for future field mea-
surements.

4. Discussion

4.1. UAV application in ecology

Using the UAV to explore vegetation status is becoming a new in-
terdisciplinary direction between UAV and vegetation ecology. The
UAV offers ecologists a promising, responsive, timely, and cost-effective
monitoring method of environmental phenomena at spatial and tem-
poral resolutions which are appropriate to the scales of many ecologi-
cally relevant variables (Garcia-Ruiz et al., 2013; Wallace et al., 2017).
The UAV remote sensing fills the gaps between ground photogram-
metric at small scale and satellite remote sensing with the low spatial
resolution. The imagery mosaic technique based on aerial photo-
grammetry principles and Structure from Motion (SfM) algorithm en-
ables researchers to obtain a fine-scale orthophoto images and 3D point
clouds from small digital images (Turner et al., 2012). Some researchers
also proved that the image-based FVC estimation has a better accuracy
than traditional ground investigation (Chen et al., 2016; McNeil et al.,
2016; Rasmussen et al., 2016; Wallace et al., 2016)

The UAV image analysis method is critical for UAV application.
Conventional visual interpretation methods are time-consuming and
labor intensive for high resolutions UAV images (Cruzan et al., 2016;
Hodgson et al., 2016). Recently, the applications of machine learning
method in image classification have been increasingly reported in

Table 2
The error matrix, overall accuracy (OA), average accuracy (AA) and Kappa
coefficient for visual interpretation result and algorithm classification result.

Visual interpretation Producer’s
Accuracy

Sand Tree &
Shrub

Grass Total

Classified Sand 263492 3213 70263 336968 0.782
Tree &
Shrub

3212 127239 43961 174412 0.730

Grass 41045 61662 385913 488620 0.790
Total 307749 192114 500137 1000000

User’s Accuracy 0.856 0.662 0.772 AA=0.763
Overall Accuracy=0.777
Kappa Coefficient= 0.639

Fig. 7. The sampling error and minimum number of quadrats simulated by Monte Carlo stochastic sampling. FVC calculated from orthomosaic was regarded as the
reference value (horizontal dash line). The solid regression lines were the 95% confidence range (mean± 2 SD) for different quadrats number (num). The verrtical
dash line represented the minimum number of quadrats investigated in the field at the accuracy of 90% and 95%.
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remote sensing studies (Turner et al., 2012; Guo et al., 2013; Feng et al.,
2015). Compared with these studies above, the proposed method in this
paper is the first attempt to classify woody and herbaceous vegetation
and calculate their FVCs at landscape scale (1 km×1 km) by using
common visible light sensor (RGB channels) based on UAV-derived
images. The new method has developed into an interactive web-based
software “Unmanned Aerial Vehicles - High Resolution Imagery Ana-
lysis Platform” (UAV-HiRAP, http://www.uav-hirap.org). It is acces-
sible for researchers to apply the new approach in their study.

4.2. Methods evaluation

The accuracy assessment show that UAV-HiRAP has good overall
accuracy, average accuracy, and the Kappa coefficient. Although some
studies can achieve higher Kappa coefficients (˜0.8), the resolution of
images used in these studies were lower than current study (Rau et al.,
2011, Kappa= 0.87, 5m; Näsi et al., 2015, Kappa=0.8, 2m). Lower
spatial resolution results in fewer details and more generality, which is
easier to get higher Kappa value. The similar Kappa values were re-
ported in several studies used high resolution image (Feng et al., 2015,
Kappa by only RGB=0.68, 0.07m; Dash et al., 2017, Kappa= 0.69,
0.3 m).

The proposed method was compared with three popular machine

learning algorithms, i.e. support vector machine (SVM) (Mountrakis
et al., 2011), Random Forest (RF) (Yu et al., 2016), Gradient Boost
Decision Tree (GBDT) (Friedman, 2001). All these machine learning
algorithms showed the similar visual classification performance (Fig. 9)
and obtained the similar average accuracy, overall accuracy, and Kappa
coefficient (Table 3). However, their computing time costs were very
different (Table 3). The proposed method was the least time-con-
suming, which spent 4 s on training classification model and 185 s on
classifying the orthomasics. The efficiency of current method was
higher of 166%, 111% and 290% than SVM, RF and GBDT algorithm on
the total time-consuming respectively. Overall, the proposed method is
more efficient, stable (no random number generator) than other pop-
ular machine learning algorithms.

4.3. Implications for sampling design

The reliability of ground investigation is greatly affected by the
sampling design (Basu, 1969). The field measurement is time-con-
suming and labor intensive. In this study, 49 people spent three months
on measuring the vegetation structure in 100 ha ESFOGE-Plot. A good
sampling strategy can greatly improve the efficiency and accuracy of
field investigation. This study found that FVC has great spatial varia-
bility in the sparse forest grass land. Our simulation test showed that

Fig. 8. The relationship between the minimum sampling number and different side-lengths of sample plots when deviation values meet< 10% and<5% thresholds.

Fig. 9. Visual comparison of vegetation classification by four machine learning algorithms. (a) Classification and Regression Tree (CART); (b) Support Vector
Machine (SVM); (c) Random Forest (RF); (d) Gradient Boosting Decision Tree (GBDT).
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the variability of random sampling FVC was negatively correlated with
quadrats area and quadrats number (Fig. 7). Therefore, the trade-off
between quadrats number, area and accuracy should concern field
ecologist (Picard et al., 2010). It has been proved that large quadrats
have a lower per-plot variance while a larger number of small quadrats
tend to decrease the standard error of the mean (Evans and Viengkham,
2001). Lin et al. (2013) proved that the variability of basal area de-
creased with the increasing of quadrats area by using computer simu-
lation and field measurement data. Grussu et al. (2016) pointed out that
quadrats area has a significant exponential relationship with coefficient
of variance (CV). Our simulation results also showed that there were
very good and significant exponential relationships between measured
deviation of single quadrat and number for quadrat with specific area
(Fig. 7). We further established two optimization models for quadrat
area and minimum sampling number which can achieve 90% and 95%
precision, respectively (Fig. 8). The required number of quadrats which
achieved the specified degree of precision dropped sharply with the
increasing of quadrat size. However, the total sampling area increased
with the increase of quadrat size, suggesting that using several small
quadrats across the sampling area is more efficient than using fewer
larger quadrats. Meanwhile, travel time from one quadrat to another
should be considered if choosing too many small quadrats (Evans and
Viengkham, 2001).

5. Conclusions

This study presented a novel, quick and precise UAV image-based
method to detect and map the woody vegetation and herbaceous ve-
getation and calculate their FVC at landscape level. The proposed
method performed more efficient than other popular machine learning
algorithm. The developed optimization model for FVC sampling design
can optimize the workload of vegetation investigation and to design
more efficient sampling strategies. The proposed method was devel-
oped to an user-friendly online tool, http://www.uav-hirap.org, for the
researchers to easily apply this approach in future study. This proposed
method also opened up new opportunities for detailed monitoring of
important vegetation structural and functional properties (e.g., canopy
diameter, tree height, chlorophyll fluorescence) at landscape level.
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